
1

Towards Automatic Partial Reconfiguration in
FPGAs

Fubing Mao1, Wei Zhang2, Bingsheng He1
1School of Computer Engineering, Nanyang Technological University, Singapore

2Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, HK
fmao001@e.ntu.edu.sg, wei.zhang@ust.hk, bshe@ntu.edu.sg

I. PROBLEM AND MOTIVATION

Partial Reconfiguration (PR) is an advanced reconfigurable
characteristic for FPGAs and it has the capability to recon-
figure specific regions of FPGAs while the other parts are
still active or are inactive in a shutdown mode after its initial
configuration. It provides many benefits for industry, e.g.
sharing the same hardware resource for different applications.

It has become a very important and challenging problem to
suitably prepare a good initial configuration as a reference for
different applications and how to manage the static region and
PR region resources for avoiding signal interruption incurred
by PR [1]. Static logic means the logic will not be reconfigured
during PR operation and PR logic means the logic can be
reconfigured during PR operation [2][3]. On the one hand,
since the initial configuration solution will be taken as a
reference for later PR operation and different reconfigurations
can have various properties e.g. area, aspect ratio and delay. It
is difficult to take them into consideration during placement.
On the other hand, it is challenging to determine how to
efficiently place the static logics and PR logics in the FPGAs.

In [4], they introduced a global floorplan generation ap-
proach to obtain shared positions for common modules across
sub-task instances. In [5], they proposed a resource-aware and
reconfiguration-aware approach for PR heterogenous FPGAs.
However, they all did not consider different shapes and delay
for each PR logic during placement. The commercial PR CAD
tools, such as PlanAhead [2], and TransFR [6] are used to deal
with PR work. However, much more manual efforts are needed
for the mapping steps when PR is involved. With respect to
the academic CAD tools, few work considered module based
placement and PR-aware routing.

The popularly used tool VPR [7] is based on the homoge-
nous tiles [7] [8]. Still there is a missing link between the
modern CAD tools and the PR applications. A good module
based placer and PR-aware router is urgently needed. In this
thesis, we attempt to fill this gap and propose an B*-tree [9]
based modular placer to solve the requirement of PR.

II. SOLUTION AND CONTRIBUTION

We proposed following two key techniques to address the
aboved challenges.

• Since functions (modules) with different shapes may have
very different performance, we propose to simultaneously

consider different aspect ratios and delay for each PR
logic during placement to get the reference of PR logic.

• Module based placement introducing B*-tree representa-
tion is convenient to differentiate static regions and partial
reconfigurable regions and we take the placement result
as a reference for partial reconfigurable operations later.

In our work, we propose a module based placer including
the techniques and integrate our placer into a mapping flow
that can be used for PR operations. The flow has been devel-
oped on top of VPR and the experiment results demonstrate
improvement on delay and execution time with acceptable area
overhead compared with results of tile-based VPR [7].

Our main contributions can be summarized as follows:
• We provide an automatic placement tool which considers

the static and PR modules at the same time. The shape,
module size and delay of each context switching sub-
function are considered during the placement.

• We utilize B*-tree representation to enable a fast modular
placement on both fine-grained and coarse-grained fabric.

III. CURRENT STATE OF OUR WORK

A. Module-Based Placer

BMP (B*-tree Modular Placer) [10] simultaneously places
both the static and reconfigurable modules and introduces B*-
tree representation to enable a fast search [9] and convergence.
Different module sizes and delay are considered during the
placement and these properties can be used to guide simulated
annealing (SA) to find a good placement result. We choose
SA for its simplicity and effectiveness in finding the good
placement. BMP can support the module library structure.

B. Module Library

The input files for the BMP should be prepared in advance.
The benchmarks of reconfigurable modules were still unavail-
able when we proposed BMP. Thus, we selected and modified
the cases in the VPR suite [7] for experiment. We decompose
the circuit into static logics and PR logics (module) using an
existing approach [2][3] and we regard each logic as a module.
In order to get the netlist for connecting modules, the module
library can be used. For library based design we do not need
to integrate all the modules’ verilog codes to get a complete
netlist, which is commonly used. Instead we only need to
provide the modules’ list, connection port name and the top

978-1-4799-6245-7/14/$31.00 ©2014 IEEE 286

2

Modules' Lib.
(netlist)

A1
B1
B2
B3
C1
C2
D1

Top netlist1
A1, B1, C1, D1

A1
 B1
C1
 D1

Top netlist2
A1, B2, C1, D1

A1
 B2
C1
 D1

Fig. 1. Library based structure.

module IO information to design a new function. In order
to finish the design, it only needs to start from the physical
synthesis stage. An example of a library based structure is
shown in Fig. 1. We assume that A, B, C and D are four
modules, where only B and C are reconfigurable modules
with multiple contexts. Currently the designer specify A1, B1,
C1 and D1 as a module list and their connections have been
collected from the top netlist. Then the placer fetches the
corresponding modules from the library to combined into a
complete netlist. Our implementation will support the context
switch for the reconfigurable module B and C.

B*-tree can efficiently support modules with coarse-grained
resources. Fig. 2(a) is a floorplan result in which some modules
contain coarse-grained resources. Each part is a module and
independent to others. The Fig. 2(b) is the mapping placement
result, we can see it matches well with the floorplan result.

IV. PRELIMINARY RESULTS

We briefly present a placement result of benchmark Bound-
top in Fig. 3 to demonstrate the promising results of our
proposal. In Fig. 3(a), the red rectangle is the total floorplan
area of the benchmark. The grey area is the total area of
all the modules and their topology information is shown in
the figure. The white space represents the empty space which
is not occupied by any modules. We omit demonstration of
IO which is around the red rectangle. There are totally 13
modules in Boundtop and we index them starting from 0.
The placement considers the different ratios and delay of each
context switching sub-function which previous work does not
take into account. We use linear weighted function to evaluate
the quality of the solution and use the module delay got
from VPR routing result to reflect the module property. The
placement result on VPR is shown in the Fig. 3(b). Each red
rectangle area represents a mapping area for the corresponding
module. To evaluate the efficiency of the BMP, we compare the
experiment result between the tile-based flow (VPR) and our
work (placer tool). For fairness, we use the router of VPR to
run our placement result for getting delay result. On different

(a) Coarse-grained mod-
ule floorplan.

(b) Coarse-grained mod-
ule placement.

Fig. 2. Coarse-grained module floorplan and placement result

experimental settings, our tool can achieve 3.71% to 21.29%
improvement in delay and save the execution time by 77.28%
on average with up to 19.89% area overhead.

V. CONCLUSIONS AND FUTURE WORK

Our work proposes a B*-tree Modular placer (BMP) which
supports the partial run-time reconfiguration and heterogenous
resources. The proposed module-based placer used the modi-
fied B*-Tree representation to optimize the floorplanning and
placement of the modules with the consideration of flexible
module ratio. The corresponding parameters for cost functions
and searching algorithms are explored in the experiments.
Compared to the state-of-the-art tile-based placement [7], the
results of the proposed B*-tree Modular Placer have improve-
ment on delay and execution time with acceptable area cost
due to the empty space. We believe the automatic tool will
bridge the gap between the academic research and industry.
In the future, the following directions will be considered.

• We plan to investigate PR-aware routing and the context
switching in the PR region.

• We will map the result to the commercial FPGA boards,
e.g., Xilinx FPGA board and Altera FGPA board.

• We will study other floorplanning representations, such
as, Sequence Pair to optimize the floorplan.

• We will introduce other heuristic search algorithms, e.g.,
Tabu Search, Genetic Algorithms to the problem.

ACKNOWLEDGMENT

This work is partly supported by a MoE AcRF Tier 2 grant
(MOE2012-T2-1-126) in Singapore.

REFERENCES

[1] P. Sedcole, B. Blodget, J. Anderson, P. Lysaghi, and T. Becker, “Modular
Partial Reconfigurable in Virtex FPGAs,” in FPL, 2005, pp. 211–216.

[2] Xilinx, “Partial Reconfiguration of Xilinx FPGAs Using ISE Design
Suite,” 2012, http://www.xilinx.com.

[3] Altera, “Increasing Design Functionality with Partial and Dynamic
Reconfiguration in 28-nm FPGAs,” 2010, http://www.altera.com.

[4] P. Banerjee, M. Sangtani, and S. Sur-Kolay, “Floorplanning for Partially
Reconfigurable FPGAs,” TCAD, vol. 30, no. 1, pp. 8–17, 2011.

[5] L. Nan, C. Song, and T. Yoshimura, “Resource-aware multi-layer
floorplanning for partially reconfigurable FPGAs,” IEICE Transactions
on Electronics, vol. E96-C, no. 4, pp. 501–510, 2013.

[6] Lattice, “Field Update FPGAs While System Operates,” 2005,
http://www.latticesemi.com.

[7] J. Rose, J. Luu, and e. Yu, Chi Wai, “The VTR Project: Architecture and
CAD for FPGAs from Verilog to Routing,” in FPGA, 2012, pp. 77–86.

[8] P. Chow, “The Design of a SRAM-Based Field-Programmable Gate
Array–Part II: Circuit Design and Layout,” TVLSI, vol. 7, no. 3, 1999.

[9] T. Chen and Y. Chang, “Modern Floorplanning Based on B*-Tree and
Fast Simulated Annealing,” TCAD, vol. 25, no. 4, pp. 637–650, 2006.

[10] F. Mao, Y.-C. Chen, W. Zhang, and H. Li, “BMP: A Fast B*-Tree based
Modular Placer for FPGAs,” in FPGA, 2014, pp. 248–248.

(a) Boundtop floorplan. (b) Boundtop placement.

Fig. 3. Floorplan and placement results.

287

