
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 2013



Abstract—We present an efficient combined SDC-SDF

(Single-Path Delay Commutator-Feedback) radix-2 pipelined

Fast Fourier Transform (FFT) architecture which includes

log2N-1 SDC stages, and 1 SDF stage. The SDC processing engine

(PE) is proposed to achieve 100% hardware resource utilization

by sharing the common arithmetic resource in the

time-multiplexed approach, including both adders and multipliers.

Thus, the required number of complex multipliers is reduced to

log4N-0.5, compared with log2N-1 for the other radix-2 SDC/SDF

architectures. Moreover, the proposed architecture requires

roughly minimum number of complex adders log2N+1 and

complex delay memory 2N+1.5log2N-1.5.

Index Terms—FFT, Pipelined Architecture, Single-path Delay

Communicator Processing Engine (SDC PE)

I. INTRODUCTION

ast Fourier Transform (FFT) has played a significant role in

digital signal processing field, especially in the advanced

communication systems such as orthogonal frequency division

multiplexing (OFDM) [1] and asymmetric digital subscriber

line (ADSL) [2]. All these systems require that the FFT

computation must be high-throughput and low-latency.

Therefore, designing a high-performance FFT circuit is an

efficient solution to the above mentioned problems. Especially,

the pipelined FFT architectures have mainly been adopted to

address the difficulties due to their attractive properties, such as

small chip area, high throughput, and low power consumption.

To the best to our knowledge, two types of pipelined FFT

architectures can be found in the literature: delay feedback (DF)

and delay commutator (DC). Further, according to the number

of input data stream paths, they can be classified into

multiple-path (M) or single-path (S) architectures. The two

classifications form four kinds of pipelined FFT architectures

(e.g., SDC). Multiple-path (M) architectures [3-9], are often

adopted when the throughput requirement is beyond the

theoretical limitation that the single-path architecture can offer

at a given clock frequency. However, they require concurrent

read (write) operations for the multi-path input (output) data.

Manuscript received. This work was supported by the National Science and

technology support program of China (No. 2012BAK24B01)
Zeke Wang is with Zhejiang University and Nanyang Technological

University. (e-mail: wangzeke@zju.edu.cn)

Xue Liu is with Institute of Cyber-Physical Systems Engineering, College of
Information Science and Engineering, Northeastern University Shenyang,

Liaoning, China (e-mail: liuxue0412@tom.com).

Bingsheng He is with the School of Computer Engineering, Nanyang
Technological University, Singapore, 639798. (e-mail: BSHE@ntu.edu.sg).

Feng Yu is with the Institute of Digital Technology and Instrument,

Zhejiang University, Hangzhou, 310027, China. (e-mail:
osfengyu@zju.edu.cn)

Therefore, single-path (S) architectures could be appropriate in

some cases when the system cannot ensure concurrent

operations. However, the arithmetic utilization is relatively low,

compared with 100% utilization of the existing MDF/MDC

architectures (for example, [4]). In the paper, we focus on the

SDC radix-2 pipelined FFT architecture which can also achieve

100% multiplier utilization by re-ordering the inner data

sequence.

For single-input data stream, the conventional radix-2 SDF

FFT architecture [10] requires 2log2N complex adders and

log2N-1 complex multipliers, where N is the FFT size. Both

Chang et al. [11] and Liu et al. [12] present the novel SDC

architectures to reduce 50% complex adders by re-ordering

inner data sequences. However, the utilization of the

corresponding complex multipliers still remains 50% for the

both architectures. We therefore study whether the complex

multiplier unit can be modified to achieve the 100% utilization.

In the radix-2 FFT architectures, there is a common

observation that one half data (sum part of butterfly operation)

do not involve complex multiplication (𝑊𝑁
0) at all, while the

other half (difference part) indeed involves complex

multiplication (𝑊𝑁
𝑘). Hence, it has the opportunity to achieve

the objective that reduces the arithmetic resource of the

conventional complex multipliers by a factor of 2, leading to

100% utilization. It is ideal for two consecutive complex input

data to contain a complex number which needs to execute

complex multiplication. If so, we can minimize the re-ordering

memory requirement while achieving the above objective that

reduces 50% the arithmetic resource of complex multipliers.

Fortunately, the improved SDC architecture can produce the

sum and the corresponding difference results of a butterfly

operation in consecutive two cycles. The sum part is directly

passed to the next stage, while the difference part needs to

execute complex multiplication before passing to the next stage.

Therefore, the SDC architecture is ideal for our efficient

pipelined radix-2 FFT architecture. However, the SDF

architecture does not meet the above constraint well since the

sums of the all butterflies in the stage are produced first,

followed by the corresponding differences.

In the paper, we present an efficient combined SDC-SDF

radix-2 pipelined FFT architecture which includes log2N-1

SDC stages, 1 SDF stage, and 1 bit reverser. The single-path

delay commutator processing engine (SDC PE) in each SDC

stage achieves the 100% hardware resource utilizations of both

adders and multipliers. We include the SDF stage to re-order

the data sequence, and then the delay memory of the bit

reverser is reduced to N/2. The proposed architecture can

A Combined SDC-SDF Architecture for

Normal I/O Pipelined Radix-2 FFT

Zeke Wang, Xue Liu, Bingsheng He, Feng Yu

F

mailto:wangzeke@zju.edu.cn
mailto:osfengyu@zju.edu.cn

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 2013

produce the same normal output order as [26].

II. REVIEW OF PIPELINED FFT ARCHITECTURE

A. FFT Review

The N-point DFT is defined by

X(k) = ∑ 𝑥(𝑛) ×𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

, 𝑘 = 0,1,⋯ ,𝑁 − 1,

where x(n)is the input data, 𝑊𝑁
𝑛𝑘 is the coefficient(𝑊𝑁

𝑛𝑘 =

𝑒−2𝜋𝑛𝑘/𝑁) and N is any integer power of two.

It is well known that the radix-2 FFT can be deduced from

DFT by factorizing the N-point DFT recursively into many

2-point DFTs. The data flow graph (DFG) of 16-point radix-2

FFT is shown in Fig. 1.

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

X(0)

X(8)

X(4)

X(12)

X(2)

X(10)

X(6)

X(14)

X(1)

X(9)

X(5)

X(13)

X(3)

X(11)

X(7)

X(15)

0

16W
1

16W
2

16W
3

16W
4

16W
5

16W
6

16W
7

16W

0

16W
2

16W
4

16W
6

16W

0

16W
2

16W

4

16W
6

16W

0

16W
4

16W

0

16W
4

16W

0

16W
4

16W

0

16W
4

16W

Fig.1 Data flow graph of DIF Radix-2 FFT (N = 16)

B. Review of Pipelined FFT Implementations

Assuming that the input data enters the FFT circuit serially in

a continuous flow, the radix-2 MDC and SDF architectures can

be directly deduced according to the data flow graph in Fig.1.

The radix-2 MDC architecture [9] is the most direct

implementation approach of pipelined FFT, but its hardware

utilization is only 50%. Compared with [9], the radix-2 SDF

design [10] reduces the required memory size. However, the

utilizations of adders and multipliers are still 50%.

Besides the basic radix-2 architectures, various high radix

pipelined FFT architectures have also been proposed to address

the arithmetic resource utilization problem. They are radix-4

MDC [4, 8, 23], radix-4 SDC [13], radix-4 SDF [18], radix-22

SDF[14,21], radix-23 SDF [15], radix-24 SDF [16], radix-25

SDF [17], radix-rk SDC/SDF [19] and radix-2k feedforward

[20]. Compared with the radix-2 architectures, the high radix

architecture can only process the FFT, whose size is a power of

its high radix, not just 2.

In order to extend the application scope of the FFT

architectures, the new dynamic data scaling architectures [22]

for pipelined FFTs have been proposed to implement both 1-D

and 2-D applications. The MDC-based FFT architecture [23]

has been proposed for the MIMO-OFDM systems with variable

length. Employing folding transformation and register

minimization techniques, the novel parallel pipelined

architecture [24] for complex and real valued FFT has been

proposed to significantly reduce power consumption.

III. A COMBINED SDC-SDF RADIX-2 PIPELINED FFT

For single-input data stream, we propose an efficient

combined SDC-SDF radix-2 pipelined FFT architecture, and

the proposed SDC PE structure can reduce 50% complex

multipliers.

A. The Proposed FFT Architecture

The proposed FFT architecture consists of 1 pre-stage,

log2N-1 SDC stages, 1 post-stage, 1 SDF stage, and 1 bit

reverser, shown in Fig. 2(a). The pre-stage shuffles the

complex input data to a new sequence that consists of real part

followed by the corresponding imaginary part, shown in Table

Ⅰ . The corresponding post-stage shuffles back the new

sequence to the complex format. The SDC stage t

(t=1,2,⋯ , log2N − 1) contains a SDC PE, which can achieve

100% arithmetic resource utilization of both complex adders

and complex multipliers. The last stage, SDF stage, is identical

to the radix-2 SDF, containing a complex adder and a complex

subtracter. By using the modified addressing method [12], the

data with an even index are written into memory in normal

order, and they are then retrieved from memory in bit-reversed

order while the ones with an odd index are written in

bit-reversed order. Final, the even data are retrieved in normal

order. Thus, the bit reverser requires only N/2 data buffer.

TableⅠillustrates the inner data sequence of 16-point FFT

computation. The complex input data at cycle m are (m_r, m_i),

where m_r and m_i (m = 0, 1… 15) represent the real and

imaginary parts, respectively. We only include the pre-stage,

SDC stage 1, 2, 3, and post-stage, since the SDF stage has the

same sequence as the post-stage except the 8-cycle delay, and

the bit reverser, 8-cycle delay over the SDF stage [12],

produces normal output sequence.

B. The Single-path Delay Commutator Processing Engine

The SDC PE, shown in Fig. 2(b), consists of a data

commutator, a real add/sub unit, and an optimum complex

multiplier unit. In order to minimize the arithmetic resource of

the SDC PE, the most significant factor is to maximize the

arithmetic resource utilization via re-ordering the data

sequences of the above three units.

In the stage t, the data commutator shuffles its input data

(Node_A) to generate a new data sequence (Node_B), whose

index difference is N/2t, where t is the index of stage. The new

data sequence (Node_B) is critical to the real add/sub unit,

where one real adder and one real subtracter can both operate

on two elements for each input data. The sum and difference

results (Node_C) overlap the places of the two input elements.

Therefore, it preserves the data sequence, requires only one real

adder and one real subtracter.

 For the optimum complex multiplier unit, its output data

sequence (Node_E) should be the same as its input data

sequence (Node_C). If so, its output sequence (Node_E), which

is also the output sequence of the SDC stage t, can become the

direct input data sequence (Node_A) of the SDC stage t+1. The

implementation detail is descripted in the next subsection.

TableⅡillustrates the data sequence of SDC stage 1 of 16-point

FFT computation, including the data sequences of the

WANG, et al.: A COMBINED SINGLE-PATH DELAY COMMUTATOR-FEEDBACK ARCHITECTURE FOR NORMAL

I/O ORDER PIPELINED RADIX-2 FFT

3

TableⅠDATA OUTPUT ORDER OF THE PROPOSED PIPELINED

ARCHITECUTRE FOR 16-POINT FFT

Cycle pre-stage stage 1 stage 2 stage 3 post-stage

1 0_r, 1_r - - - -
2 0_i, 1_i - - - -

3 2_r, 3_r - - - -

… … … … … …
9 8_r, 9_r - - - -

10 8_i, 9_i 0_r, 8_r - - -
11 10_r, 11_r 0_i, 8_i - - -

12 10_i, 11_i 2_r, 10_r - - -

13 12_r, 13_r 2_i, 10_i - - -
14 12_i, 13_i 4_r, 12_r - - -

15 14_r, 15_r 4_i, 12_i 0_r, 4_r - -

16 14_i, 15_i 6_r, 14_r 0_i, 4_i - -
17 - 6_i, 14_i 2_r, 6_r - -

18 - 1_r, 9_r 2_i, 6_i 0_r, 2_r -

19 - 1_i, 9_i 8_r, 12_r 0_i, 2_i 0_r,0_i
20 - 3_r, 11_r 8_i, 12_i 4_r, 6_r 2_r,2_i

21 - 3_i, 11_i - 10_r, 14_r 4_i, 6_i 4_r,4_i

… … … … … …
32 - - - 13_r, 15_r 11_r, 11_i

33 - - - 13_i, 15_i 13_r, 13_i

34 - - - - 15_r, 15_i

The pre-stage shuffles the complex input data to a new sequence that consists

of real part followed by the corresponding imaginary part, and post-stage

undoes the data shuffling carried out by the pre-stage. The SDC stage t (t=1, 2,

3), preserves the data sequence generated by its data commutator.

above three units.

C. The Optimum Complex Multiplier Unit

As shown in Fig. 2(b), it contains 2 multiplexers (M1 and

M2), 1.5-word memory (G1, G2 and G3), 2 Real Multipliers

and 1 Real Adder. The signal s controls the behavior of two

multiplexers (M1 and M2): through or swap. The signal s also

controls the behavior of the Real Adder, which supports both

addition and subtraction operations.

For the input couple (0_r,8_r) and (0_i,8_i) at the Node_C

in Table Ⅱ, the sum part data 0_r and 0_i will directly pass to

the delay memory G1 to generate 0_r* and 0_i* with one cycle

delay in consecutive two cycles, while the difference part 8_r

and 8_i will directly enter the Real Multipliers (Node_D) to

generate (c×8_r, d×8_r) and (c×8_i, d×8_i) before reordering.

The reordering process is performed as follows.

1) In the first cycle, when 8_r comes, the signal s (s = 1)

selects “through”; that is, the up (down) input of the

multiplexer (M1 or M2) connects to the up (down) output.

Then, the G2 (or G3) would be d×8_r (or c×8_r) in the

second cycle.

2) In the second cycle, when 8_i comes, the signal s (s = 0)

selects “swap”; that is, the up (down) input of the

multiplexer (M1 or M2) connects to the down (up) output.

Then, the G2 (or G3) would be c×8_i (or d×8_r) in the

third cycle. The s will make the Real Adder perform

subtraction operation and then c×8_r-d×8_i (8_r*) would

appear at the Node_E.

3) In the third cycle, the signal s (s = 1) selects “through” for

M1 and M2, and chooses addition operation for Real Adder.

Then, d×8_r+c×8_i (8_i*) would appear at the Node_E.

Consequently, the complex result data couple (0_r*, 8_r*)

and (0_i*, 8_i*) would come out at New_Label (Node_E) with

one clock delay in consecutive two cycles.

The above mechanism can be iterated by applying to the

other couples in the stage 1, e.g., (2_r, 10_r) and (2_i, 10_i),

and so on. If we carry the above process towards the 𝑙𝑜𝑔2𝑁 − 1

stages to completion, we can complete the majority part of the

radix-2 FFT computation.

In summary, the SDC PE can reduce 50% the arithmetic

resource of complex multipliers in the time-multiplexing

approach, at the expense of 1.5 complex delay memory

overhead for each SDC PE.

IV. COMPARISON AND ANALYSIS

Table Ⅲ presents the hardware requirement of our design

and the other pipelined architectures. The ‘internal memory’

denotes the complex internal memory and the ‘overall memory’

shows the complex total memory when the bit reverser is

included. The typical SDF design requires the minimum overall

memory 2N. The ‘overall memory’ of the proposed design is

2N+1.5log2N-1.5. It includes: (a), N-2 for the data

commutators in the SDC stages; (b), 1.5log2N-1.5 for the

optimum complex multiplier units to re-order inner data

sequences; (c), 2 for the pre-stage and post-stage; (d), N/2 for

the SDF stage; and (e), N/2 for the bit reverser.

Table Ⅲ also lists the required numbers of complex adders

and complex multipliers. The proposed design requires roughly

minimum number log2N+1 of complex adders, and requires

only log4N-0.5 complex multipliers compared with log2N-1 for

the other radix-2 designs. The multiplier requirement is

approximately as same as radix-22 [14, 21], and more than

R23SDF [14] and R24SDF [16], since the high radix designs

theoretically require fewer multipliers than the radix-2 designs.

The proposed design preserves the radix-2 nature and achieves

100% multiplier utilization, while the other radix-2 designs

only achieve 50% utilization ((21-1)/ 21). Furthermore, the high

radix designs require more complex adders than the proposed

design (except R2SD2F [21]), and can only process the FFT,

whose size is a power of its high radix. For example, the

128-point FFT cannot be directly mapped to either one high

radix design [14, 15, 16], but the radix-2 design can. Beyond

the scope of the paper, the mixed radix design can implement

the 128-point FFT with relatively complex control logic.

Since all of the FFT designs are single-path, their throughput

is 1/N. Since the latency is roughly proportional to the size of

the overall memory, the latency of the proposed design is

2N+log2N-1. The critical path delay of the proposed design is

TM + 2TA + 3TMUX, where TM, TA and TMUX are computation

time of a multiplier, adder and multiplexer, respectively. Since

the TMUX is greatly less than TM and TA, the critical path delay of

all designs is roughly same.

In the following, we consider a 256-point pipelined FFT with

word length 16 bits. The multiplier, adder, and 16-bit SRAM

are taken to be 4153, 505, and 96 transistors [25], respectively.

We compare the proposed design, in terms of transistor,

with the other FFT designs, shown in Table Ⅳ. We observe that

the proposed design requires fewer transistors than the other

radix-2 architectures [11, 12] because of the reduction in

complex multipliers. It is roughly the same as that of radix-22,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 2013

Complex

Input

1

BF

N/2

N/2

pre-stage stage 1 stage log2N-1 post-stage SDF stage

(a)

N/2
t

1

1

Real Mulplier Real Adder

c

d

ac-bd,

ad+bc

+

stage t

-N/2
t

1

1

1

data commutator real add/sub unit optimum complex multiplier unit

(b)

1

s s
s

G1

a,

b

Node_A Node_B Node_C Node_E

G2

G3Node_D

M1 M2

Complex Real

Complex

 Buffer

Complex add/sub

Complex

Output

Real

 Input

Real

 Output

Bit Reverser

 Fig.2 (a) Block diagram of the proposed FFT architecture, (b) Block diagram of the SDC PE, including a data commutator, a real add/sub unit and an

optimum complex multiplier unit. ‘a’ (‘b’) means the real (imaginary) part of subtraction result, ‘c’(‘d’) means the real (imaginary) part of the twiddle factor.
‘G1’, ‘G2’ and ‘G3’ mean three one-cycle delay elements. The signal‘s’ controls the behavior of two multiplexers (M1 and M2) and the Real Adder. When‘s’

is 1 (0), both multiplexers perform “through” (“swap”) and the Real Adder performs addition (subtraction) operation.

TABLEⅡ DATA SEQUENCE OF THE PROPOSED STAGE 1 OF 16-POINT FFT

Cycle Node_A Node_B/C Node_D G1 G2 G3 s Real Adder Node_E New_Label

1 0_r, 1_r - - - - - - - - -

2 0_i, 1_i - - - - - - - - -

… … … … … … … … … … …

9 8_r, 9_r 0_r, 8_r c×8_r ,d×8_r - - - - - - -

10 8_i, 9_i 0_i, 8_i c×8_i ,d×8_i 0_r d×8_r c×8_r 0 sub 0_r ,c×8_r- d×8_i 0_r* , 8_r*

11 10_r, 11_r 2_r, 10_r c×10_r ,d×10_r 0_i c×8_i d×8_r 1 add 0_i ,c×8_i+d×8_r 0_i* , 8_i*

12 10_i, 11_i 2_i, 10_i c×10_i ,d×10_i 2_r d×10_r c×10_r 0 sub 2_r ,c×10_r- d×10_i 2_r* , 10_r*

13 12_r, 13_r 4_r, 12_r c×12_r ,d×12_r 2_i c×10_i d×10_r 1 add 2_i ,c×10_i+d×10_r 2_i* , 10_i*

14 12_i, 13_i 4_i, 12_i c×12_i ,d×12_i 4_r d×12_r c×12_r 0 sub 4_r ,c×12_r- d×12_i 4_r* , 12_r*

15 14_r, 15_r 6_r, 14_r c×14_r ,d×14_r 4_i c×12_i d×12_r 1 add 4_i ,c×12_i+d×12_r 4_i* , 12_i*

16 14_i, 15_i 6_i, 14_i c×14_i ,d×14_i 6_r d×14_r c×14_r 0 sub 6_r ,c×14_r- d×14_i 6_r* , 14_r*

… … … … … … … … … … …

24 - 7_i, 15_i c×15_i ,d×15_i 7_r d×15_r c×15_r 0 sub 7_r ,c×15_r- d×15_i 7_r* , 15_r*

25 - - - 7_i c×15_i d×15_r 1 add 7_i ,c×15_i+d×15_r 7_i* , 15_i*

For the stage 1, Node_A denotes the sequence just after the pre-stage. Node_B denotes the new sequence after the data commutator shuffles the data, whose index

difference is N/2. Node_C denotes the data sequence after the real add/sub unit. Node_D denotes the difference part of real add/sub unit, multiplied by the twiddle
factor (c+di), where ‘c’ (‘d’) stands for the real (imaginary) part of twiddle factor for each data. ‘G1’is used to delay the sum part of real add/sub unit. ‘G2’ and ‘G3’

have been used to re-order the internal data sequence. The signal‘s’ controls the behaviors of the Real Adder, “add” or “sub”, and the two multiplexers (M1 and M2),

“through” or “swap”. Node_E, equal to “New_Label” (m_r* and m_i*), denotes complex butterfly computation result. “New_Label” is just the Node_A for the next
stage (e.g., stage 2).

Table Ⅲ HARDWARE RESOURCE COMPARISON FOR THE VARIOUS PIPELINED FFT ARCHITECTURES

Architecture Internal

Memory

Overall

Memory

Adder General Multiplier

(Utilization)

Constant

Multiplier

Throu

ghput

Latency Critical Path Dealy

R2SDF[10] N-1 2N-1 2𝑙𝑜𝑔2𝑁 2𝑙𝑜𝑔4𝑁-1 (50%) - 1/N 2N-1 TM + 2TA + TMUX

R2SDC[19] 2N-2 3N-2 2𝑙𝑜𝑔2𝑁 2𝑙𝑜𝑔4𝑁-1 (50%) - 1/N N TM + 2TA + 2TMUX

Chang[11] 1.5N 2N 𝑙𝑜𝑔2𝑁+1 2𝑙𝑜𝑔4𝑁-1 (50%) - 1/N 2N TM + 2TA + TMUX

Liu[12] 1.5N+2×

(log2N-2)

2N+2×

(𝑙𝑜𝑔2𝑁-2)

𝑙𝑜𝑔2𝑁+1 2𝑙𝑜𝑔4𝑁-1 (50%) - 1/N 2N+2×

(𝑙𝑜𝑔2𝑁-2)

TM + 2TA + 2TMUX

R22SDF [14] N-1 2N-1 2𝑙𝑜𝑔2𝑁 𝑙𝑜𝑔4𝑁-1 (75%) - 1/N 2N-1 TM + 2TA + TMUX

Yang [21] 4(N-1)/3 (7N-4)/3 𝑙𝑜𝑔2𝑁 𝑙𝑜𝑔4𝑁-1 (75%) - 1/N (7N-4)/3 TM + 2TA + 4TMUX

R23SDF [16] N-1 2N-1 2𝑙𝑜𝑔2𝑁 0.67𝑙𝑜𝑔4𝑁-1 (87.5%) 0.67𝑙𝑜𝑔4𝑁-1 1/N 2N-1 TM + 2TA + TMUX

R24SDF [16] N-1 2N-1 2𝑙𝑜𝑔2𝑁 0.5𝑙𝑜𝑔4𝑁-1 (93.75%) 0.5𝑙𝑜𝑔4𝑁-1 1/N 2N-1 TM + 2TA + TMUX

Proposed 1.5N+1.5×

𝑙𝑜𝑔2𝑁-1.5

2N+1.5×

𝑙𝑜𝑔2𝑁-1.5

𝑙𝑜𝑔2𝑁+1 𝑙𝑜𝑔4𝑁-0.5 (100%) - 1/N 2N+𝑙𝑜𝑔2𝑁-1 TM + 2TA + 3TMUX

WANG, et al.: A COMBINED SINGLE-PATH DELAY COMMUTATOR-FEEDBACK ARCHITECTURE FOR NORMAL

I/O ORDER PIPELINED RADIX-2 FFT

5

Table Ⅳ COMPARISIONS OF TRANSISTOR REQUIREMENT AND

LATENCY

Archi-

cture

Components Transi-

stors

Late-

ncy

Transistors *

Latency

Chang

 [11]

1024 16-bit SRAMs

32 16-bit Adders

28 16-bit Multipliers

230748

(135%)

512

118142976

(133%)

Liu

 [12]

1048 16-bit SRAMs

32 16-bit Adders

28 16-bit Multipliers

233052

(136%)

524

122119248

(138%)

R22SDF

[14]

1022 16-bit SRAMs

38 16-bit Adders

12 16-bit Multipliers

167138

(98%)

511

85407518

(96%)

R2SD2F

[21]

1192 16-bit SRAMs

22 16-bit Adders

12 16-bit Multipliers

175378

(103%)

591

103648398

(117%)

R23SDF

[16]

1022 16-bit SRAMs

37.6 16-bit Adders

11.2 16-bit multipliers

163614

(96%)

511

83606754

(94%)

R24SDF

[16]

1022 16-bit SRAMs

35.6 16-bit Adders

7.2 16-bit Multipliers

145992

(85%)

511

74601912

(84%)

Proposed

1045 16-bit SRAMs

25 16-bit Adders

14 16-bit Multipliers

171087

(100%)

519

88794153

(100%)

The R23SDF, using mixed radix architecture, roughly needs 2.8 general

multipliers while R24SDF roughly needs 1.8 general multipliers [16].

and is more than the R23SDF and R24SDF. However, the high

radix architecture can only process the FFT, whose size is a

power of its high radix.

We also implement the proposed FFT architecture on the

Xilinx Virtex-5 FPGA, XC5VSX240T-2 FF1738, and the

corresponding place and route results for the different FFT

sizes are shown in Table Ⅴ. Our results show that the proposed

FFT architecture can achieve small area and high frequency.

Table Ⅴ AREA AND PERFORMANCE OF THE PROPOSED FFT

ARCHITECTURES FOR 16 BITS

FFT

Size

Area Freq

(MHz)

Latency

(ns) LUTs FFs DSPs BRAMs

16 672 522 4 0 322 140

64 1110 752 8 0 303 498

256 1733 1073 12 0 297 1834

1024 2804 1589 16 3 298 7028

4096 8391 2780 20 4 295 27975

V. CONCLUSION

We propose a combined SDC-SDF pipelined FFT

architecture which produces the output data in the normal

order. The proposed SDC PE mainly reduces 50% complex

multipliers, compared with the other radix-2 FFT designs.

Therefore, the proposed FFT architecture is very attractive for

the single-path pipelined radix-2 FFT processors with the input

and output sequences in normal order.

REFERENCES

[1] L. J.Cimini, “Analysis and simulation of a digital mobile channel using

orthogonal frequency division multiplexing,” IEEE Trans. Commun.,
1985, pp. 665–675.

[2] J. M. Cioffi, The communications Handbook. Boca Raton, FL: CR, 1997

[3] Y.W.Lin, H.Y.Liu and C.Y.Lee, A 1-GS/s FFT/IFFT processor for UWB
applications. IEEE J. Sol.-State Circ., pp.1726-1735, 2005.

[4] C. Cheng and K. K. Parhi, “High throughput VLSI architecture for FFT

computation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 10,
pp. 339–344, Oct. 2007.

[5] S.N.Tang, J.W. Tsai, and T.Y. Chang, “A 2.4-GS/s FFT Processor for

OFDM-Based WPAN Applications,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 57, no. 6, pp. 451–455, Jun. 2010.

[6] Y.Jung, H.Yoon, and J.Kim, “New efficient FFT algorithm and pipeline

implementation results for OFDM/DMT applications,” IEEE Trans.
Consum. Electron., vol.49, pp.14-20, 2005.

[7] M. Shin and H. Lee, “A high-speed, four-parallel radix- 24 FFT processor

for UWB applications,” in Proc. IEEE ISCAS, 2008, pp. 960–963.
[8] J. H. McClellan and R. J. Purdy, “Applications of digital signal

processing to radar,” in Applications of Digital Signal Processing.

Englewood Cliffs, NJ: Prentice-Hall, 1978, ch. 5.
[9] L.R.Rabiner, B.Gold, Theory and Application of Digital Signal

Processing. Prentice-Hall, Inc., USA, pp.604-609, 1975.

[10] E.H.Wold, A.M.Despain, “Pipeline and parallel-pipeline FFT processors
for VLSI implementation,” IEEE Trans. Comput., c-33(5), 1984, pp.

414-426.

[11] Y.N.Chang, “An efficient VLSI architecture for normal I/O order pipeline
FFT design,” IEEE Trans. Circ. Syst. II:Exp. Briefs, 55(12), pp.

1234-1238, 2008.

[12] X. Liu, F.Yu, Z.K.Wang, “A pipelined architecture for normal I/O order
FFT,” J Zhejiang Univ-Sci C (Comput & Electron), 12(1), pp.76-82,

2011.
[13] G. Bi, E.V.Jones, “A pipelined FFT processor for word-sequential data,”

IEEE Trans. Acoust. Speech Signal Process, 37(12), pp. 1982-1985,

1989.
[14] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM

(de)modulation,” in Proc. URSI Int. Symp. Signals, Systems, and

Electronics, vol. 29, pp. 257–262, Oct. 1998.
[15] T.Sansaloni, A.Perez-Pascual, V.Torres, and J.Valls, “Efficient pipeline

FFT processors for WLAN MIMOOFDM systems,” Electron. Lett, 2005,

41(19), pp.1043-1044.
[16] J.Y.Oh, M.S.Lim, “Area and Power Efficient Pipeline FFT Algorithm,”

Proc. IEEE Workshop on Signal Processing System Design and

Implementation, 2005, pp.520-525.
[17] T.Cho, S.Tsai, and H. Lee, “A High-Speed Low-Complexity Modified

Radix-25 FFT Processor for High Rate WPAN Applications,” IEEE Trans.

Very Large Scale Integr.(VLSI) Syst., vol. 21, no.1, pp. 187-191, Jan.
2013.

[18] A. M. Despain, “Fourier transform computer using CORDIC iterations,”

IEEE Trans. Comput., vol. C-23, no. 10, pp. 993–1001, Oct. 1974.
[19] A.Cortes, I.Velez, J.F. Sevillano, “Radix rk FFTs: matricial

representation and SDC/SDF pipeline implementation,” IEEE Trans.

Signal Process., 2009, 57(7), pp.2824-2839.
[20] M.Garrido, J.Grajal, M.Sanchez and O. Gustafsson, “Pipelined Radix-2k

Feedforward FFT Architectures,” IEEE Trans. Very Large Scale

Integr.(VLSI) Syst., vol. 21, no.4, pp. 23-32, Jan. 2013.
[21] L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, “An efficient locally

pipelined FFT processor,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.

53, no. 7, pp. 585–589, Jul. 2006.
[22] T.Lenart, and V. Owall, “Architectures for Dynamic Data Scaling in

2/4/8K Pipeline FFT Cores,” IEEE Trans. Very Large Scale Integr.(VLSI)

Syst., vol. 14, no. 11, pp. 1286-1290, Nov. 2006.
[23] K.Yang, S.Tsai, and G. Chuang, “MDC FFT/IFFT Processor With

Variable Length for MIMO-OFDM Systems,” IEEE Trans. Very Large

Scale Integr.(VLSI) Syst., vol. 21, no.4, pp. 720-731, Apr. 2013.
[24] M.Ayinala, M.Brown, and K. Parhi, “Pipelined Parallel FFT

Architectures via Folding Transformation,” IEEE Trans. Very Large

Scale Integr.(VLSI) Syst., vol. 20, no. 6, pp. 1068-1081, Jun. 2012.
[25] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and

Systems Perspective. Boston, MA: Pearson/Addison-Wesley, 2005.

[26] B. Gold, and C. M. Rader, “Digital Processing of Signal,” New
York:McGraw-Hill Book Co., 1969, ch. 6.

