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Abstract—We present an efficient combined SDC-SDF 

(Single-Path Delay Commutator-Feedback) radix-2 pipelined 

Fast Fourier Transform (FFT) architecture which includes  

log2N-1 SDC stages, and 1 SDF stage. The SDC processing engine 

(PE) is proposed to achieve 100% hardware resource utilization 

by sharing the common arithmetic resource in the 

time-multiplexed approach, including both adders and multipliers. 

Thus, the required number of complex multipliers is reduced to 

log4N-0.5, compared with log2N-1 for the other radix-2 SDC/SDF 

architectures. Moreover, the proposed architecture requires 

roughly minimum number of complex adders log2N+1 and 

complex delay memory 2N+1.5log2N-1.5.  

Index Terms—FFT, Pipelined Architecture, Single-path Delay 

Communicator Processing Engine (SDC PE) 

I. INTRODUCTION 

ast Fourier Transform (FFT) has played a significant role in 

digital signal processing field, especially in the advanced 

communication systems such as orthogonal frequency division 

multiplexing (OFDM) [1] and asymmetric digital subscriber 

line (ADSL) [2]. All these systems require that the FFT 

computation must be high-throughput and low-latency. 

Therefore, designing a high-performance FFT circuit is an 

efficient solution to the above mentioned problems. Especially, 

the pipelined FFT architectures have mainly been adopted to 

address the difficulties due to their attractive properties, such as 

small chip area, high throughput, and low power consumption.  

To the best to our knowledge, two types of pipelined FFT 

architectures can be found in the literature: delay feedback (DF) 

and delay commutator (DC). Further, according to the number 

of input data stream paths, they can be classified into 

multiple-path (M) or single-path (S) architectures. The two 

classifications form four kinds of pipelined FFT architectures 

(e.g., SDC). Multiple-path (M) architectures [3-9], are often 

adopted when the throughput requirement is beyond the 

theoretical limitation that the single-path architecture can offer 

at a given clock frequency. However, they require concurrent 

read (write) operations for the multi-path input (output) data. 
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Therefore, single-path (S) architectures could be appropriate in 

some cases when the system cannot ensure concurrent 

operations. However, the arithmetic utilization is relatively low, 

compared with 100% utilization of the existing MDF/MDC 

architectures (for example, [4]). In the paper, we focus on the 

SDC radix-2 pipelined FFT architecture which can also achieve 

100% multiplier utilization by re-ordering the inner data 

sequence.  

For single-input data stream, the conventional radix-2 SDF 

FFT architecture [10] requires 2log2N complex adders and   

log2N-1 complex multipliers, where N is the FFT size. Both 

Chang et al. [11] and Liu et al. [12] present the novel SDC 

architectures to reduce 50% complex adders by re-ordering 

inner data sequences. However, the utilization of the 

corresponding complex multipliers still remains 50% for the 

both architectures. We therefore study whether the complex 

multiplier unit can be modified to achieve the 100% utilization.  

In the radix-2 FFT architectures, there is a common 

observation that one half data (sum part of butterfly operation) 

do not involve complex multiplication (𝑊𝑁
0) at all, while the 

other half (difference part) indeed involves complex 

multiplication (𝑊𝑁
𝑘). Hence, it has the opportunity to achieve 

the objective that reduces the arithmetic resource of the 

conventional complex multipliers by a factor of 2, leading to 

100% utilization. It is ideal for two consecutive complex input 

data to contain a complex number which needs to execute 

complex multiplication. If so, we can minimize the re-ordering 

memory requirement while achieving the above objective that 

reduces 50% the arithmetic resource of complex multipliers.  

Fortunately, the improved SDC architecture can produce the 

sum and the corresponding difference results of a butterfly 

operation in consecutive two cycles. The sum part is directly 

passed to the next stage, while the difference part needs to 

execute complex multiplication before passing to the next stage. 

Therefore, the SDC architecture is ideal for our efficient 

pipelined radix-2 FFT architecture. However, the SDF 

architecture does not meet the above constraint well since the 

sums of the all butterflies in the stage are produced first, 

followed by the corresponding differences. 

In the paper, we present an efficient combined SDC-SDF 

radix-2 pipelined FFT architecture which includes log2N-1   

SDC stages, 1 SDF stage, and 1 bit reverser.  The single-path 

delay commutator processing engine (SDC PE) in each SDC 

stage achieves the 100% hardware resource utilizations of both 

adders and multipliers. We include the SDF stage to re-order 

the data sequence, and then the delay memory of the bit 

reverser is reduced to N/2. The proposed architecture can 
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produce the same normal output order as [26].  

II. REVIEW OF PIPELINED FFT ARCHITECTURE 

A. FFT Review  

The N-point DFT is defined by 

X(k) = ∑ 𝑥(𝑛) ×𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

, 𝑘 = 0,1,⋯ ,𝑁 − 1, 

where x(n)is the input data, 𝑊𝑁
𝑛𝑘  is the coefficient(𝑊𝑁

𝑛𝑘 =

𝑒−2𝜋𝑛𝑘/𝑁) and N is any integer power of two. 

It is well known that the radix-2 FFT can be deduced from 

DFT by factorizing the N-point DFT recursively into many 

2-point DFTs. The data flow graph (DFG) of 16-point radix-2 

FFT is shown in Fig. 1. 
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Fig.1 Data flow graph of DIF Radix-2 FFT (N = 16) 

B. Review of Pipelined FFT Implementations 

Assuming that the input data enters the FFT circuit serially in 

a continuous flow, the radix-2 MDC and SDF architectures can 

be directly deduced according to the data flow graph in Fig.1. 

The radix-2 MDC architecture [9] is the most direct 

implementation approach of pipelined FFT, but its hardware 

utilization is only 50%. Compared with [9], the radix-2 SDF 

design [10] reduces the required memory size. However, the 

utilizations of adders and multipliers are still 50%.  

Besides the basic radix-2 architectures, various high radix 

pipelined FFT architectures have also been proposed to address 

the arithmetic resource utilization problem. They are radix-4 

MDC [4, 8, 23], radix-4 SDC [13], radix-4 SDF [18], radix-22 

SDF[14,21], radix-23 SDF [15], radix-24 SDF [16], radix-25 

SDF [17], radix-rk SDC/SDF [19] and radix-2k  feedforward 

[20]. Compared with the radix-2 architectures, the high radix 

architecture can only process the FFT, whose size is a power of 

its high radix, not just 2.   

In order to extend the application scope of the FFT 

architectures, the new dynamic data scaling architectures [22] 

for pipelined FFTs have been proposed to implement both 1-D 

and 2-D applications. The MDC-based FFT architecture [23] 

has been proposed for the MIMO-OFDM systems with variable 

length. Employing folding transformation and register 

minimization techniques, the novel parallel pipelined 

architecture [24] for complex and real valued FFT has been 

proposed to significantly reduce power consumption. 

III. A COMBINED SDC-SDF RADIX-2 PIPELINED FFT 

For single-input data stream, we propose an efficient 

combined SDC-SDF radix-2 pipelined FFT architecture, and 

the proposed SDC PE structure can reduce 50% complex 

multipliers.   

A. The Proposed FFT Architecture  

The proposed FFT architecture consists of 1 pre-stage,  

log2N-1 SDC stages, 1 post-stage, 1 SDF stage, and 1 bit 

reverser, shown in Fig. 2(a). The pre-stage shuffles the 

complex input data to a new sequence that consists of real part 

followed by the corresponding imaginary part, shown in Table

Ⅰ . The corresponding post-stage shuffles back the new 

sequence to the complex format. The SDC stage t 

(t=1,2,⋯ , log2N − 1) contains a SDC PE, which can achieve 

100% arithmetic resource utilization of both complex adders 

and complex multipliers. The last stage, SDF stage, is identical 

to the radix-2 SDF, containing a complex adder and a complex 

subtracter. By using the modified addressing method [12], the 

data with an even index are written into memory in normal 

order, and they are then retrieved from memory in bit-reversed 

order while the ones with an odd index are written in 

bit-reversed order. Final, the even data are retrieved in normal 

order. Thus, the bit reverser requires only N/2 data buffer.  

TableⅠillustrates the inner data sequence of 16-point FFT 

computation. The complex input data at cycle m are (m_r, m_i), 

where m_r and m_i (m = 0, 1… 15) represent the real and 

imaginary parts, respectively. We only include the pre-stage, 

SDC stage 1, 2, 3, and post-stage, since the SDF stage has the 

same sequence as the post-stage except the 8-cycle delay, and 

the bit reverser, 8-cycle delay over the SDF stage [12], 

produces normal output sequence.  

B. The Single-path Delay Commutator Processing Engine  

The SDC PE, shown in Fig. 2(b), consists of a data 

commutator, a real add/sub unit, and an optimum complex 

multiplier unit. In order to minimize the arithmetic resource of 

the SDC PE, the most significant factor is to maximize the 

arithmetic resource utilization via re-ordering the data 

sequences of the above three units.   

In the stage t, the data commutator shuffles its input data 

(Node_A) to generate a new data sequence (Node_B), whose 

index difference is N/2t, where t is the index of stage. The new 

data sequence (Node_B) is critical to the real add/sub unit, 

where one real adder and one real subtracter can both operate 

on two elements for each input data. The sum and difference 

results (Node_C) overlap the places of the two input elements. 

Therefore, it preserves the data sequence, requires only one real 

adder and one real subtracter.  

    For the optimum complex multiplier unit, its output data 

sequence (Node_E) should be the same as its input data 

sequence (Node_C). If so, its output sequence (Node_E), which 

is also the output sequence of the SDC stage t, can become the 

direct input data sequence (Node_A) of the SDC stage t+1. The 

implementation detail is descripted in the next subsection.  

TableⅡillustrates the data sequence of SDC stage 1 of 16-point 

FFT computation, including the data sequences of the 
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TableⅠDATA OUTPUT ORDER OF THE PROPOSED PIPELINED 

ARCHITECUTRE FOR 16-POINT FFT  

Cycle pre-stage stage 1 stage 2 stage 3 post-stage 

1 0_r, 1_r - - - - 
2 0_i, 1_i - - - - 

3 2_r, 3_r - - - - 

… … … … … … 
9 8_r, 9_r - - - - 

10 8_i, 9_i 0_r, 8_r - - - 
11 10_r, 11_r 0_i, 8_i - - - 

12 10_i, 11_i 2_r, 10_r - - - 

13 12_r, 13_r 2_i, 10_i - - - 
14 12_i, 13_i 4_r, 12_r - - - 

15 14_r, 15_r 4_i, 12_i 0_r, 4_r - - 

16 14_i, 15_i 6_r, 14_r 0_i, 4_i - - 
17 - 6_i, 14_i 2_r, 6_r - - 

18 - 1_r, 9_r 2_i, 6_i 0_r, 2_r - 

19 - 1_i, 9_i 8_r, 12_r 0_i, 2_i 0_r,0_i 
20 - 3_r, 11_r 8_i, 12_i 4_r, 6_r 2_r,2_i 

21 - 3_i, 11_i - 10_r, 14_r 4_i, 6_i 4_r,4_i 

… … … … … … 
32 - - - 13_r, 15_r  11_r, 11_i 

33 - - - 13_i, 15_i 13_r, 13_i 

34 - - - - 15_r, 15_i 

The pre-stage shuffles the complex input data to a new sequence that consists 

of real part followed by the corresponding imaginary part, and post-stage 

undoes the data shuffling carried out by the pre-stage. The SDC stage t (t=1, 2, 

3), preserves the data sequence generated by its data commutator. 

above three units.   

C. The Optimum Complex Multiplier Unit 

As shown in Fig. 2(b), it contains 2 multiplexers (M1 and 

M2), 1.5-word memory (G1, G2 and G3), 2 Real Multipliers 

and 1 Real Adder. The signal s controls the behavior of two 

multiplexers (M1 and M2): through or swap. The signal s also 

controls the behavior of the Real Adder, which supports both 

addition and subtraction operations.   

For the input couple (0_r,8_r) and (0_i,8_i) at the Node_C 

in Table Ⅱ, the sum part data 0_r and 0_i will directly pass to 

the delay memory G1 to generate 0_r* and 0_i* with one cycle 

delay in consecutive two cycles, while the difference part 8_r 

and 8_i will directly enter the Real Multipliers (Node_D) to 

generate (c×8_r, d×8_r) and (c×8_i, d×8_i) before reordering. 

The reordering process is performed as follows.  

1) In the first cycle, when 8_r comes, the signal s (s = 1) 

selects “through”; that is, the up (down) input of the 

multiplexer (M1 or M2) connects to the up (down) output. 

Then, the G2 (or G3) would be d×8_r (or c×8_r) in the 

second cycle. 

2) In the second cycle, when 8_i comes, the signal s (s = 0) 

selects “swap”; that is, the up (down) input of the 

multiplexer (M1 or M2) connects to the down (up) output.   

Then, the G2 (or G3) would be c×8_i (or d×8_r) in the 

third cycle. The s will make the Real Adder perform 

subtraction operation and then c×8_r-d×8_i (8_r*) would 

appear at the Node_E.   

3) In the third cycle, the signal s (s = 1) selects “through” for 

M1 and M2, and chooses addition operation for Real Adder. 

Then, d×8_r+c×8_i (8_i*) would appear at the Node_E. 

Consequently, the complex result data couple (0_r*, 8_r*) 

and (0_i*, 8_i*) would come out at New_Label (Node_E) with 

one clock delay in consecutive two cycles.  

The above mechanism can be iterated by applying to the 

other couples in the stage 1, e.g., (2_r, 10_r) and (2_i, 10_i), 

and so on. If we carry the above process towards the 𝑙𝑜𝑔2𝑁 − 1  

stages to completion, we can complete the majority part of the 

radix-2 FFT computation.  

In summary, the SDC PE can reduce 50% the arithmetic 

resource of complex multipliers in the time-multiplexing 

approach, at the expense of 1.5 complex delay memory 

overhead for each SDC PE. 

IV. COMPARISON AND ANALYSIS 

Table Ⅲ presents the hardware requirement of our design 

and the other pipelined architectures. The ‘internal memory’ 

denotes the complex internal memory and the ‘overall memory’ 

shows the complex total memory when the bit reverser is 

included. The typical SDF design requires the minimum overall 

memory 2N. The ‘overall memory’ of the proposed design is 

2N+1.5log2N-1.5. It includes: (a), N-2 for the data 

commutators in the SDC stages;  (b), 1.5log2N-1.5 for  the 

optimum complex multiplier units to re-order inner data 

sequences; (c), 2 for the pre-stage and post-stage; (d), N/2 for 

the SDF stage; and (e), N/2 for the bit reverser.  

Table Ⅲ also lists the required numbers of complex adders 

and complex multipliers. The proposed design requires roughly 

minimum number log2N+1 of complex adders, and requires 

only log4N-0.5 complex multipliers compared with log2N-1 for 

the other radix-2 designs. The multiplier requirement is 

approximately as same as radix-22 [14, 21], and more than 

R23SDF [14] and R24SDF [16], since the high radix designs 

theoretically require fewer multipliers than the radix-2 designs. 

The proposed design preserves the radix-2 nature and achieves 

100% multiplier utilization, while the other radix-2 designs 

only achieve 50% utilization ((21-1)/ 21). Furthermore, the high 

radix designs require more complex adders than the proposed 

design (except R2SD2F [21]), and can only process the FFT, 

whose size is a power of its high radix. For example, the 

128-point FFT cannot be directly mapped to either one high 

radix design [14, 15, 16], but the radix-2 design can. Beyond 

the scope of the paper, the mixed radix design can implement 

the 128-point FFT with relatively complex control logic.   

Since all of the FFT designs are single-path, their throughput 

is 1/N. Since the latency is roughly proportional to the size of 

the overall memory, the latency of the proposed design is 

2N+log2N-1. The critical path delay of the proposed design is 

TM + 2TA + 3TMUX, where TM, TA and TMUX are computation 

time of a multiplier, adder and multiplexer, respectively. Since 

the TMUX is greatly less than TM and TA, the critical path delay of 

all designs is roughly same. 

In the following, we consider a 256-point pipelined FFT with 

word length 16 bits. The multiplier, adder, and 16-bit SRAM 

are taken to be 4153, 505, and 96 transistors [25], respectively.   

We compare the proposed design, in terms of transistor, 

with the other FFT designs, shown in Table Ⅳ. We observe that   

the proposed design requires fewer transistors than the other 

radix-2 architectures [11, 12] because of the reduction in 

complex multipliers. It is roughly the same as that of radix-22,
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 Fig.2 (a) Block diagram of the proposed FFT architecture, (b) Block diagram of the SDC PE, including a data commutator, a real add/sub unit and an 

optimum complex multiplier unit. ‘a’ (‘b’) means the real (imaginary) part of subtraction result, ‘c’(‘d’) means the real (imaginary) part of the twiddle factor. 
‘G1’, ‘G2’ and ‘G3’ mean three one-cycle delay elements. The signal‘s’ controls the behavior of two multiplexers (M1 and M2) and the Real Adder. When‘s’ 

is 1 (0), both multiplexers perform “through” (“swap”) and the Real Adder performs addition (subtraction) operation. 

 

TABLEⅡ DATA SEQUENCE OF THE PROPOSED STAGE 1 OF 16-POINT FFT 

Cycle Node_A Node_B/C Node_D G1 G2 G3 s Real Adder Node_E New_Label 

1 0_r, 1_r - - - - - - - - - 

2 0_i, 1_i - - - - - - - - - 

… … … … … … … … … … … 

9 8_r, 9_r 0_r, 8_r c×8_r ,d×8_r - - - - - - - 

10 8_i, 9_i 0_i, 8_i c×8_i ,d×8_i 0_r d×8_r c×8_r 0 sub 0_r ,c×8_r- d×8_i 0_r* , 8_r* 

11 10_r, 11_r 2_r, 10_r c×10_r ,d×10_r 0_i c×8_i d×8_r 1 add 0_i ,c×8_i+d×8_r 0_i* , 8_i* 

12 10_i, 11_i 2_i, 10_i c×10_i ,d×10_i 2_r d×10_r c×10_r 0 sub 2_r ,c×10_r- d×10_i 2_r* , 10_r* 

13 12_r, 13_r 4_r, 12_r c×12_r ,d×12_r 2_i c×10_i d×10_r 1 add 2_i ,c×10_i+d×10_r 2_i* , 10_i* 

14 12_i, 13_i 4_i, 12_i c×12_i ,d×12_i 4_r d×12_r c×12_r 0 sub 4_r ,c×12_r- d×12_i 4_r* , 12_r* 

15 14_r, 15_r 6_r, 14_r c×14_r ,d×14_r 4_i c×12_i d×12_r 1 add 4_i ,c×12_i+d×12_r 4_i* , 12_i* 

16 14_i, 15_i 6_i, 14_i c×14_i ,d×14_i 6_r d×14_r c×14_r 0 sub 6_r ,c×14_r- d×14_i 6_r* , 14_r* 

… … … … … … … … … … … 

24 - 7_i, 15_i c×15_i ,d×15_i 7_r d×15_r c×15_r 0 sub 7_r ,c×15_r- d×15_i 7_r* , 15_r* 

25 - - - 7_i c×15_i d×15_r 1 add 7_i ,c×15_i+d×15_r 7_i* , 15_i* 

For the stage 1, Node_A denotes the sequence just after the pre-stage. Node_B denotes the new sequence after the data commutator shuffles the data, whose index 

difference is N/2. Node_C denotes the data sequence after the real add/sub unit.  Node_D denotes the difference part of real add/sub unit, multiplied by the twiddle 
factor (c+di), where ‘c’ (‘d’) stands for the real (imaginary) part of twiddle factor for each data. ‘G1’is used to delay the sum part of real add/sub unit. ‘G2’ and ‘G3’ 

have been used to re-order the internal data sequence. The signal‘s’ controls the behaviors of the Real Adder, “add” or “sub”, and the two multiplexers (M1 and M2), 

“through” or “swap”.  Node_E, equal to “New_Label” (m_r* and m_i*), denotes complex butterfly computation result. “New_Label” is just the Node_A for the next 
stage (e.g., stage 2).   

 

Table Ⅲ HARDWARE RESOURCE COMPARISON FOR THE VARIOUS PIPELINED FFT ARCHITECTURES  

Architecture Internal 

Memory 

Overall 

Memory 

Adder General Multiplier 

(Utilization) 

Constant 

Multiplier 

Throu

ghput 

Latency Critical Path Dealy 

R2SDF[10] N-1 2N-1 2𝑙𝑜𝑔2𝑁 2𝑙𝑜𝑔4𝑁-1 (50%) - 1/N 2N-1 TM + 2TA + TMUX 

R2SDC[19] 2N-2 3N-2 2𝑙𝑜𝑔2𝑁 2𝑙𝑜𝑔4𝑁-1 (50%) - 1/N N TM + 2TA + 2TMUX 

Chang[11] 1.5N 2N 𝑙𝑜𝑔2𝑁+1 2𝑙𝑜𝑔4𝑁-1 (50%) - 1/N 2N TM + 2TA + TMUX 

Liu[12] 1.5N+2× 

(log2N-2) 

2N+2× 

(𝑙𝑜𝑔2𝑁-2) 

𝑙𝑜𝑔2𝑁+1 2𝑙𝑜𝑔4𝑁-1 (50%) - 1/N 2N+2× 

(𝑙𝑜𝑔2𝑁-2) 

TM + 2TA + 2TMUX 

R22SDF [14] N-1 2N-1 2𝑙𝑜𝑔2𝑁 𝑙𝑜𝑔4𝑁-1 (75%) - 1/N 2N-1 TM + 2TA + TMUX 

Yang [21] 4(N-1)/3 (7N-4)/3 𝑙𝑜𝑔2𝑁 𝑙𝑜𝑔4𝑁-1 (75%) - 1/N (7N-4)/3 TM + 2TA + 4TMUX 

R23SDF [16] N-1 2N-1 2𝑙𝑜𝑔2𝑁 0.67𝑙𝑜𝑔4𝑁-1 (87.5%) 0.67𝑙𝑜𝑔4𝑁-1 1/N 2N-1 TM + 2TA + TMUX 

R24SDF [16] N-1 2N-1 2𝑙𝑜𝑔2𝑁 0.5𝑙𝑜𝑔4𝑁-1 (93.75%) 0.5𝑙𝑜𝑔4𝑁-1 1/N 2N-1 TM + 2TA + TMUX 

Proposed 1.5N+1.5× 

𝑙𝑜𝑔2𝑁-1.5 

2N+1.5× 

𝑙𝑜𝑔2𝑁-1.5 

𝑙𝑜𝑔2𝑁+1 𝑙𝑜𝑔4𝑁-0.5 (100%) - 1/N 2N+𝑙𝑜𝑔2𝑁-1 TM + 2TA + 3TMUX 
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Table Ⅳ COMPARISIONS OF TRANSISTOR REQUIREMENT AND 

LATENCY 

Archi- 

cture 

Components Transi- 

stors 

Late-

ncy 

Transistors * 

Latency 

 

Chang 

 [11] 

1024  16-bit SRAMs 

32    16-bit Adders 

28    16-bit Multipliers 

 

230748 

(135%) 

 

512 

 

118142976 

(133%) 

 

Liu 

 [12] 

1048  16-bit SRAMs 

32    16-bit Adders 

28    16-bit Multipliers 

 

233052 

(136%) 

 

524 

 

122119248 

(138%) 

 

R22SDF 

[14] 

1022  16-bit SRAMs 

38    16-bit Adders 

12    16-bit Multipliers 

 

167138 

(98%) 

 

511 

 

85407518 

(96%) 

 

R2SD2F 

[21] 

1192  16-bit SRAMs 

22    16-bit Adders 

12    16-bit Multipliers 

 

175378 

(103%) 

 

591 

 

103648398 

(117%) 

 

R23SDF 

[16] 

1022  16-bit SRAMs 

37.6  16-bit Adders 

11.2 16-bit multipliers 

 

163614 

(96%) 

 

511 

 

83606754 

(94%) 

 

R24SDF 

[16] 

1022  16-bit SRAMs 

35.6   16-bit Adders 

7.2     16-bit Multipliers 

 

145992 

(85%) 

 

511 

 

74601912 

(84%) 

 

Proposed 

1045  16-bit SRAMs 

25    16-bit Adders 

14    16-bit Multipliers 

 

171087 

(100%) 

 

519 

 

88794153 

(100%) 

The R23SDF, using mixed radix architecture, roughly needs 2.8 general 

multipliers while R24SDF roughly needs 1.8 general multipliers [16].  

and is more than the R23SDF and R24SDF. However, the high 

radix architecture can only process the FFT, whose size is a 

power of its high radix. 

We also implement the proposed FFT architecture on the 

Xilinx Virtex-5 FPGA, XC5VSX240T-2 FF1738, and the 

corresponding place and route results for the different FFT 

sizes are shown in Table Ⅴ. Our results show that the proposed 

FFT architecture can achieve small area and high frequency. 

Table Ⅴ AREA AND PERFORMANCE OF THE PROPOSED FFT 

ARCHITECTURES FOR 16 BITS 

FFT 

Size 

Area Freq 

(MHz) 

Latency 

(ns) LUTs FFs DSPs BRAMs 

16 672 522 4 0 322 140 

64 1110 752 8 0 303 498 

256 1733 1073 12 0 297 1834 

1024 2804 1589 16 3 298 7028 

4096 8391 2780 20 4 295 27975 

V. CONCLUSION 

We propose a combined SDC-SDF pipelined FFT 

architecture which produces the output data in the normal 

order. The proposed SDC PE mainly reduces 50% complex 

multipliers, compared with the other radix-2 FFT designs. 

Therefore, the proposed FFT architecture is very attractive for 

the single-path pipelined radix-2 FFT processors with the input 

and output sequences in normal order. 
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