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F2C: Enabling Fair and Fine-grained
Resource Sharing in Multi-tenant IaaS Clouds

Haikun Liu, Member, IEEE, and Bingsheng He, Member, IEEE

Abstract—This paper presents F2C, a cooperative resource management system for Infrastructure-as-a-Service (IaaS) clouds.
Inspired by group-buying mechanisms in real product and service markets, F2C advocates a group of cloud tenants (called tenant
coalition) to buy resource capacity in bulk and share the resource pool in the form of virtual machines(VMs). Tenant coalitions
leads to vast opportunities for fine-grained resource sharing among multiple tenants. However, resource sharing, especially for
multiple resource types, poses several challenging problems in pay-as-you-use cloud environments, such as sharing incentive,
free-riding, lying and economic fairness. To address those problems, we propose Reciprocal Resource Fairness (RRF), a novel
resource allocation mechanism to enable fair sharing on multiple resource types within a tenant coalition. RRF is implemented
in two complementary and hierarchical mechanisms: inter-tenant resource trading and intra-tenant weight adjustment. RRF
satisfies several highly desirable properties to ensure fairness. We implement F2C in Xen platform. The experimental results
show F2C is promising for both cloud providers and tenants. For cloud providers, F2C improves VM density and cloud providers’
revenue by 2.2X compared to the current IaaS cloud models. For tenants, F2C improves application performance by 45 percent
and guarantees 95 percent economic fairness among multiple tenants.

Index Terms—Cloud computing, Fairness, IaaS, Resource sharing, Virtual machine.

F

1 INTRODUCTION

T HE Infrastructure-as-a-Service(IaaS) cloud has
emerged as an appealing paradigm for elastic

computing over the Internet. IaaS clouds allow tenants
to acquire and release resource in the form of virtual
machines (VMs) on a pay-as-you-go basis. Nowadays,
most IaaS cloud providers such as Amazon EC2 offer a
number of VM types (such as small, medium, large and
extra large) with fixed amount of CPU, main memory
and disk. Tenants can only purchase fixed-size VMs and
increase/decrease the number of VMs when the resource
demands change. This is known as T-shirt and scale-out
model [14]. However, the T-shirt model leads to inefficient
allocation of cloud resource, which translates to higher
capital expense and operating cost for cloud providers, and
increase of monetary cost for tenants. First, the granularity
of resource acquisition/release is coarse in the sense that
the fix-sized VMs are not tailored for cloud applications
with dynamic demands delicately. As a result, tenants need
to over-provision resource (costly), or risk performance
penalty and Service Level Agreement (SLA) violation.
Second, elastic resource scaling in clouds [3], also known
as scale-out model, is also costly due to the latencies
involved in VM instantiating [28] and software runtime
overhead [31]. These costs are ultimately borne by tenants
in terms of monetary cost or performance penalty.
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Resource sharing is a classic and effective approach to
resource efficiency. As applications with diversifying and
heterogeneous resource requirements are already deployed
in the cloud [2], [11], [15], there are vast opportunities
for resource sharing [12], [14], [29]. Recent work has
shown that fine-grained and dynamic resource allocation
techniques (e.g., resource multiplexing or overcommit-
ting [7], [9], [14], [17], [43]) can significantly improve
the resource utilization compared to T-shirt model [14].
As adding/removing resource is directly performed on
the existing VMs, fine-grained resource allocation is also
known as scale-up model and the cost tends to much smaller
compared to the scale-out model. Unfortunately, current
IaaS clouds do not offer resource sharing among VMs, even
if those VMs belong to the same tenant. We seek whether
there is a better resource model than the T-shirt model to
enable resource sharing for better cost efficiency of tenants
and higher resource utilization of cloud providers.

Recently, we have witnessed the prosperousness of a
group-buying mechanism in real product and service mar-
kets, such as Groupon [16] and Teambuy [40]. Group-
buying offers products or services at discounted prices
when the item is bought in a minimum quantity or dollar
amount. This market-based mechanism can benefit both
cloud tenants and providers in IaaS clouds. The group-
buying mechanism binds different VMs to form a coop-
erative group, which even goes beyond a single tenant. In
this paper, we call it tenant coalition. A tenant coalition
can buy resource in bulk and cooperatively share it as a
large resource pool. This mechanism leads to opportunities
for fine-grained resource sharing among multiple tenants.

Despite the resource sharing opportunities, we find that
resource sharing, especially for multiple resource types (i.e.,
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multi-resource), poses several important and challenging
problems in pay-as-you-use commercial clouds. (1) Sharing
incentive. In a shared cloud, a tenant may have concerns
about the gain/loss of her asset in terms of resource. (2)
Free riding. A tenant may deliberately buy less resource
than her demand and always expect to benefit from others’
contribution (i.e., unused resource). Free Riders would
seriously hurt other tenants’ sharing incentive. (3) Lying.
When there exists resource contention, a tenant may lie
about her resource demand for more benefit. Lying also
hurts tenants’ sharing incentive. (4) Gain-as-you-contribute
Fairness. It is important to guarantee that the allocations
obey a rule “more contribution, more gain”. In summary,
those problems are eventually attributed to economic fair-
ness of resource sharing in IaaS clouds. Unfortunately, the
popular allocation policies such as (Weighted) Max-Min
Fairness (WMMF) [4], [5], [21] and Dominant Resource
Fairness (DRF) [12] cannot address all the four problems
of resource sharing in IaaS clouds (see Section 3.1).

This paper proposes F2C, a cooperative resource man-
agement system for IaaS clouds. F2C exploits statistical
resource complementarity to realize resource sharing op-
portunities among tenants, and adopts a novel resource allo-
cation policy to guarantee fairness of resource sharing. Par-
ticularly, we develop Reciprocal Resource Fairness (RRF),
a generalization of max-min fairness to multiple resource
types. The intuition behind RRF is that each tenant should
preserve her asset while maximizing the resource usage in
a cooperative environment. We advocate that different types
of resource can be traded among different tenants and be
shared among different VMs belonging to the same tenant.
For example, a tenant can trade her unused CPU share for
other tenant’s over-provisioned memory share. In this paper,
we consider two major kinds of resources, including CPU
and main memory. Resource trading can maximize tenants’
benefit from resource sharing. RRF decomposes the multi-
resource fair sharing problem into a combination of two
complementary mechanisms: Inter-tenant Resource Trading
(IRT) and Intra-tenant Weight Adjustment (IWA). These
mechanisms guarantee that tenants only allocate minimum
shares to their non-dominant demands and maximize the
share allocations on the contended resource. Moreover,
RRF is able to achieve some desirable properties of re-
source sharing, including sharing incentive, gain-as-you-
contribute fairness and strategy-proofness (see Section 3.2).

F2C is implemented on top of Xen hypervisor. We
conduct a set of experiments to evaluate the allocation
fairness, resource efficiency and application performance.
The experimental results show that F2C is beneficial for
both cloud providers and tenants. For cloud providers, F2C
improves VM density and cloud providers’ revenue by 2.2X
compared to the current T-shirt model. For tenants, F2C de-
livers better application performance and economic fairness
than other state-of-the-art fairness mechanisms [12], [21].

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the system overview and resource alloca-
tion model. Section 3 studies the fairness problems of multi-
resource sharing in multi-tenant clouds. Section 4 presents
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Fig. 1: System architecture of F2C.

RRF-based resource dynamic allocation algorithms. Sec-
tion 5 describes the implementation details of F2C. We
present the experimental results in Section 6. We study the
related work in Section 7 and conclude in Section 8.

2 SYSTEM OVERVIEW

2.1 System Architecture

Figure 1 shows the system architecture of F2C. A number
of tenants can request VMs from cloud providers through a
group-buying mechanism. F2C exploits statistical resource
complementarity to form a tenant coalition, and these VMs
are co-located together to share a large resource pool. On
each physical node, F2C adopts RRF policy to guarantee
fairness of resource sharing. In each VM, we deploy a
resource demand predictor to predict the VM’s fine-grained
resource requirement based on a resource monitor. The
resource demands of VMs are taken as inputs of RRF
algorithm, which is deployed in each management domain
(i.e. domain 0). RRF (including IRT and IWA) is period-
ically executed to determine resource allocation of each
VM. The resource allocator changes the parameters of Xen
credit scheduler and ballooning driver to adjust resource
allocation of each VM. In domain 0, we also implement
two modules for load balancing and resource scaling. More
details can be referred to Subsection 5.

2.2 Resource Allocation Model

We consider the resource sharing model in multi-tenant
cloud environments, where each tenant may rent several
VMs to host her applications, and each VM has multi-
resource demands. By multi-resource, we mean resource
of different types, instead of multiple units of the same
resource type. In this paper, we mainly consider two
resource types: CPU and main memory. Tenants can have
different weights (or shares) to the resource. The share
of a tenant reflects the tenant’s priority relative to other
tenants. A number of tenants can form a resource pool
based on resource complementarity. The VMs of these
tenants then share the same resource pool with negotiated
resource shares, which are determined by tenants’ payment.

In our resource allocation model, each unit of resource
is represented by a number of shares. To simplify multi-
resource allocations, we assume each unit of resource (such
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as 1 Compute Unit 1 or 1 GB RAM) has its fixed share
according to its market price. A study on Amazon EC2
pricing data [44] had indicated that the hourly unit cost for
one GB memory is twice as expensive as one EC2 Compute
Unit. A tenant’s asset is then defined as the aggregate shares
that she pays for.

In the following, we use an example to demonstrate our
resource allocation model. Figure 2 shows three tenants co-
located on two physical hosts. Each tenant has two VMs.
The shares of different resources (e.g., CPU, Memory) are
uniformly normalized based on their market prices [44]. To
some extent, a tenant actually purchases resource shares
instead of fix-sized resource capacity. Cloud providers
can directly use shares as billing and resource allocation
policies. Here, we simply define a function f1 to trans-
late tenants’ payment into shares payment

f1−→ share,
and another function f2 to translate shares into resource
capacity share

f2−→ resource. For example, in Figure 2,
one compute unit and one GB memory are priced at 100
and 200 shares, respectively. If VM1 is initialized with 3
compute units and 2 GB memory, VM1 is allocated with
total 100× 3 + 200× 2 = 700 shares.

This model enables fine-grained resource allocation and
dynamic resource sharing based on shares. Now, the fair-
ness has become a major concern in such a shared system.
Informally, we define a kind of economic fairness: each
tenant should try to maximize her aggregate multi-resource
shares if she has unsatisfied resource demands.

We find that resource trading between different tenants is
able to reinforce the economic fairness of resource sharing.
Normalizing multiple resources with uniform shares is able
to facilitate resource trading. For example, one tenant can
trade her over-provisioned CPU shares for other tenants’
underutilized memory shares. In Figure 2, VM1 may trade
its 200 CPU shares for VM3’s 100 memory shares. Re-
source trading can prevent tenants from losing underutilized
resource. Moreover, a tenant can dynamically adjust share
allocation of her VMs according to actual demands. For
example, tenant A may deprive 200 memory shares from
VM2 and re-allocate them to VM1. In this paper, we
propose resource trading between different tenants (Sec-
tion 4.1), and dynamic weight adjustment among multiple
VMs belonging to the same tenant (Section 4.2). Figure 2
shows the hierarchical resource allocation based on the two
mechanisms. The global share allocator (GSA) first reserves
capacity in bulk based on tenants’ aggregate resource
demands, and then allocates shares to tenants according to
their payment. The local share/resource allocator in each
node is responsible for Resource Trading (RT) between
tenants, and Weight Adjustment (WA) among multiple VMs
belonging to the same tenant.

3 MULTI-RESOURCE FAIR SHARING ISSUES
We start with analyzing the problems of two popular
resource allocation policies including Weighted Max-Min

1. One EC2 Compute Unit provides equivalent CPU capacity of a 1.0-
1.2 GHz 2007 Opteron or Xeon processor, according to Amazon EC2.

 

CPU

SVM 1

Mem CPU
Mem

CPU
Mem CPU Mem

CPU

Mem
Mem

CPU

Tenant A Tenant C

Tenant B

ShareA=1500 ShareB=1200 ShareC=1300

GSA

Physical Node 1

Local share/resource 
allocator

 

Physical Node 2

Local shares/resource 
allocator

300 400 200 600 100 400 100 600 200 400 300 400

SVM 2 SVM 3 SVM 4 SVM 5 SVM 6

Tenant B

VMM VMM

RT RT

WA WA

Fig. 2: Hierarchical resource allocation based on resource
trading and weight adjustment.

Fairness (WMMF) [21] and Dominant Resource Fairness
(DRF) [12]. That motivates us to define a number of
desirable requirements for multi-resource allocation.

3.1 Motivations
WMMF [21] is widely used to solve the problem of
allocating scarce resource among a set of users. WMMF
algorithm defines three principles to allocate resources [21]:
(1) Resources are allocated in ascending order of demands
normalized by the weight. Thus, if two users have the
same weights, the user with a smaller resource demand is
satisfied first. (2) No user obtains a resource share larger
than its demand. Thus, the over-provisioned portion should
be re-allocated to other unsatisfied users. (3) Users with
unsatisfied demands get resource shares in proportion to
their weights. This policy defines how to distribute the over-
provisioned resources to unsatisfied users. The outcome of
running WMMF is that it maximizes the minimum share
of a user whose demand is not completely satisfied.

DRF [12] is a generalization of max-min fairness to
multiple resource types. The core idea of DRF is that the
resource allocated to a user should be determined by the
user’s share on the dominant resource type (or dominant
share). DRF always satisfies the demand of users in the
ascending order of dominant shares, and thus maximizes
the smallest dominant share of users in a system.

In the following, we demonstrate the deficiency of
WMMF and DRF for multi-resource sharing in clouds.

Example 1: Assume there are three tenants, each of
which has one VM. All VMs share a resource pool con-
sisting of total 20 GHz CPU and 10 GB RAM. Each VM
has initial shares for different types of resource when it is
created. For example, VM1 initially has CPU and RAM
shares of 500 each, simply denoted by a vector 〈500, 500〉.
The VMs may have dynamic resource demands. At a time,
VM1 runs jobs with demands of 6 GHz CPU and 3 GB
RAM, simply denoted by a vector 〈6GHz, 3GB〉. The
VMs’ initial shares and demand vectors are illustrated in
Table 1. We examine whether T-shirt model, WMMF and
DRF can achieve resource efficiency and economic fairness.

With T-shirt Model, we allocate the total resources to
tenants in proportion to their share values of CPU and
memory separately. The T-shirt model guarantees that each
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TABLE 1: Comparison of resource allocation polices between T-shirt, WMMF and DRF.

VMs VM1 VM2 VM3 Total
Initial Shares <500, 500> <500, 500> <1000, 1000> <2000, 2000>

Demands <6 GHz, 3 GB> <8 GHz, 1 GB> <8 GHz, 8 GB> <22 GHz, 12 GB>
T-shirt Allocation <5 GHz, 2.5 GB> <5 GHz, 2.5 GB> <10 GHz, 5 GB> actually used <18 GHz, 8.5 GB>

WMMF Allocation <6 GHz, 3 GB> <6 GHz, 1 GB> <8 GHz, 6 GB> <20 GHz, 10 GB>

WDRF dominant share 6/20 = 3/10 8/20 CPU 8/(10*2) RAM 100%
WDRF Allocation <6 GHz, 3 GB> <7 GHz, 1 GB> <7 GHz, 6 GB> <20 GHz, 10 GB>

tenant precisely receives the resource shares that the tenant
pays for. However, it wastes scare resource because it may
over-allocate resource to VMs that has high shares but
low demand, even other VMs have unsatisfied demand. As
shown in Table 1, VM2 wastes 1.5 GB RAM and VM3
wastes 2GHz CPU.

We now apply the WMMF algorithm on each resource
type. As shown in Table 1, VM1, VM2 and VM3 initially
owns 25%, 25%, 50% of total resource shares, respectively.
However, VM1 is allocated with 30% of total resources,
with 5% “stolen” from other VMs. Ironically, VM2 con-
tributes 1.5 GB RAM and VM3 contributes 2 GHz CPU
to other tenants. However, they do not benefit more than
VM1 from resource sharing because CPU and memory
resource are allocated separately. In this case, if VM1
deliberately provisions less resource than its demand and
always reckons on others’ contribution, then VM1 becomes
a free rider. Although WMMF can guarantee resource
efficiency, it cannot fully preserve tenant’s resource shares,
and eventually results in economic unfairness.

We also apply weighted DRF (WDRF) [12] to this
example. Both CPU and RAM shares of VM1, VM2 and
VM3 correspond to a ratio of 1 : 1 : 2. VM1’s dominant
share can be CPU or memory, both equal to 6

20 . VM2’s
dominant share is CPU share as max( 8

20 ,
1
10 ) = 8

20 . For
VM3, its un-weighted dominant share is memory share 8

10 .
Its weight is twice of that of VM1 and VM2, so its weighted
dominant share is 8

10∗2 = 8
20 . Thus, the ascending order

of three VM’s dominant shares is VM1 < VM2 = VM3.
According to WDRF, VM1’s demand is first satisfied, and
then the remanding resources are allocated to VM2 and
VM3 based on max-min fairness. We find that VM1 is again
a free rider.

In summary, the T-shirt model is not resource-efficient,
and WMMF and DRF are not economically fair for multi-
resource allocation. Intuitively, in a cooperative environ-
ment, the more one contributes, the more she should gain.
Otherwise, the tenants would lose their sharing incentives.
This is especially important for resource sharing among
multiple tenants in pay-as-you-use clouds. Thereby, a new
mechanism is needed to reinforce the fairness of multi-
resource sharing in IaaS clouds.

3.2 Resource Sharing Requirements
In the following, we describe a series of requirements
that we believe any multi-resource fair sharing model for
multiple tenants should satisfy. We consider all require-
ments/properties defined in DRF [12]. Particularly, we
highlight the following requirements.
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Fig. 3: Sketch of inter-tenant resource trading.

• A. Sharing Incentive: Each tenant should benefit
from sharing a large resource pool with others, rather
than exclusively using her own fix-sized VMs.

• B. Gain-as-you-contribute Fairness: A tenant’s gain
from other tenants should be proportional to her con-
tribution to others, i.e., the gain is determined by the
value (or shares) of her underutilized resources that
are contributed to other tenants, not by her original
total share or total resource demands.

• C. Strategy-proofness: A tenant should not be able
to benefit by lying about her resource demand, or
by deliberately buying less resource than her real
demand. This property is compatible with requirement
A and requirement B, because no tenants can get more
resource than their shares by lying or free-riding.

4 RECIPROCAL RESOURCE FAIRNESS

F2C uses RRF, a new approach to multi-resource allocation
that meets all the required properties described in Subsec-
tion 3.2. This section presents the detailed design of RRF.

In the following, we consider the fair sharing model in a
shared system with p types of resource and m tenants. The
total system capacity bought by the m tenants is denoted
by a vector Ω, i.e., 〈ΩCPU ,ΩRAM 〉, denoting the amount
of CPU and memory resource, respectively. Each tenant i
may have n VMs. Each VM j is initially allocated with a
share vector s(j) that reflects its priority relative to other
VMs. The amount of resource share required by VM j is
characterized by a demand vector d(j). Correspondingly,
the resource share lent to other tenants becomes s(j)−d(j),
and we call it a contribution vector c(j). At last, let
s
′
(j) denote the current share vector when resources are

re-allocated. For simplicity, a VM’s priority is always
determined by its initial share vector s(j) in each time of
resource allocation.
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4.1 Inter-tenant Resource Trading (IRT)

For multi-resource allocation, it is hard to guarantee that the
demands of all resource types are nicely satisfied without
waste. For example, a tenant’s aggregate CPU demand may
be less than her initial CPU share, but memory demand
exceeds her current allocation. In this case, she may expect
to trade her CPU resource with other tenants’ memory
resource. Thus, the question is how to trade resources of
different types among tenants while guaranteeing economic
fairness. RRF embraces an IRT mechanism with the core
idea that a tenant’s gain from other tenants should be
proportional to her contribution. The only basis for un-
derutilized resource allocation is the tenant’s contribution,
rather than her initial resource share or unsatisfied demand.
As shown in Figure 3, the memory resource contributed
by Tenant A is twice more than that of Tenant B, and
Tenant A should receive twice more unused CPU resource
(contributed by Tenant C) than Tenant B at first. Then,
we need to check whether the CPU resource of Tenant
A is over-provisioned. If so, the unused portion should
be re-distributed to other tenants. This process should be
iteratively performed by all tenants because each time of
resource distribution may affect other tenants’ allocations.
While this naive approach works, it can cause unacceptable
computation overhead. We further propose a work back-
ward strategy to speed up the unused resource distribution.

For each type of resource, we divide the tenants into three
categories: contributors, beneficiaries whose demands are
satisfied, and beneficiaries whose demands are unsatisfied,
as shown in Figure 4. Tenants in the first two categories are
directly allocated with their demands exactly, and tenants in
the third category are allocated with their initial share plus a
portion of contributions from the first category. However, A
challenging problem is how to divide the tenants into three
categories efficiently. Algorithm 1 describes the sorting
process by using some heuristics.

Let vectors D(i), S(i), C(i) and S
′
(i) denote the

total demand, initial share, contribution and current
share of the tenant i, respectively. Correspondingly, let
Dk(i), Sk(i), Ck(i) and S

′

k(i) denote her total demand,
initial share, contribution and current share of resource
type k, respectively. We consider a scenario where m
tenants share a resource pool with capacity Ω and resource
contention (

∑m
i=1D(i) ≥ Ω). Our algorithm first divides

the total capacity on the basis of each tenant’s initial share,
and then caps each tenant’s allocation at her total demand.
Actually, each tenant will receive her initial total share S(i),
and then her total contribution becomes C(i) = S(i)−D(i)
(if S(i) > D(i)). For resource type k (1 ≤ k ≤ p), the
unused resource Ck(i) is re-distributed to other unsatisfied
tenants in the ratio of their total contributions.

Algorithm 1 shows the pseudo-code for IRT. We first
calculate each tenant’s total contribution Λ(i) (Lines 6-
8). To reduce the complexity of resource allocation, for
each resource type k, we define the normalized demand
of tenant i as Uk(i) = Dk(i)/Sk(i), and re-index the
tenants so that the Uk(i) are in the ascending order, as

Uk(i)
0 1

index u = ?

① Contributors Beneficiaries

Vk(i)
index v = ?

re-sort the beneficiaries

 according to Vk(i)

② Demands are satisfied. ③ Demands are unsatisfied.

index m 

Fig. 4: Sketch of IRT algorithm.

shown in Figure 4. Then, we can easily find the index
u so that Uk(u) < 1 and Uk(u + 1) ≥ 1. The tenants
with index [1, · · · , u] are contributors and the remaining
are beneficiaries. For tenants with index [u + 1, · · · ,m]
(Uk(i) ≥ 1), we define the ratio of unsatisfied demand
of resource type k to her total contribution as Vk(i) =
(Dk(i)− Sk(i))/

∑p
k=1 Ck(i) (Lines 12-13), and re-index

these tenants according to the ascending order of Vk(i), as
shown in Figure 4. Thus, tenants with index [1, · · · , u] are
ordered by Uk(i) while tenants with index [u+ 1, · · · ,m]
are ordered by Vk(i). The demand of tenants with the
largest index will be satisfied at last. We need to find
a pair of successive indexes v, v + 1, (v ≥ u), so that
the share allocations of tenants with index [1, · · · , v] are
capped at their demands, and the remaining contribution∑m
i=v+1 Ψk(i) = Ωk−

∑v
i=1Dk(i)−

∑m
i=v+1 Sk(i) is dis-

tributed to tenants with index [v+1, · · · ,m] in proportion to
their total contributions. Some heuristics can be employed
to speed up the index searching. First, searching should
start from index u+1 because tenants with index [1, · · · , u]
are contributors. Second, we can use binary search strategy
to find two successive indexes v, v + 1, (v ≥ u) till the
demand of tenant with index v is satisfied by receiving her
proportion of other tenant’s contribution, while the demand
of tenant with index v+1 still cannot be satisfied. Namely,
the following inequality (1) and (2) must be satisfied:

Sk(v) +

∑m
i=v Ψk(i)× Λ(v)∑m

i=v Λ(i)
≥ Dk(v) (1)

Sk(v+ 1) +

∑m
i=v+1 Ψk(i)× Λ(v + 1)∑m

i=v+1 Λ(i)
< Dk(v+ 1) (2)

where
∑m
i=v Ψk(i) and

∑m
i=v+1 Ψk(i) represent the re-

maining contributions that will be re-distributed to tenants
with unsatisfied demands. Once the index v is deter-
mined, we can calculate the remaining contribution. The
tenants with index [1, · · · , v] receive shares capped at
their demands (Lines 16-17), and the tenants with index
[v+1, · · · ,m] receive their initial shares plus the remaining
resource in proportion to their contributions (Lines 19-20).

We illustrate the IRT algorithm using the following
example. Suppose total capacity of 30 GHz CPU and 15
GB RAM are allocated to 4 VMs. Assume one GHz CPU
and one GB memory are priced at 100 and 200 shares,
respectively. The VMs’ resource demand, initial shares and
demanded shares are illustrated in Lines 2–4 of Table 2.
We first calculate each VM’s contribution, as shown in
Line 5 of Table 2. The following lines show the details
of CPU and memory allocation based on IRT algorithm.
For CPU, VM3 and VM4 are the contributors while VM1
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TABLE 2: An example of IRT algorithm.

VMs VM1 VM2 VM3 VM4 Total
Resource Demand <6 GHz, 3 GB> <8 GHz, 1 GB> <8 GHz, 8 GB> <9 GHz, 6 GB> <31 GHz, 17 GB>

Initial Shares <500, 500> <500, 500> <1000, 1000> <1000, 1000> <3000, 3000>
Demanded Shares <600, 600> <800, 200> <800, 1600> <900, 1200> <3100, 3600>

Contributions <0, 0> <0, 300> <200, 0> <100, 0> <300, 300>

CPU Allocation
Sort by UCPU (VMi) VM3 (0.8) , VM4 (0.9) , VM1 (1.1) , VM2 (1.3)
Sort by VCPU (VMi) VM3 (-) , VM4 (-) , VM2 ( 800−500

300
= 1) , VM1 ( 600−500

0
= +∞)

CPU share SCPU (VMi) VM3 (800) , VM4(900) , VM2 (500+(200+100)=800) , VM1 (500)

Memory Allocation
Sort by Umem(VMi) VM2 (0.4) , VM1 (1.1) , VM4 (1.2) , VM3 (1.4)
Sort by Vmem(VMi) VM2 (-) , VM4 ( 1200−1000

100
= 2) , VM2 ( 1600−1000

200
= 3) , VM1 ( 600−500

0
= +∞)

Mem share Smem(VMi) VM2 (200) , VM4 (1000 + 300×100
100+200

) , VM3 (1000 + 300×200
100+200

) , VM1 (500)

Shares Allocation <500, 500> <800, 200> <800, 1200> <900, 1100> <3000, 3000>
Resource Allocation <5 GHz, 2.5 GB> <8 GHz, 1 GB> <8 GHz, 6 GB> <9 GHz, 5.5 GB> <30 GHz, 15 GB>

Algorithm 1 Inter-tenant Resource Trading (IRT)
Input: D = {D(1), ..., D(m)}, S = {S(1), ..., S(m)},Ω
Output: S

′
= {S′

(1), ..., S
′
(m)}

Variables: [i, C(i),Λ(i), U(i), V (i),Ψ(i)]← 0

1: for resource type k = 1 to p do
2: for Tenant i = 1 to m do
3: /*Allocate each tenant (i) her initial share S(i) */
4: S

′
k(i)← Sk(i)

5: Uk(i)← Dk(i)/Sk(i)
6: if Sk(i) ≥ Dk(i) then
7: Ck(i)← Sk(i)−Dk(i)

/*Calculate tenant(i)’s total contribution Λ(i) on all type of
resource */

8: Λ(i)← Λ(i) + Ck(i)
9: for resource type k = 1 to p do

10: Sort Uk(i) in ascending order;
11: Find the index u so that Uk(u) < 1 ≤ Uk(u + 1)
12: for Tenant i = u + 1 to m do
13: Vk(i)← (Dk(i)− Sk(i))/ Λ(i)
14: Sort Vk(i) in ascending order;
15: Find the index v using binary search algorithm so that Equation

(1) and (2) are satisfied;
16: for Tenant i = 1 to v do
17: S

′
k(i)← Dk(i) /*share is capped by demand*/

/*Calculate the remaining contributions for re-allocation*/

18:
∑m

i=v+1 Ψk(i)← Ωk −
v∑

i=1
Dk(i)−

m∑
i=v+1

Sk(i)

19: for Tenant i = v + 1 to m do
20: S

′
k(i)← Sk(i) +

∑m
i=v+1 Ψk(i)×Λ(v+1)∑m

i=v+1 Λ(i)

and VM2 are beneficiaries. However, as VM1 contributes
nothing to others, VM2 receives all unused CPU shares
(200+100) from VM3 and VM4. For memory, only VM2
contributes 300 unused memory shares and the other VMs
are beneficiaries. As VM3 and VM4 contribute 200 and
100 shares of CPU resource to the group, VM3 and VM4
receive 200

100+200 and 100
100+200 of total 300 unused memory

shares (i.e., 200 and 100 shares), respectively. VM1 again
receives nothing as it does not contribute anything to others.

In summary, with IRT, unused resources are properly
re-distributed based on VMs’ contributions and free riders
can not benefit from others. IRT always tries to minimize
resource losing and thus guarantee economic fairness.

4.2 Intra-tenant Weight Adjustment (IWA)

A tenant usually needs more than one VM to host her ap-
plications. Workloads in different VMs may have dynamic
and heterogeneous resource requirements. Thus, dynamic

resource flows among VMs belonging to the same tenant
can prevent loss of tenant’s asset. In F2C, we use IWA
to adjust the resource among VMs belonging to the same
tenant. We allocate share (or weight) for each VM using a
policy similar to WMMF. For each type of resource, we first
reset each VM’s current weight to its initial share. However,
if the allocation made to a VM is more than its demand,
its allocation should be capped at its real demand, and
the unused share should be re-allocated to its sibling VMs
with unsatisfied demands. In contrast to WMMF that re-
allocates the unused resource in proportion to VMs’ share
values, we re-allocate the excessive resource share to the
VMs in the ratio of their unsatisfied demands. Note that,
once a VM’s resource share is determined, the resource
allocation made to the VM is simply determined by the
function share

f2−→ resource.
Algorithm 2 shows the pseudo-code for IWA. A tenant

with n VMs is allocated with total resource share S. Note
that S is a global allocation vector which corresponds to
the output of Algorithm 1. Thus, Algorithm 2 is performed
accompanying with Algorithm 1. For each tenant, we first
calculate her total unsatisfied demand and total remaining
capacity for re-allocation, respectively (Lines 2 to 6), and
then distribute the remaining capacity to unsatisfied VMs in
ratio of their unsatisfied demands (Lines 7 to 11). As VM
provisioning is constrained to physical hosts’ capacity, it is
desirable to adjust weights of VMs on the same physical
node, rather than across multiple nodes. In practice, we
execute the IWA algorithm only on each single node.

4.3 Analysis of Fairness Properties

This subsection makes comparison between RRF, WMMF
and DRF on the properties presented in Section 3.2.

Theorem 1. All WMMF-derived algorithms including DRF
and RRF satisfy the sharing incentive property.

Sketch of Proof: According to max-min fairness, each
tenant should not receive more resource than her demand
if other tenants have not received their demands. This
rule ensures that there is no wasted capacity. At any
time, if the demand of tenant i is less than her initial
share (i.e.,D(i) < S(i)), she receives her demand and
the unused portion should be distributed to other tenants
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Algorithm 2 Inter-tenant Weight Adjustment (IWA)
Input: d = {d(1), ..., d(n)}, s = {s(1), ..., s(n)}, S
Output: s

′
= {s′ (1), ..., s

′
(n)}

Variables: [j,Γ,Φ]← 0
/* Allocate initial share s(j) to each VM(j) */
1: Φ ← S −

∑n
j=1 s(j) /*Calculate the difference of initial total

share and new allocated capacity */
2: for VM j = 1 to n do
3: if d(j) ≥ s(j) then
4: Γ← Γ + (d(j)− s(j)) /*total unsatisfied demand*/
5: else
6: Φ← Φ + (s(j)− d(j)) /*total remaining capacity*/

/* distribute remaining capacity to VMs with unsatisfied demand */
7: for VM j = 1 to n do
8: if d(j) ≥ s(j) then
9: s

′
(j)← s(j) +

d(j)−s(j)
Γ

× Φ
10: else
11: s

′
(j)← d(j)

with unsatisfied demands. If D(i) ≥ S(i), she receives
the same amount of resource as that she pays for. She
still has opportunities to gain more resource from other
contributors. We have seen that all tenants benefit from
sharing without wasting resource. Thus, all WMMF-derived
algorithms satisfy the sharing incentive property. �

Theorem 2. Both WMMF and DRF violate gain-as-you-
contribute fairness property that RRF naturally satisfies.

Sketch of Proof: Recall that RRF leverages a resource
trading mechanism to preserve tenants’ unused resource and
to meet the unsatisfied demands of other resource types. For
each tenant, the resource gained from trading is determined
by her contribution to others, rather than her initial resource
share or current demand. In contrast, WMMF and DRF
always try to maximize the minimum share and the smallest
dominant share of a tenant, respectively, they both satisfy
the smallest demand first. This is not fair for tenants that
have large contributions and also large unsatisfied demands.
Consider Example 1, both WMMF and DRF first satisfy
VM1’s unsatisfied demand, even it does not contribute
anything to the other two VMs. To this end, neither WMMF
nor DRF satisfy gain-as-you-contribute fairness. �

Theorem 3. RRF satisfies strategy-proofness property,
while WMMF and DRF cannot.

Sketch of Proof: Recall that resource allocation of RRF
is not directly determined by tenants’ demands, all tenants
cannot benefit by lying about their resource demands. In
fact, lying may lead to less benefit from other tenants.
Consider the following example, suppose tenant A needs
6 GHz CPU and 3 GB RAM, and its initial shares can
supply 4 GHz CPU and 4 GB RAM. If tenant A falsely
claims the demand to be 8 GHz CPU and 5 GB RAM, she
will receive 4 GHz CPU and 4 GB RAM only. However, 1
GB RAM is wasted and her CPU demand is not satisfied
yet. In contrast, if she claims her demands honestly, there
are opportunities for her to trade the unused 1 GB RAM
for more CPU resource. In addition, RRF is also immune
to free-riding as “no contribution, no gain”.

As to WMMF, it distributes unused resource of a tenant

based on other tenants’ initial shares, so it is also immune
against lying. However, WMMF cannot prevent tenants
from free-riding, as demonstrated by VM1 in Example 1.

As to DRF, consider Example 1, if VM1 lies its de-
mands to be < 7GHz, 3.5GB >, DRF also satisfies these
demands first because its dominant share becomes 7

20 but is
still less than the dominant shares of VM2 and VM3 (both
equal to 8

20 ). VM1 benefits from lying and thus violates
strategy-proofness. Also, DRF cannot prevent tenants from
free-riding, as demonstrated by VM1 in Example 1. �

Table 3 summarizes the fairness properties that are
satisfied by WMMF, DRF, and RRF. WMMF and DRF are
not suitable for pay-as-you-use clouds due to the lack of
support for two important desired properties.

TABLE 3: Properties of WMMF, DRF, and RRF.

Property Allocation Policy
WMMF DRF RRF

Sharing Incentive √ √ √

Gain-as-you-contribute Fairness √

Strategy-proofness √

5 SYSTEM IMPLEMENTATION

We implement F2C on top of Xen 4. The following de-
scribes implementation details of key components in F2C.

5.1 VM Grouping
Our VM grouping algorithm co-locates tenants with com-
plementary resource requirements to increase sharing op-
portunities. Cloud tenants submit their resource require-
ments, VM configurations, workload patterns and other
preferences or constraints. The VM grouping algorithm
then place tenants in a suitable coalition to enhance the
statistical resource multiplexing among different VMs.
VMs with different dominant resource requirements can be
grouped based on the skewness of multi-resource require-
ments. For example, VMs with CPU-intensive workloads
can be co-located with memory-intensive workloads so that
all resources are efficiently utilized.

A desirable solution not only needs to facilitate the
resource provisioning, but also maximizes the opportunities
of resource sharing. Also, we should carefully consider the
resource characteristics of physical machines. A physical
machine can be characterized by multiple resource types
k(1 ≤ k ≤ p) and other parameters such as memory vol-
ume per CPU ΩRAM/ ΩCPU . If the aggregate demand of
co-located VMs is compatible with hardware characteristics
of physical machines, we could achieve higher resource
utilization and reduce the operational cost of clouds.

We introduce the concept of correlation to quantify the
similarity of a VM and a server’s capacity characteristic.
Without loss of generality, we characterize the correlation
of two vector X,Y by Pearson’s Correlation Coefficient
(PCC) [22]: ρ(X,Y ) = cov(X,Y )

σX σY
, where cov(X,Y ) is

the covariance of the two vectors, and σX and σY are
their standard deviations. PCC is widely used to measure
the degree of linear dependence between two variables.
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The value of PCC ranges from -1 to +1, where 1 implies
completely positive correlation, 0 implies no correlation,
and -1 implies completely negative correlation.

The multi-resource provisioning can be formulated as a
multi-dimensional bin packing problem [6], which it is a
combinatorial NP-hard problem. We propose the following
heuristics that are specially designed for our resource
sharing and trading mechanisms.

1) To improve server utilization, VMs should be placed
on the servers in the decreasing order of their capacity
demands. This is consistent with First Fit Decreasing
(FFD) strategy [10].

2) Once we place a VM on a server, we try to mini-
mize the skewness of the server’s remaining multiple
resources. It implies that we should always place
VMs with inverse PCC (or inverse dominant resource
demands) together.

Guided by those heuristics, we propose a VM provision-
ing algorithm based on iteratively eliminating the skewness
of server’s remaining multiple resources. We first calculate
total demands of VM j by accumulating total demand
shares of p types of resource, and then place VMs in a
decreasing order of total demand shares. Once we place a
VM with index j on a server, we try to find a VM (j + a)
(a is an integer) that has the most inverse PPC with VM j,
so that their aggregate resource correlation relative to the
physical server’s capacity is maximized. Namely, we need
find max{ρ

(
d(j) + d(j + a),Ω

)
}. Once the VM is found

and placed to the server, we continue placing VM (j + 1)
to a server and searching its siblings. By repeating this
processing, the VMs can be placed to the servers compactly.

5.2 Resource Demand Prediction

Resource demand is taken as one of the inputs in our
algorithms. It should be estimated periodically at run-time.
Despite a lot of works on demand predictions [8], [32], [45],
we choose a simple yet efficient one. We periodically adjust
the demand window according to the FAST-TCP update,
with Exponential Weighted Moving Average (EWMA):
E(t) = λ ∗ O(t) + (1 − λ) ∗ E(t − 1), 0 ≤ λ ≤ 1, where
E(t) and O(t) are the estimated and observed demands at
time t, respectively. In practice, EWMA has a high level
of accuracy. Our experiments demonstrate the prediction
errors are less than 4% for 95th percentiles of estimations.

5.3 Resource Allocator

For CPU resource allocation, Xen hypervisor provides
several schedulers for fair allocation of CPU resource in
different scenarios [9]. We use the credit scheduler [9]
in our prototype system as it is most commonly used in
real deployments. Xen hypervisor provides a convenient
interface to configure VMs’ CPU weights (or shares).
Weighting mechanism guarantees that CPU cycles allocated
to different VMs are proportional to their weights. More-
over, the credit scheduler supports a non-workconserving
mode, in which VMs’ CPU time can be capped at their

demands. We also use capping mechanism to guarantee that
no VM receives more CPU resource than its demand.

For memory allocation, Xen hypervisor also provides an
interface to dynamically adjust each VM’s memory capacity
through ballooning mechanism [7], [43]. One limitation of
ballooning mechanism is that dynamic memory adjustment
is constrained to the VMs’ max memory configuration. In
our previous work, we had developed a memory hotplug-
ging technique for VMs [23] to overcome the limitation
of ballooning. Hypervisor can freely add/remove memory
to/from VMs without suffering the constraint of memory
cap. However, all those actions are up to the Xen hypervisor
to control what VMs can decrease their memory footprints,
and vice versa. In our system, RRF allocation algorithm
determines how many memory shares a VM should be
allocated in each time of memory adjustment.

5.4 Resource Pool Scaling
Tenants can still acquire or release resources by increas-
ing/decreasing the number of VMs according to the scale-
out model. However, tenants should suffer the latency in-
volved in VM instantiating. In addition, our model supports
fine-grained (i.e., CPU and DRAM) resource allocation to
VMs via dynamic payment. For example, if the tenant’s
total share consistently exceeds her aggregate demand, it
indicates that the VMs have likely been over-provisioned.
The tenant may cautiously reduce her resource provision
to save money. For temporary and reasonably small load
spikes, the tenant has opportunities to satisfy such demands
by trading resources with other tenants. Adding/releasing
resource to/from the resource pool only need to update the
information of resource configuration at the node manager.

5.5 Load Balancing
To handle load imbalance of different physical nodes, our
prototype supports live VM migration for load manage-
ment. VM live migration can also facilitate resource trading
between tenants. A sophisticated migration strategy needs
to handle the 3W (When, Which and Where) problems.
We adopt a hotspot detection strategy [46] to determine
when VM migrations are required. We use a migration
performance model [27] to determine which VM should be
migrated. Furthermore, we determine the target host where
a VM should be migrated using the VM grouping scheme,
as described in Subsection 5.1.

We should mention that VM migration over a WAN
usually results in a high latency of VM instantiating and
service downtime [25], [26], [27]. In this paper, we only
consider VM migration within a single cloud data center.
In the future, we can incorporate our previous work [25],
[26] to study WAN delays in F2C.

5.6 IaaS Cloud Economics
Recently, we have witnessed the prosperousness of a group-
buying mechanism in product and service markets, which
is essentially a kind of marketing strategy with benefits for
both buyers and sellers [16], [40]. This strategy motivates
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cloud users not only to buy resource at a lower price, but
also to provision resource based on average usage while
sharing resource with other tenants. On the other hand,
the sales amount of cloud provider may increase due to
discounted price and competition advantages. In fact, cloud
vendors such as Amazon EC2 already provide discounted
pricing when tenants buy in bulk (e.g., reserved instances).
Cloud provider can exploit different pricing models to
enlarge their revenue. A detailed discussion of IaaS cloud
economics is beyond the scope of this paper.

6 EVALUATION

We evaluate F2C in terms of fairness of multi-resource
allocation, improvement of application performance and
VM density, and performance overhead.

6.1 Experimental Setup
We have implemented RRF on Xen 4.1. We deploy our
prototype in a cluster with 10 nodes. Each node is equipped
with six quad-core Intel Xeon X5675 3.07 GHz processors,
24 GB DDR3 memory and 1 Gbit Ethernet interface. The
host machines are with 64-bit Linux RHEL 5 distribution
and the hypervisor is Xen 4.1 with Linux 2.6.31 kernel.
The VMs run in para-virtualization mode, with the OSes
the same distribution Linux as the hosts. Each host is
configured with 2 CPU cores and 1 GB RAM, and the
remaining cores are allocated to the VMs. Each VM is
configured with 4 vCPUs, while its initial share value is
set according to the workload’s average demand.

We use the following workloads with diversifying and
variable resource requirements.

TPC-C: it is an on-line transaction processing (OLTP)
benchmark [41]. We use a public benchmark DBT-2 as
clients, to simulate a number of users executing transactions
against a database. The clients and MySQL database run
in two VMs separately. We assume these two VM belong
to the same tenant. We configure 600 terminal threads
and 300 database connections. We evaluate its application
performance by throughput (transactions per minute).

RUBBoS (Rice University Bulletin Board System) [34]:
it is a typical multi-tier web benchmark. RUBBoS simulates
an on-line news forum like slashdot.org. We deploy the
benchmark in a 3-tier architecture using Apache 2.2, Tom-
cat 7.0, and MySQL 5.5. Each tier runs in a single VM. The
three VMs belong to the same tenant. For client workload
generators, we configure 500 and 1000 concurrent users to
alternately access the forum so as to simulate a cyclical
workload pattern. The workload generates considerable
CPU and memory load on the DB tier. We evaluate its
application performance by request response time.

Kernel-build: We compile Linux 2.6.31 kernel in a
single VM. It generates a moderate and balanced load of
CPU and memory.

Hadoop: We use Hadoop WordCount micro-benchmark
to setup a virtual cluster consisting of 10 worker VMs
and one master VM. Each worker VM run 800 map jobs
and followed by 400 reduce jobs. The 10 worker VMs are

TABLE 4: Workloads’ aggregated CPU/memory demands.

App Average Demand Peak Demand
TPC-C <1.4 core, 2.2 GB> <3.2 core, 2.8 GB>

RUBBoS <8.1 core, 4.6 GB> <16.5 core, 8.4 GB>
Kernel-build <1.0 core, 0.6 GB> <1.5 core, 0.8 GB>

Hadoop <11.5 core, 10.3 GB> <12.5 core, 12.6 GB>

evenly distributed in the 10 physical machines and co-run
with other workloads. The map stage take almost 95% of
the total execution time. The WordCount workload is CPU
and memory bound and shows regular resource demands.

On our test bed, we consider multiple tenants sharing the
cluster. Each tenant only runs one kind of the above work-
loads. We continuously launch the tenants’ applications to
the cluster one by one until no room to accommodate more
applications. All VMs are placed on servers based on our
VM grouping algorithm. To study the impact of resource al-
location on application performance, we first use an kernel-
based profiling scheme to monitor applications’ resource
usage, as shown in Table 4, and configure the initial share
of tenant (i) based on a provisioning coefficient,

α = S(i)/D(i),

which reflects the ratio of initial resource share to the
average demand. In our experiments, we specify 1 CPU
core (3.07 GHz) and 1 GB RAM to be 300 and 200 shares,
respectively. This setting accords with the ratio of CPU
price to memory price in Amazon EC2 clouds [44].

The dynamic resource allocation algorithm is periodi-
cally executed at each node (domain 0). By default, the
interval (or window size) is set to 5 seconds for the
purposes of fine-grained resource sharing. We evaluate F2C
by comparing the following approaches for IaaS clouds:

• T-shirt (static): Workloads are running in VMs with
static resource provision. It is the current resource
model adopted by most IaaS clouds [14].

• WMMF (Weighted Max-Min Fairness): WMMF [21]
is used to allocate CPU and Memory resources to each
VM separately.

• DRF (Dominate Resource Fairness): DRF [12] is used
to allocate multiple resources to each VM.

• IWA (Intra-tenant Weight Adjustment): We conduct
weight adjustment for VMs belonging to the same ten-
ant, without considering inter-tenant resource trading.

• RRF (IRT + IWA): We conduct hierarchical resource
allocation using both inter-tenant resource trading and
intra-tenant weight adjustment.

6.2 Dynamic Resource Sharing
To understand the resource allocation mechanism of RRF,
we track total resource demands and allocations of those
workloads in 45 minutes. All VMs’ capacity are provi-
sioned based on their average demands (i.e., α = 1). We use
a scenario where the four workloads are co-located on a sin-
gle host to illustrate the dynamic resource sharing. In Figure
4, the curves represent the ratio of instantaneous resource
demand (i.e., the sum of CPU and memory shares) of each
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Fig. 5: The ratio of total resource demand to total initial
share, i.e., Dt(i)/S(i), varies with time.
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Fig. 6: The ratio of total resource allocation to total initial
share, i.e., S

′

t(i)/S(i), varies with time.

workload to its average demand (initial resource share).
Figure 5 shows that RUBBOS, TPC-C and Kernel-build
have significant dynamic of resource demand over time,
while Hadoop shows relatively stable resource demand.
Particularly, we observe that the total resource demand
exceeds the server’s capacity during the period of 320s–
1100s, and thus there is resource contention between these
workloads. In other periods, the server can successfully
satisfy the resource demand of each workload.

Figure 6 shows the allocation details for each workloads
over time. In the period of 320s–1100s, we see that RRF
achieves balanced resource allocations for RUBBoS, TPC-
C and Hadoop. To some extent, the allocations imply
the degree of economic fairness. As Kernel-build is over-
provisioned in this period, it contributes a small amount
of resource to other workloads. In the other periods, each
workload is allocated with its demand because the aggre-
gated demand is less than the server’s capacity.

6.3 Results on Fairness

In general, in a shared computing system with resource
contention, every tenant wants to receive more resource or
at least the same amount of resource than that she buys.
We call it fair if a tenant can achieve this goal (i.e., sharing
benefit). In contrast, it is also possible the total resource a
tenant received is less than that without sharing, which we
call unfair (i.e., sharing loss). Thus, we define the economic
fairness degree β(i) for tenant i in a time window T as
follows:

β(i) =
∑T

t=1 S
′
t(i)

T×S(i) .

TPC-C RUBBoS Kernel-Build Hadoop
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  
 R

at
io

 o
f r

ec
ev

ie
d 

sh
ar

es
 to

 in
iti

al
 s

ha
re

(
)

 T-shirt (static)
 WMMF 
 DRF      IWA 
 RRF (IRT + IWA)

Fig. 7: Comparison of economic fairness of several resource
allocation schemes.
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Fig. 8: Comparison of application performance improve-
ment of several resource allocation schemes.

It represents the ratio of average resource share received to
the tenant’s initial share in the time window T , or more
exactly speaking, it denotes the ratio of resource value
to tenant’s payment. β(i) = 1 implies absolute economic
fairness. β(i) > 1 implies the tenant benefits from resource
sharing while β(i) < 1 implies the tenant loses her asset.

We evaluate the economic fairness of different schemes
for the four workloads in a long period of time. All VMs’
capacity are provisioned based on their average demands
(i.e., α = 1). Figure 7 shows the comparison of economic
fairness of different resource allocation schemes. Each bar
shows the average result of the same workload run by mul-
tiple tenants. Overall, RRF achieves much better economic
fairness than other approaches. Specifically, RRF leads
to smaller difference of β between different applications,
indicating 95% economic fairness (geometric mean) for
multi-resource sharing among multi-tenants.

We make the following observations.
First, the T-shirt (static) model achieves 100% economic

fairness as VMs share nothing with each other. However,
it results in the worst application performance for all
workloads, as shown in Figure 8.

Second, both WMMF and DRF show significant differ-
ences on β for different workloads. As all WMMF-based
algorithms always try to satisfy the demand of smallest
applications first, both kernel-build and TPC-C gain more
resources than their initial shares. This effect is more sig-
nificant for DRF if the application shows tiny skewness of
multi-resource demands (such as kernel-build). DRF always
completely satisfies the demand of these applications first.
Thus, DRF and WMMF are susceptible to application’s
load patterns. Applications with large skewness of multi-
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resource demands usually lose their asset. Even for a single
resource type, large deviation of resource demand also lead
to distinct economic unfairness.

Third, workloads with different resource demand patterns
show different behavior in resource sharing. RUBBoS has
a cyclical workload pattern, its resource demand shows
the largest temporal fluctuations. When the load is below
its average demand, it contributes resource to other VMs
and thus loses its asset. However, when it shows large
value of Dt(i)/S(i), its demand always can not be fully
satisfied if there exists resource contention. Thus, RUBBoS
has smaller value of β than other applications. For TPC-C
and Kernel-build, although they show comparable demand
deviation and skewness with RUBBoS, they has much
more opportunities to benefit from RUBBoS because their
absolute demands are much smaller. For Hadoop, although
it requires a large amount of resource, it demonstrates only
a slight deviation of resource demands, and there is few
opportunities to contribute resource to other VMs (except
in its reduce stage).

Fourth, inter-tenant weight adjustment (IWA) allows
tenants properly distribute VMs’ spare resource to their
sibling VMs in proportional to their unsatisfied demands.
It guarantees that tenants can effectively utilize their own
resource. Inter-tenant resource trading can further preserve
tenants’ asset as each tenant tries to maximize the value of
spare resource. In addition, RRF is immune to free-riding.

We also studied the impact of different α values. For
space limitation, we omit the figures and briefly discuss the
results. When we decrease the provisioning coefficient α
(i.e., reduce the resource provisioned for applications), the
β of all applications approach to one. In contrast, a larger α
leads to a decrease of β. That means applications tends to
preserve their resource when there exist intensive resource
contention. Nevertheless, a larger value of α implies better
application performance.

6.4 Improvement of Application Performance

Figure 8 shows the normalized application performance for
different resource allocation schemes. All schemes provi-
sion resource at applications’ average demand (α = 1).
In the T-shirt model, all applications show the worst per-
formance and we refer it as a baseline. In other models,
all applications show performance improvement due to
resource sharing. For RUBBoS, RRF leads to much more
application performance improvement than other schemes.
This is because, RRF provides two mechanisms (IRT +
IWA) to preserve tenants’ asset, and thus RRF allow RUB-
BoS reveive more resource than other schemes, as shown
in Figure 7. For other workloads, RRF is also comparable
to the other resource sharing schemes. In summary, RRF
achieves 45% performance improvement for all workloads
on average (geometric mean). DRF achieves the best perfor-
mance for Kernel-build and TPC-C, but achieves very bad
performance for RUBBoS. It shows the largest performance
differentiation for different workloads. DRF always tends
to satisfy the demand of the application with smallest
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Fig. 9: Application performance corresponds to VM den-
sity.

dominant share, and thus applications that have resource
demand of small sizes or small skewness always benefit
more from resource sharing. In contrast, the performance of
Hadoop shows slight variations between different allocation
schemes due to its rather stable resource demands.

6.5 VM Density and Tenant Cost
VM density is a very important metric on cloud resource
efficiency. Higher VM density usually implies a higher
resource utilization and more revenue for cloud providers.
Figure 9 shows the geometric mean of normalized ap-
plications performance and VM density with varying α
values. α = α∗ denotes each VM is provisioned at its
peak demands. We refer the setting α∗ as a baseline for
comparison. RRF and other dynamic allocation schemes
always show much better application performance than T-
shirt model due to resource sharing. In general, the VM
density can be improved by α∗/α. Particularly, when α is
equal to one, in comparison with provisioning resource at
peak demand (i.e., α = α∗), RRF can significantly improve
VM density by a factor of 2.2, at the expense of around
15% performance penalty. This allows cloud providers to
make tradeoff between resource efficiency and quality of
service. We conjecture that cloud providers can serve more
tenants and increase revenue due to higher VM density.

From the perspective of tenants, resource sharing implies
significant cost saving. Figure 10 shows the tenant cost
reduction and application performance with increasing α
values. Tenant cost is reduced by (1−α/α∗) as tenant only
provisions α/α∗ resource compared to T-shirt model. When
α is equal to one, RRF can reduce up to 55% resource cost,
while the application performance degradation is less than
15%. This observation can guide tenants to make tradeoff
between application performance and resource cost.

6.6 Cloud Provider Revenue
In this section, we analyze the impact of resource multi-
plexing on the cloud provider’s revenue. For comparison,
we compare F2C with T-shirt model, a join-VM resource
provisioning approach [30] and a resource overbooking
approach [42]. The joint-VM provisioning approach [30]
advocates that multiple VMs should be consolidated and
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Fig. 10: The trade-off between tenant cost reduction and
application performance, compared to T-shirt model.

provisioned together, according to their aggregate capacity
requirements, to exploit statistical resource multiplexing
among the multiple VMs. Similarly, the resource over-
booking strategy [42] allows users to provision resources
based on a high percentile of the application demands while
employing statistical resource multiplexing among different
users to maximize the revenue of hardware resource.

We conduct experiments to examine the efficiency of
resource multiplexing in our cluster. For each type of
workload described in Subsection 6.1, we continuously
place as many the same application as possible on the
cluster until there is no room to accommodate any more
applications. For joint-VM provisioning and resource over-
booking approaches, we implement simulation programs
based on their core ideas and use the same parameter
settings as described in [30] and [42], respectively.

Figure 11 shows the number of application instances the
platform can support. The T-shirt model shows the lowest
application density in the cluster as the applications are
provisioned according to their peak resource demands. Al-
though the same type of application instances have similar
workload patterns, there is still opportunities of resource
multiplexing on the temporal dimension, i.e., the peaks
and valleys of different VMs’ resource demands may not
necessarily coincide with the others because they are not
started concurrently. For join-VM provisioning, it can lower
the peak demand of multiple VMs’ aggregate capacity
requirements compared to individual-VM based provision-
ing. It leads to much higher resource utilization than T-
shirt model. However, as the aggregate peak demands
may still much larger than the average demands, join-VM
provisioning is not able to fully utilize the over-provisioned
resource at any time. For the overbooking approach, the
more resource overbooked, the larger is the number of
application instances that can be hosted on the cluster.
Specifically, the number of RUBBoS application that can be
hosted by the cluster increases from 14 (T-shirt model) to 25
for 5% overbooking (a factor of 1.8 increase). For F2C, the
experimental results demonstrate that it show comparable
feasibility and benefits of resource multiplexing with the
overbooking approach. Essentially, F2C is an overbooking
approach. The proportion of resource overbooked can be
configured by adjusting the provisioning coefficient α.

We also find that the feasibility and efficacy of resource
multiplexing mainly depends on the workload pattern. For
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Fig. 11: Benefits of resource multiplexing for different
workloads, under T-shirt, join-VM provisioning, resource
overbooking (Ovb) and F2C approaches.
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Fig. 12: Performance overhead of F2C varies with the
frequency of resource dynamic allocations.

example, the Hadoop application demonstrates slight fluctu-
ation of resource demands, so there is less opportunities for
those applications to exploit resource multiplexing. Even 5
percent resource is overbooked, cloud providers can gain
trivial benefit from the overbooking strategy.

6.7 Runtime Overhead
We study the runtime overhead caused by dynamic resource
allocations in different window sizes. As RRF is deployed
at each physical node, we demonstrate the results of 10
VMs on a node coordinated by RRF in decreasing window
sizes, as shown in Figure 12. RRF causes reasonable
CPU load on the host machine (domain 0) even when the
window size is 5 seconds. We also measure the performance
overhead of VMs due to resource demand prediction in
RRF. We can find that the overhead is negligible relative
to the gain from resource sharing.

We also study time cost of resource allocation under
scale-out model vs. under scale-up model. We choose the
Hadoop workload as a case study. Suppose a typical VM
has fix-sized resource capacity (for example, 1 CPU core
and 1 GB RAM). To add the same amount of resource
capacity, scale-out model needs to instantiate a number
of VMs from scratch, while scale-up model only needs
to reconfigure the existing VMs’ resource shares. Figure
13 shows that the overhead of scale-up model is neg-
ligible compared to the scale-up model. We also study
VM instantiation in different approaches: instantiating VMs
one by one, i.e., Sequential VM Instantiation (SI), Parallel
VM Instantiations on a Single Host (PISH), and Parallel
VM Instantiations on Multiple Hosts (PIMH). For SI, the
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Fig. 13: Resource allocation overhead of scale-out model
and scale-up model (F2C).

total completion time of VM instantiations is proportional
to the number of VMs. For PISH, the instantiation time
of each VM increases with the number of VMs that are
instantiating concurrently. More VM Instantiations results
in higher degree of resource contention in a single host. In
contrast, PIMH distributes the load of VM instantiations on
multiple hosts, and demonstrates the best scalability.

7 RELATED WORK

We review the related work in the following two categories.
Resource sharing and provisioning. We focus on

the related work in virtualization environments. Current
hypervisors such as VMware and Xen have provided a
number of techniques to facilitate fine-grained resource
multiplexing, such as memory ballooning/hotplugging [23],
page-sharing [7], [43], and CPU & I/O scheduling [9],
[17]. There have been a number of studies focusing on
VM resource multiplexing strategies to improve resource
utilization. Virtual-putty [38] exploited affinities and con-
flicts between co-located VMs to improve the host resource
utilization. Meng et al. [30] proposed a joint-VM provi-
sioning strategy to consolidate multiple VMs based on the
estimate of their total resource requirement. v-Bundle [19]
offers elastic exchange of network resource among multiple
VMs belonging to the same tenant. Those studies have not
considered the fairness issues in resource sharing.

Most IaaS clouds follow the T-shirt and scale-up
model [3], [14]. CloudScale [36] is a trace-driven elastic
resource scaling system. The challenging problem is that
resource scaling results in a high latency due to VM
instantiating [3]. Furthermore, several other trace-based
approaches [32], [45] are developed for demand prediction
and capacity provisioning. F2C is complementary to these
techniques, in the sense that it enables fine-grained sharing
among VMs within one tenant and among multiple tenants.

Fairness of resource sharing: (Weighted) max-min
fairness is one of the most widely used fairness mecha-
nisms [21]. Many data center or cluster schedulers supports
max-min fairness or its extensions, such as Hadoop’s Fair
Scheduler [1], Quincy [20], Mesos [18], and Choosy [13].
For example, Quincy [20] achieves fairness of scheduling
concurrent distributed jobs by formulating the problem
as a min-cost flow problem. Mesos [18] achieves fair
resource sharing by using DRF [12]. Our previous work

proposed Long-Term Resource Fairness (LTRF) for the
single resource type [39]. Most of previous studies are at the
level of fixed-size partitions of nodes, or tasks. In contrast,
F2C achieves fairness of multi-resource allocation at fine-
grained resource level (i.e. CPU and memory).

Many studies have considered the fairness of sharing a
single-type resource. Pisces [37] is a systemic implementa-
tion of max-min fairness in multi-tenant shared key-value
storage system. mclock [17] supports proportional-share
fairness for disk I/O resource allocation in VMware ESX.
U-tube supports proportional share fairness for memory
load balancing among co-located VMs [23]. Flex [33]
reinforces fairness at VM-level scheduling and improves the
efficiency of SMP VMs. Shanmuganathan et al.’s work [35]
relies on max-min fairness to allocate bulk resource to
multiple VMs belonging to the same tenant. However,
it is limited to a single type of resource and a single
tenant. In contrast, RRF advocates resource trading between
multiple tenants and addresses the fair-sharing problem on
multiple resources. This paper goes beyond our preliminary
study [24] by (1) developing a full-fledged resource alloca-
tion system for IaaS clouds, and (2) performing extensive
end-to-end comparison at the system level.

8 CONCLUSION
Efficient and fine-grained resource sharing becomes in-
creasingly important and attractive for new-generation
cloud environments. This paper presents F2C, a cooperative
resource management system for IaaS clouds. To address
the economic fairness issues, we proposes reciprocal re-
source fairness (RRF) to enable fine-grained multi-resource
fair sharing among multiple tenants. We implement F2C on
Xen platform. The experimental results show that F2C is
beneficial for both cloud providers and tenants. For cloud
providers, F2C improves VM density of current IaaS cloud
models by 2.2X and has almost negligible runtime overhead
for real-time resource sharing. For tenants, F2C delivers
better application performance and 95 percent economic
fairness among multiple tenants.
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