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ABSTRACT
Novel device with multiple FPGAs on-chip based on inter-
poser interconnection has emerged to resolve the IOs limit
and improve the inter-FPGA communication delay. Howev-
er, new challenges arise for the placement on such architec-
ture. Firstly, existing work does not consider the detailed
models for the path wirelength and delay estimation for in-
terposer, which may significantly affect the placement qual-
ity. Secondly, previous work is mostly based on traditional
tile-based placement which is slow for the placement of large
design on multiple FPGAs.

In this paper, we propose a new fast two-stage modular
placement flow for interposer based multiple FPGAs aim-
ing for delay optimization with the incorporation of a de-
tailed interposer routing model for wirelength and delay es-
timation. Firstly, we adopt the force-directed method for its
global property to get an efficient solution as a start point of
the placement. Secondly, we adopt the simulated annealing
(SA) for its efficiency and effectiveness in searching the re-
finement solution. In order to speed up the refinement, the
hierarchical B*-tree (HB*-tree) is employed to enable a fast
search and convergence. The experiments demonstrate that
our flow can achieve an efficient solution in a comparable
time. The proposed approach is scalable to different design
size.
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1. INTRODUCTION AND MOTIVATION
Recently, interposer-based FPGAs are proposed to signifi-

cantly improve the logic capacity, interconnection bandwidth
and performance [9]. For instance, Xilinx Inc., a major FP-
GA vendor, firstly develops the largest interposer-based FP-
GA, the Virtex-7 XC7V2000T, which has 4 dies and 1.95 mil-
lion logic elements [9]. A general two-and-a-half-dimensional
(2.5D) FPGA with interposer is shown in the Fig. 1 [9], where
four FPGA dies are placed vertically and are connected by
the interposer. The interposer is an electric interface rout-
ing for connecting different components and can be used to
spread connections, e.g., providing alternative routes for a
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Figure 1: A general 2.5D FPGA with interposer.

connection [9]. In order to connect between different dies,
the signal needs to go through the internal track of the cur-
rent die, microbump, and super long line (SLL) of interposer,
and then into the other die.

FPGA placement is a very important step for synthesis in
the modern FPGA [13] which significantly affects the imple-
mentation delay and the optimal placement is a NP-complete
problem [7]. The increasing design complexity and logic ca-
pacity of the FPGA system, especially the multi-FPGA sys-
tem, have further complicated the problem. In traditional
design flow, fine-grained tile-based (CLB level) placement is
performed to achieve the efficient solution. However, it usu-
ally requires a prohibitively long searching time from hours
to days, especially for a large-scale design [16]. To accelerate
the placement of large-scale design, module based placement
has been employed for single FPGAs [2]. Here, module repre-
sents a rectangle region containing some logic resources and
each module can be a reconfigurable region [26]. To our best
knowledge, there is no existing flow to support the module
based placement for multiple FPGAs, especially taking in-
to consideration the new interconnect architecture through
interposer.

In this work, we propose a new flow to address the place-
ment for multi-FPGA system with interposer targeting delay
optimization. Our approach consists of two steps. Firstly a
force-directed placement is performed to obtain an efficiently
initial solution. Secondly, the initial solution is represented
by the Hierarchical B*-tree (HB*-tree) [5] and based on it,
simulated annealing is performed to obtain the refined so-
lution. A detailed routing model for interposer is built and
integrated in the flow for addressing the interposer impact on
the placement. The B*-tree representation is introduced to
speed up the search and convergence of the solution [5]. The
HB*-tree matches the multi-FPGA system well where the
multi-FPGA can correspond to a B*-tree and each chip can
correspond to a sub B*-tree to enable the swap of modules
in different chips. In addition, we also exploited the impact
of different width-height ratios of the modules for delay op-
timization.

Our results demonstrate that 1) Interposer impacts the
placement result significantly and compared with the tradi-
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tional model, our proposed model can reduce the wirelength,
total delay, delay from nets crossing the interposer by 8%,
7%, 19%, respectively; 2) The ratios of the module impact
the placement results. When considering the different ratios
of modules, the wirelength, total delay and delay from nets
crossing interposer are improved by 8%, 4%, 9% compared to
the results considering modules with only one ratio; 3) Our
proposed flow can speed up the placement and achieve higher
quality compared to the state-of-the-art min-cut based flow
derived from [11].

2. RELATED WORK

2.1 Modular Placement for 2D single FPGA
There was a large amount of tile-based placement for a sin-

gle 2D FPGA. They could be based on heuristic approach [19]
or analytical approach [6] [30]. However, as we discussed in
the previous section, tile-based placement faced great chal-
lenge for placement of large-scale design. Thus module based
placement and hierarchical placement have been proposed to
address the challenge as well as support the partial recon-
figuration [2] [3]. However, placement in multiple FPGAs
is fundamentally different from placement in a single FPGA
due to the impact of inter-chip delay and assignment of mod-
ules into different chips.

2.2 Placement for 2D Multi-chip and 3D FP-
GA

Traditional multiple FPGAs had a limited number of IOs
for passing signals between different dies. Hence, cut-size
optimization was the common goal to reduce the number
of signals crossing chips as well as the long inter-chip de-
lay. [22] proposed an algorithm to minimize net crossings for
addressing system partitioning and considered the block as-
signment of multi-chip modules during the high level design
of an application-specific IC. [12] developed a new perfor-
mance driven partitioning algorithm to implement a large
circuit in multiple FPGAs to minimize the cut size. [25] de-
veloped a method named MP2 to minimize the total number
of terminals of all blocks during network partitioning. [20] p-
resented a rectilinear partitioning algorithm to minimize the
cut sizes of the partitions and handle timing specifications
for traditional multiple FPGAs.

Recently, 3D chip emerged for achieving higher integration
density and better performance. The 3D FPGA has multi-
ple dies stacked vertically which utilized through-silicon vias
(TSVs) as vertical connections [14]. The TSV density was
closely related to the cost and hence, most of 3D FPGA place-
ments target the minimization of TSVs which was similar to
the cut-size optimization. [1] adopted the updated popular
partitioner hMetis derived from [11] to divide the circuit into
several parts and minimize the connections between dies. [23]
adopted a TSV-aware partitioning algorithm for 3D FPGA
to achieve higher performance for applications. [14] proposed
a reconvergence-aware layer partition (RALP) algorithm for
3D FPGA design targeting performance optimization. How-
ever, they were targeting different routing models and all
were tile-based flow rather than module-based flow.

2.3 Placement for 2.5D IC and FPGA with In-
terposer

Little work has addressed the interposer-based FPGA place-
ment, although there was some work proposed for ASIC floor-
planning using the 2.5D integration with interposer. In [10],
the authors proposed the first work of chip-interposer code-
sign to place multiple chips on an interposer-based IC to

reduce the inter-chip wirelength. They also proposed a hier-
archical B*-tree to simultaneously place multiple chips and
IO buffers. The work in [15] presented an enumeration-based
algorithm and a network-flow-based algorithm to solve the
multi-die floorplanning and signal assignment problem for
2.5D IC respectively. [21] adopted simulated annealing for
die placement and I/O assignment in 2.5D IC. However, all
the approaches have been focusing on the ASIC flow instead
of the FPGA flow. Since FPGA had a different architecture,
placement methods targeting FPGA were needed to be de-
veloped and the approaches used in specific IC design were
not directly applicable to the FPGA architecture.

The work in [9] was the first work to consider the tile based
placement in the multi-FPGA system with interposer. In
comparison, our work employs a much more detailed inter-
poser routing model and mainly focuses on the development
of module based placement flow for delay optimization.

3. PROBLEM FORMULATION
In this work, we aim to develop the modular placement

flow for the interposer-based 2.5D FPGAs. A wirelength
estimation model for the interposer routing is developed for
the placement flow. We describe the notations used in the
placement problem below. E = {e1, e2, ..., em} is the set of
dies in the 2.5D FPGAs. IO = {io1, io2, ..., iok} is the set of
available IOs in the 2.5D FPGAs. B = {m1,m2, ...,mn} is
the set of modules to be placed in the 2.5D FPGAs.

We define the problem of interposer based multi-FPGA
placement as follows. Given a set of B with n rectangular
modules B = {m1,m2, ...,mn}, where each module has a
width and height denoted by wi, hi, 1 ≤ i ≤ n respectively.
The aspect ratio of module bi is defined by wi/hi. Given
a set of E with m dies E = {e1, e2, ..., em}, where each die
has the same width and height denoted by EW,EH. Given
a set of IO with k IOs IO = {io1, io2, ..., iok}. A placement
p = {(xi, yi)}(1 ≤ i ≤ n) with modules (mi) is an assignment
of the rectangular modules such that the bottom-left corner
coordinate of module mi is assigned to (xi, yi), no two rect-
angular modules are overlapped, and the different dies are
connected by interposer. A routing model described in 4.1
is used to estimate the wirelength and delay through inter-
poser. We consider each function in the overall design as a
rectangle module in this work, and the objective is to opti-
mize the total delay of the mapped circuit as well as meet
the IO and area constraints.

4. PROPOSED MODULAR PLACEMENT FLOW
The complexity of the placement for a multi-FPGA sys-

tem is much larger than that of a single FPGA. An efficient
approach should consider both the runtime and placement
quality. In order to optimize the placement as well as speed
up the convergence, we take two stages to achieve the place-
ment for the interposer based multi-FPGA system. Firstly,
we adopt the force-directed method [30] for its global prop-
erty to obtain a high-quality initial placement and then par-
tition modules into different dies. Secondly, we adopt the
simulated annealing (SA) [19] for its efficiency and effective-
ness in finding the approximately optimal solution. In order
to accelerate the refinement, we introduce the hierarchical
B*-tree (HB*-tree) [10] to enable a fast search [5] and con-
vergence. Moreover, a wirelength estimation model for the
interposer is developed to allow a more accurate evaluation
of the interposer impact on the placement flow.

4.1 Routing Model for Interposer
Based on the study of Xilinx commercial FPGA with inter-

poser, e.g., Virtex-7 XC7V2000T [9], we know that the logic
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(a) Original bounding box s-
maller than SLL length.

(b) Original bounding box
larger than SLL length.

Figure 2: Difference of wirelength estimation when
using interposer compared traditional bounding box
calculation.

block in one FPGA die connects to another logic block in a
different FPGA die in the following way. Firstly, the logic
block in one FPGA die connects to the track (length-12) and
the track connects to the corresponding microbump. Next,
the microbump links to another microbump of the different
FPGA die through the super long line (SLL) in the inter-
poser [27]. Then, the signal goes through microbump and
corresponding track and finally connects to the logic block
in a different FPGA die. The SLL wires for connecting the
adjacent FPGA dies through interposer have the same length
as the chip length according to the Xilinx interposer-based
FPGA, Virtex-7 XC7V2000T [9] [28]. To extend the model
for general multiple FPGAs with interposer interconnection,
we assume that any two adjacent chips can connect to each
other directly through interposer and the SLL wire for con-
necting the adjacent FPGA dies through interposer have the
same length as the die length, and the non-adjacent chips are
connected by the intermediate chips.

We use an example as shown in Fig. 2 to illustrate the
difference of wirelength estimation when considering the in-
terposer compared to traditional bounding box calculation.
We assume that the CLB A in the FPGA die one is connect-
ed to the CLB B in FPGA die two. For the case in Fig. 2(a),
we can not use the green bounding box for wirelength es-
timation as in the traditional model, since there is routing
restriction that SLL only connects to the local tracks at its
ending points. Instead, we consider the SLL length and use
the red bounding box for wirelength estimation which is more
accurate to model the interposer. For the case in Fig. 2(b)
where the bounding box is larger than the SLL length, the
traditional way of bounding box calculation can be applied.

4.2 Force-directed Placement
We adopt the force-directed approach [30] since it is a s-

calable approach for large designs and able to avoid being
trapped in local minimum solution. It is also suitable for op-
timizing average delay of the mapped circuit. We adopt the
force-directed algorithm which is similar to the [30]. Howev-
er, we consider the interposer in the following two forces used
in the force equation [30]. The basic definition can be found
in [30] and we do not describe it due to the page limitation.

4.2.1 Force Computing
We define two types of force for balancing the placemen-

t result: Filling Force and Attraction Force [30]. The two
forces are combined together using linear weighted function
to form the dx and dy which is described in [30]. We adopt
the approach (Barnes-Hut quad-tree for n-body force calcu-
lation) described in [4] to compute the filling force due to
its accuracy, O(nlogn) complexity and high-quality of force
calculation. To tradeoff the computation time and accuracy,
in our work we model a quad-tree with at most ten levels for

(a) Original position of Mod-
ule K.

(b) New position of Module
K.

Figure 3: Example for attraction force considering
interposer.

the placement region and recursively divide the placement
region into grids with the termination condition that the bin
size is not less than (wmin + hmin)/4 [17], where wmin, hmin

are the minimum width and height of all the modules.
Filling Force (fF

x , f
F
y ): it is used to remove overlap be-

tween modules and distribute the modules evenly over the
2D placement area. It pushes modules away from the region-
s with high density and pull the modules towards regions
with low density in the 2D space (filling force direction). We
define the density as the total module area that covers the
bin. The filling force of each bin is equal to the bin density
of each bin. The filling force of each module is equal to the
sum of the filling force of all the bins that the module covers.
We add an additional force for the modules which lie on the
partition boundary to prohibit them from crossing the inter-
poser and ease the final partition stage, since if modules are
placed in a partition boundary, it is difficult to choose which
die they belongs to.

Attraction Force (fA
x , f

A
y ): it is used to reflect the re-

lation between the old coordinate (start point of the force)
and new coordinate (end point of the force) of the module.
The two different positions of the module form an attraction
force. Since the delay in the interposer is larger than the
wire delay with the same length in the single die, we consid-
er the interposer in the attraction force in the following way.
If the two positions of the module cross the interposer, we
add an additional force where the force can be positive or
negative. If the number of nets crossing interposer increas-
es after moving the module to a new position, we will add
a negative force, e.g., decrease the attraction force to avoid
delay increase and vice versa. Fig. 3 shows an example for
considering the interposer in the attraction force. We assume
that Chip (die) 1 and Chip (die) 2 are two FPGA dies con-
nected by interposer and ’M’ represents a module. Currently
we consider a module labelled with ’K’ and the modules with
color represent that they are used. P1 and P2 are the origi-
nal position and new position for the module K, respectively.
Fig. 3(a) shows one net crossing the interposer and Fig. 3(b)
shows three nets crossing the interposer. Hence, we decrease
the attraction force for moving K from P1 to P2 which may
reduce the delay. Considering interposer in the force and cost
function Eq. 1 of Section 4.3.4 can help to reduce the number
of wires crossing the interposer.

4.2.2 Partition and Legalization
In each iteration of force-directed placement, we consider

the interposer in the filling force and attraction force de-
scribed above since the delay in the interposer is larger than
the wire delay with the same length in a single die. Through
considering interposer in the filling force it eases the partition
stage. We divide the force-directed result into several parts
according to their coordinates and chip boundary and each
part represents a chip (die). After we assign the modules to
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Figure 4: An Hierarchical B*-tree. In the interposer
level, it has 9 chips. Chip n5 has 4 modules in the
chip level.

the chips, we legalize (remove overlap) them using sequence
pair [18] which is a floorplan representation and powerful for
maintaining the relative relation of modules.

4.2.3 Aspect Ratio Selection of Modules
Since ratio impacts the circuit delay, we consider it in our

flow. For each iteration of force calculation, we pick one of
the ratio from the ratio list of the module and update its
width and height. Thus it may impact the density of the bin
that the modules cover. Through this way the filling force
may change and finally it impacts the placement results.

4.3 Hierarchical B*-tree Based Module Place-
ment

4.3.1 Hierarchical B*-tree
B*-tree is an ordered binary tree structure proposed in

modern floorplanning of ASIC designs [5]. Compared to oth-
er data structures, B*-Tree provides faster search and area
estimation, convenient handling of constraints, linear time
transformation between the tree and placement [5]. B*-tree
representation has used for the single FPGA placement [5].
To support the multi-FPGA placement, we adopt the hierar-
chical B*-tree (HB*-tree) since it matches the multi-FPGA
system well in which the multi-FPGA corresponds to a B*-
tree and each chip corresponds to a sub B*-tree. Moreover,
HB*-tree based placement can enable a fast search [5] and
convergence of the solution.

The hierarchical B*-tree consists of two levels: interposer
level and chip level. At interposer level, each chip is a node
of a B*-tree and the nodes determine the relative position of
each chip. At chip level, each module is a node of sub B*-
tree and the nodes in this level determine the placement of
modules in each chip. Fig. 4 shows a structure of HB*-tree
for illustration. At the interposer level, it has 9 chips and
each chip is a node represented by ni, 0 ≤ i ≤ 8 respectively.
At chip level, chip n5 (one of the nodes in interposer level),
contains 4 modules, and each module is a node represented
by mj , 1 ≤ j ≤ 4 respectively.

4.3.2 Hierarchical B*-tree Operations
To explore the solution space, we apply the following op-

erations.
At the interposer level, each chip is a node of the B*-tree

and the following operations are performed on the nodes.
OP1: Swap chips. OP2: Move a chip to another places.

At the chip level, each module is a node of the sub B*-tree
and the following operations are performed on the nodes.
OP3: Load module with shape of 1/(aspect ratio). OP4:
Move module to an empty space. OP5: Swap two modules.
OP6: Load a different aspect ratio of the module.

The following operations at the interposer level and chip
level are performed at the same time. OP7: Move a module

Figure 5: Chip-level packing: a sub-B*-tree of the
chip n5 and its corresponding placement.

Figure 6: Interposer-level packing: a sub-B*-tree for
chips and its corresponding placement

in a chip to another chip. OP8: Swap two modules that are
in different chips.

Here we use ’swap chips’ (OP1) since all chips are the same
and each node represent a chip in a tree of the interposer
level. Swapping nodes in the tree is similar to swap chips.

4.3.3 The Packing of the Hierarchical B*-tree
We use two steps to pack the HB*-tree to a placement.

Initially, we pack all the sub-B*-tree of the chip level one
by one and get all the placement results for all the chips.
Next, we pack the chip of interposer-level B*-tree to get a
placement of the whole design. Finally, we map the place-
ment of whole design using our proposed approach to the
corresponding architecture.

A general example of a chip-level and interposer-level pack-
ing is shown in Fig. 5 and Fig. 6. Fig. 5 shows the sub-B*-tree
of the chip n5 and its corresponding placement result. Fig. 6
shows that after packing the sub-B*-tree of each chip, we can
pack the B*-tree at the interposer level, and each node of the
B*-tree at the interposer level corresponds to the placement
result of the chip. In our work, the dies are the same (same
size: width and height).

4.3.4 Cost Metric in HB*-tree based Module Place-
ment

To simplify the operation, we combine OP.3 and OP.6 to-
gether. We use τ which is area × delay of a shape of a module
to evaluate the module generated by running VPR on the
corresponding verilog file. The internal block information
has already predefined, since VPR can achieve an efficient
placement for the module. Simulated annealing is performed
together with HB*-Tree operation to explore the solution s-
pace and the approach for choosing the temperature is the
same as the [5]. In each iteration, the operations are ran-
domly selected. Different weights are given to the operations
to control the probability of choosing each operation. After
each operation, the cost function [24] is calculated as shown
in Eq. 1. Here Wirelength and Delay represent the curren-
t total wirelength and total delay containing all nets of the
design respectively. Wirelength∗ and Delay∗ represent the
average wirelength and delay of the design respectively.

Costsystem = α(
Wirelength

Wirelength∗ ) + (1− α)
Delay

Delay∗
(1)
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Table 1: Benchmarks From VPR Suite
Casename Modules Tiles Casename Modules Tiles

bgm128 128 33160 bgm224 224 58030
bgm320 320 82900 spree121 121 2453
spree209 209 4237 spree308 308 6244

stereovision2112 112 60944 stereovision2210 210 40010
stereovision2308 308 180488 stereovision1105 105 20005
stereovision1210 210 40010 stereovision1315 315 60015

We divide the result by the average wirelength and delay
to normalize the results. The α is a parameter to bias the
cost function to wirelength or delay. If the net crosses the
interposer, we will use our wirelength estimation model to
calculate the wirelength and also consider the delay in the
interposer described in detail in the Section 4.1. Thus the
delay of each net includes the module delay and wirelength
delay generated by Elmore delay [29]. We use the popular
linear weighted function which is similar to [8] to bias the
wirelength and total delay.

5. EXPERIMENTAL RESULTS
To evaluate the performance of our proposed flow, we first

create benchmarks based on the VPR benchmark suite [19]
by decomposing each of the verilog file into multiple verilog
files according to subfunctions, which are known as modules.
Each module with one aspect ratio is obtained by running
VPR on each verilog file. Information of the cases are shown
in Table 1. The number of modules ranges from 110 to 320
for the current case set. We also show the number of tiles
contained to compare the difference in the size among these
cases. The absolute tile values are for reference only since
it varies in different architectures. In the experiment, each
module has 9 ratios 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.6, 2.5, 5.0
based on our evaluating and we set α to be 0.4. The multi-
FPGA system is assumed to contain 6 chips (3 columns × 2
rows). All the experiments were performed on a IBM server
x3650 with Intel Xeon(R) CPU and 42 GB DDR2 RAM.

5.1 Impact of Interposer
In the first experiment, we evaluate the interposer impact

using proposed routing model to the force-directed placement
for the initial placement and to the whole flow for the finally
refined placement. In previous work, the constant delay, e.g.,
1ns has been used for interposer [9]. Here we compare our
results with the constant delay model used in [9] for inter-
poser in our flow to show the impact of the detailed routing
model. The results are listed in Table 2 and Table 3, respec-
tively. In the table, WL, Delay, CrossD, Time denote
the total wirelength (tile), total delay (ns), the delay
generated by the nets crossing the interposer (ns) and
the runtime (s), respectively. The results in Table 2 show
that our proposed model does not impact the force-directed
placement much. The wirelength, total delay and delay from
nets crossing the interposer are reduced by 1%, 1%, 5% re-
spectively, for the initial placement step. The time increases
by 4%. However, the proposed model shows great impact on
the final placement results for our flow. Table 3 shows that
our proposed model reduces the wirelength, total delay, delay
from nets crossing the interposer and runtime by 8%, 7%,
19%, 2% respectively. Hence these results demonstrate that
a detailed routing model for interposer can help to improve
the placement quality.

5.2 Impact of Different Module Ratios
We compare the results between modules with only one

ratio and the modules with different ratios in the placement
flow to show the impact of module ratios. Similarly, we evalu-

Table 2: Comparison between Constant Delay Model
used in [9] and Our Proposed Model in Enhanced
Force-Directed Placement

Casename
Traditional Model used in [9] Our Proposed Model
WL Delay CrossD Time WL Delay CrossD Time

bgm128 22624 2140.28 145 9.49 21118 2052.59 104 10.63
bgm224 60676.5 4409.36 264 14.87 66748 4618.57 285 15.96
bgm320 110199.5 7072.01 421 45.26 105856.5 6936.38 420 48.67
spree121 10554.5 835 239 8.33 10416.5 827.73 236 8.57
spree209 23372 1575.85 387 39.15 24506.5 1617.02 393 39.74
spree308 48270 2810.62 630 132.3 48110 2775.66 600 135.97

stereovision1105 19941.5 1096.39 176 3.63 20353.5 1085.16 152 3.86
stereovision1210 59339 2892.92 449 16.09 54163 2672.46 389 16.7
stereovision1315 121681 5198.73 520 50.96 120186.5 5177.4 545 51.49
stereovision2112 61572 3035.49 296 4.86 62939 3042.87 261 4.83
stereovision2210 193964 8148.55 578 22.02 173945.5 7494.98 545 22.68
stereovision2308 330379.5 13498.35 972 68.55 342486.5 13877.66 976 69.94

Average 1 1 1 1 0.99 0.99 0.95 1.04

ate the impact of different module ratios on the force-directed
placement and the whole flow which usually uses one ratio
in the previous work. The corresponding results are listed in
Table 4 and Table 5. Table 4 shows that when considering
different ratios of modules in force-directed placement, the
wirelength, total delay and delay from nets crossing interpos-
er are significantly improved by 18%, 11%, 12% respective-
ly with an extra 7% runtime. The results in Table 5 indicate
that when considering different ratios of modules in the whole
flow, the wirelength, total delay and delay from nets crossing
interposer are improved by 8%, 4%, 9% respectively and the
runtime increase 46%. We can see that considering different
module ratios in the force-directed placement can significant-
ly optimize the total delay of the circuits and improve the
placement quality. However, in the HB*-tree based solution
refinement, the benefits from module ratios is reduced. It is
because that when considering multiple module ratios in the
SA, the design space is enlarged significantly and within a
comparable time, only suboptimal placement can be reached
by SA. While since force-directed placement is based on an-
alytical solution, considering multiple module ratios will not
increase its running time much.

5.3 Speed Up of the Placement Flow
We compare our flow with the traditional flow (min-cut

+ SA) (module-level) [14] [11]. We use hmetis [11] for par-
titioning for its high quality and fast speed. Hmetis [11] is
a software package for partitioning large hypergraphs and is
based on min-cut. Its goal is to minimize the total cut weight.
The weights of hyperedges and vertices are two parameters in
Hmetis. Here the hyperedges and vertices are set to the same
weight. The results are shown in the Table 6 and it shows
that our approach improves the wirelength, total delay and
the delay from nets crossing interposer by 21%, 14%, 17%
respectively in a shorter time (improve by 15%). The bene-
fits are achieved from the following two parts. On one hand,
min-cut is optimized to minimize the cut size. Although it
also helps on reduction of the delay, our force-directed place-
ment can achieve similar or better initial placement due to
its optimization for delay and consideration of the detailed
interposer model. On the other hand, HB*-tree based SA
can search and converge much faster than SA which enables
our flow to find a more efficient solution than SA within the
same time.

6. CONCLUSIONS
Our work proposes a module based mapping flow to ad-

dress the placement for multi-FPGA systems with interposer.
A routing model is developed to more accurately model the
wirelength and delay of the interposer. The proposed map-
ping flow contains two stages. Firstly, we adopt the force-
directed method to get a good-quality initial solution as a
start point of the refinement step. Secondly, we adopt the
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Table 3: Comparison between Constant Delay Mod-
el used in [9] and Our Proposed Model in Our Pro-
posed Flow

Casename
Traditional Model used in [9] Our Proposed Model
WL Delay CrossD Time WL Delay CrossD Time

bgm128 14493 1849.22 106 26.24 11962 1722.75 58 28.27
bgm224 48274 4025.88 265 62.17 41004 3752.51 217 63.64
bgm320 77255 6028.74 399 144.58 77292 6022.88 392 126.04
spree121 11605 945.57 317 52.46 9706 775.7 206 53.4
spree209 28582 1935.36 585 152.58 25840 1702.35 437 158.78
spree308 57323 3391.27 930 344.77 52813 3083.46 762 331.17

stereovision1105 16639 990.01 172 64.93 16051 945.79 146 62.73
stereovision1210 63454 3116.48 545 207.44 56506 2772.1 416 204.56
stereovision1315 151125 6390.49 799 379.34 136079 5819.06 694 362.14
stereovision2112 37709 2215.74 216 58.3 33657 2017.12 143 58.59
stereovision2210 133026 6239.48 558 196.85 140514 6458.6 545 189.62
stereovision2308 236712 10409.65 787 351.94 247117 10784.21 839 313.57

Average 1 1 1 1 0.92 0.93 0.81 0.98

Table 4: Comparison between Modules with only one
ratio and different ratios in Enhanced Force-directed
Placement

Casename
Modules with Only One Ratio Modules with Multiple Ratios
WL Delay CrossD Time WL Delay CrossD Time

bgm128 21118 2052.59 104 10.63 17143.5 1933.66 97 12.41
bgm224 66748 4618.57 285 15.96 43157 3798.16 174 27.21
bgm320 105856.5 6936.38 420 48.67 72906.5 5847.29 324 74.55
spree121 10416.5 827.73 236 8.57 10399.5 832.27 233 8.67
spree209 24506.5 1617.02 393 39.74 24960 1662.51 413 40.07
spree308 48110 2775.66 600 135.97 48810 2852.7 640 134.77

stereovision1105 20353.5 1085.16 152 3.86 17306.5 991.03 141 4.05
stereovision1210 54163 2672.46 389 16.7 52014 2594.46 359 16.74
stereovision1315 120186.5 5177.4 545 51.49 111136 4841.78 460 52.42
stereovision2112 62939 3042.87 261 4.83 42946 2419.61 241 3.06
stereovision2210 173945.5 7494.98 545 22.68 116621.5 5649.92 446 16.04
stereovision2308 342486.5 13877.66 976 69.94 216465.5 9700.96 658 73.41

Average 1 1 1 1 0.82 0.89 0.88 1.07

simulated annealing (SA) to efficiently search the solution s-
pace and find the approximately optimal placement solution.
In order to speed up the refinement of placement in SA, we
employ the HB*-tree representation to enable a fast search
and convergence. The mapping flow supports the modules
with different ratios which impact the total delay of the cir-
cuit to achieve the delay optimization. Our proposed ap-
proach gets efficient result in comparable time and is able to
scale for large design.
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