
Reciprocal Resource Fairness: Towards Cooperative
Multiple-Resource Fair Sharing in IaaS Clouds

Haikun Liu
Nanyang Technological University, Singapore

Bingsheng He
Nanyang Technological University, Singapore

Abstract—Resource sharing in virtualized environments have
been demonstrated significant benefits to improve application
performance and resource/energy efficiency. However, resource
sharing, especially for multiple resource types, poses several severe
and challenging problems in pay-as-you-use cloud environments,
such as sharing incentive, free-riding, lying and economic fairness.
To address those problems, we propose Reciprocal Resource
Fairness (RRF), a novel resource allocation mechanism to en-
able fair sharing multiple types of resource among multiple
tenants in new-generation cloud environments. RRF implements
two complementary and hierarchical mechanisms for resource
sharing: inter-tenant resource trading and intra-tenant weight
adjustment. We show that RRF satisfies several highly desirable
properties to ensure fairness. Experimental results show that RRF
is promising for both cloud providers and tenants. Compared
to existing cloud models, RRF improves virtual machine (VM)
density and cloud providers’ revenue by 2.2X. For tenants, RRF
improves application performance by 45% and guarantees 95%
economic fairness among multiple tenants.

Keywords: IaaS, cloud computing, resource sharing, fairness.

I. INTRODUCTION
Infrastructure-as-a-service (IaaS) clouds have emerged as

appealing computing infrastructures, which allow tenants to
acquire and release resource in the form of virtual machines
(VMs) on a pay-as-you-go basis. Nowadays, most IaaS cloud
providers such as Amazon EC2 offer a number of VM types
(such as small, medium, large and extra large) with fixed
amount of CPU cores, main memory and disk. Tenants can
only purchase fixed-size VMs and scale up/down the number
of VMs when the resource demands change. This is also known
as T-shirt model [18]. From the tenants’ perspective, there are
two disadvantages of the T-shirt model. First, the granularity
of resource acquisition/release is coarse in the sense that
the fix-sized VMs are not tailored for the dynamic demands
of cloud applications delicately. The result is that tenants
need to over-provision resource (costly), or risk performance
penalty and Service Level Agreement (SLA) violation. Second,
elastic resource scaling in the cloud [3] is also costly due to
the latencies involved in VM instantiating [36] and software
runtime overhead [41]. These costs are ultimately borne by
tenants in terms of monetary cost or performance penalty.
These two disadvantages both can be attributed to inefficient
use of cloud resource. For cloud providers, inefficient resource
utilization translates to higher capital expense and operating
cost, and decreases revenue margins.

As more and more applications with diversifying resource
requirements are already deployed in the cloud [1], [13], [20],
[60], there are vast opportunities for resource sharing [18],
[38]. Recent studies [16], [18] have shown the data center
workloads can have heterogeneous demands on multiple re-

source types including CPU and memory. Recent work has
shown that co-locating multi-tenant jobs on a set of shared
compute nodes can increase mean application performance
and system resource/energy efficiency by 20% [9], [26]. The
resource utilization can be further improved in virtualization
environments [18] by using fine-grained resource sharing
techniques and optimizations (e.g., resource multiplexing or
overcommitting model [7], [12], [18], [22], [53]). A previous
study showed that the fine-grained resource sharing model
can reduce the number of active servers by 50% compared
to T-shirt model [18]. Modeling clouds as a market, many
researchers have explored economics-based mechanisms for
cost efficiency of tenants and resource efficiency of cloud
providers [11], [30], [35], [37], [54].

Despite the resource sharing opportunities, we find that
resource sharing, especially for multiple resource types (i.e.,
multi-resource), poses several important and challenging prob-
lems in pay-as-you-use commercial clouds. (1) Sharing In-
centive. In a shared cloud with resource contention, a tenant
may have concerns about the gain/loss of her asset in terms of
resource. (2) Free Riding. A tenant may deliberately buy less
resource than her demand and always expect to benefit from
others’ contribution (i.e., unused resource). Free Riders would
seriously hurt other tenants’ sharing incentive. (3) Lying. When
there exists resource contention, a tenant may lie about her
resource demand for more benefit. Lying also hurts tenants’
sharing incentive. (4) Gain-as-you-contribute Fairness. It is
important to guarantee that the allocations obey a rule “more
contribution, more gain”. In summary, those problems are
eventually attributed to economic fairness of resource sharing
in IaaS clouds.

Given the fairness problem, one of the most popular
allocation policies proposed for fair sharing so far has been
(Weighted) Max-Min Fairness (WMMF) [29], which maxi-
mizes the minimum allocation received by a user in the system.
There are also a large amount of work on fair allocation based
on WMMF [4], [5], [22], [43], [44], [48], [49]. However,
their focuses have so far been primarily on a single resource
type. Although Dominant Resource Fairness (DRF) [16] was
proposed for multi-resource environments, it cannot address
all the four problems of resource sharing in IaaS clouds (see
Section II-B).

To address these problems, we propose Reciprocal Re-
source Fairness (RRF), a generalization of max-min fairness to
multiple resource types. The intuition behind RRF is that each
tenant should preserve her asset while maximizing the resource
usage in a cooperative environment. Due to the vast diversity
and dynamics of resource demands in the cloud, we propose
a fine-grained resource sharing scheme for multiple resource

SC14, November 16-21, 2014, New Orleans, LA, USA
978-1-4799-5500-8/14/$31.00 c© 2014 IEEE

types. Particularly, we advocate that different types of resource
can be traded among different tenants and be shared among
different VMs belonging to the same tenant. For example,
a tenant can trade her unused CPU share for other tenant’s
over-allocated memory share. In this paper, we consider two
major kinds of resources, including CPU and main memory.
Resource trading can maximize tenants’ benefit from resource
sharing. RRF addresses the multi-resource fair sharing problem
into with complementary mechanisms: inter-tenant resource
trading and intra-tenant weight adjustment. These mechanisms
guarantee that tenants only allocate minimum shares to their
non-dominant demands and maximize the share allocations
on the contended resource. RRF guarantees no tenant can
obtain unfair benefit from other tenants when there exists
resource contention. Moreover, RRF is able to achieve some
desirable properties of resource sharing, including sharing in-
centive, gain-as-you-contribute fairness and strategy-proofness
(see Section III-A). Therefore, RRF can address all the above
fair sharing problems.

We implement a proof-of-concept prototype on Xen to
verify the effectiveness of RRF. We conduct a set of ex-
periments to evaluate the allocation fairness, resource effi-
ciency and application performance. The preliminary results
show that RRF is beneficial for both cloud providers and
tenants. For cloud providers, RRF improves VM density and
cloud providers’ revenue by 2.2X compared to the current
T-shirt model. For tenants, RRF delivers better application
performance and economic fairness among tenants than other
fairness mechanisms [16], [29].

The remainder of the paper is organized as follows. Sec-
tion II motivates the resource sharing among multi-tenant
clouds and formulates the resource fair sharing problem. Sec-
tion III introduces the system overview and resource allocation
model. Section IV presents the RRF-based resource dynamic
allocation algorithms. Section V describes the implementation
details of RRF. We present the evaluation methodologies and
experimental results in Section VI. We discuss the related work
in Section VII and conclude in Section VIII.

II. BACKGROUND AND MOTIVATION
We first briefly introduce the typical resource sharing

mechanisms, including Weighted Max-Min Fairness (WMMF)
[29] and Dominant Resource Fairness (DRF) [16]. Next, we
present the motivation of this study by analyzing the deficiency
of WMMF and DRF for multi-resource sharing.

A. WMMF and DRF
WMMF [29] is widely used to solve the problem of

allocating scarce resource among a set of users. Users can
have different weights (or shares) to the resource. The share
of a user reflects the user’s priority relative to other users.
The WMMF algorithm defines the following three principles
to allocate the resource [29]: (1) Resources are allocated in
the order of increasing demands normalized by the weight.
Thus, if two users have the same weights, the user with a
smaller resource demand is satisfied first. (2) No user obtains a
resource share larger than its demand. Thus, the over-allocated
portion can be re-allocated to other users with unsatisfied
demands. (3) Users with unsatisfied demands get resource
shares in proportion to their weights. This policy defines how
to distribute the over-allocated resources to unsatisfied users.

Formally, we have the following operational definitions for

WMMF. Consider a set of users 1, 2..., n that have resource
demands d1, d2, ..., dn, associated with weights w1, w2,
..., wn, respectively. Without loss of generality, we assume
d1 ≤ d2 ≤ ... ≤ dn. Suppose the total resource capacity is
C. The capacity per share becomes σ = C/

∑n
i=1 wi. Then,

we initially allocate σwi resource to user i. For user i, the
allocation may be more than its demand. The unused resource
should be proportionally re-allocated to other users whose
demands are not fully satisfied according to their weights.
We continue this process until no users get more than their
demands, and, if their demands are not completely satisfied,
their resource allocations should be proportion to their weights.
The outcome of running WMMF is that it maximizes the
minimum share of a user whose demand is not completely
satisfied.

DRF [16] is a generalization of max-min fairness to multi-
ple resource types. The core idea of DRF is that the amount of
resource allocated to a user should be determined by the user’s
share on the dominant resource type (or dominant share). DRF
always satisfies the demand of users in the ascending order of
dominant shares, and thus maximizes the smallest dominant
share of users in a system.

B. Motivation
We consider resource fair sharing problems in multi-tenant

cloud environments, where each tenant may rent several VMs
to host her applications, and VMs may have multiple resource
demands. By multi-resource, we mean resource of different
resource types, instead of multiple units of the same resource
type. In this paper, we mainly consider two resource types:
CPU and main memory. A number of tenants can form a
resource pool based on the opportunities of resource sharing.
The VMs of these tenants then share the same resource pool
with negotiated resource shares, which are allocated according
to tenants’ payment. The question is how to guarantee the
fairness of resource sharing so that free-riding and lying
problems are properly addressed.

To simplify multi-resource allocation, we assume each unit
of resource (such as 1 Compute Unit 1 or 1 GB RAM) has its
fixed share according to its market price. A study on Amazon
EC2 pricing data [56] had indicated that the hourly unit cost
for 1 GB memory is twice as expensive as one EC2 Compute
Unit. A tenant’s asset is then defined as the aggregate shares
that she pays for. Ideally, we can informally define a kind
of economic fairness: each tenant should try to preserve her
asset in terms of aggregate multi-resource shares if she has
unsatisfied resource demand.

Example 1: Assume there are three tenants, each of which
has one VM. All VMs share a resource pool consisting of total
20 GHz CPU and 10 GB RAM. Each VM has initial shares
for different types of resource when it is created. For example,
VM1 initially has CPU and RAM shares of 500 each, simply
denoted by a vector 〈500, 500〉. The VMs may have dynamic
resource demands. At a time, VM1 runs jobs with demands
of 6 GHz CPU and 3 GB RAM, simply denoted by a vector
〈6GHz, 3GB〉. The VMs’ initial shares and demand vectors
are illustrated in Table I. We examine whether current resource
allocation models (the T-shirt model, WMMF and DRF) can
guarantee resource efficiency and economic fairness.

1One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2
GHz 2007 Opteron or 2007 Xeon processor, according to Amazon EC2.

TABLE I: Comparison of resource allocation polices between T-shirt, WMMF and DRF.

VMs VM1 VM2 VM3 Total
Initial Shares <500, 500> <500, 500> <1000, 1000> <2000, 2000>

Demands <6 GHz, 3 GB> <8 GHz, 1 GB> <8 GHz, 8 GB> <22 GHz, 12 GB>
T-shirt Allocation <5 GHz, 2.5 GB> <5 GHz, 2.5 GB> <10 GHz, 5 GB> actually used <18 GHz, 8.5 GB>

WMMF Allocation <6 GHz, 3 GB> <6 GHz, 1 GB> <8 GHz, 6 GB> <20 GHz, 10 GB>

WDRF dominant share 6/20 = 3/10 8/20 CPU 8/(10*2) RAM 100%
WDRF Allocation <6 GHz, 3 GB> <7 GHz, 1 GB> <7 GHz, 6 GB> <20 GHz, 10 GB>

With T-shirt Model, we allocate the total resources to
tenants in proportion to their share values of CPU and memory
separately. The T-shirt model guarantees that each tenant
precisely receives the resource shares that the tenant pays for.
However, it wastes scare resource because it may over-allocate
resource to VMs that has high shares but low demand, even
other VMs have unsatisfied demand. As shown in Table I,
VM2 wastes 1.5 GB RAM and VM3 wastes 2GHz CPU.

We now apply the WMMF algorithm on each resource
type. As shown in Table 1, VM1, VM2 and VM3 initially
owns 25%, 25%, 50% of total resource shares, respectively.
However, VM1 is allocated with 30% of total resources, with
5% “stolen” from other VMs. Ironically, VM2 contributes 1.5
GB RAM and VM3 contributes 2 GHz CPU to other tenants.
However, they do not benefit more than VM1 from resource
sharing because CPU and memory resource are allocated
separately. In this case, if VM1 deliberately provisions less
resource than its demand and always reckons on others’ contri-
bution, then VM1 becomes a free rider. Although WMMF can
guarantee resource efficiency, it cannot fully preserve tenant’s
resource shares, and eventually results in economic unfairness.

We also apply weighted DRF (WDRF) [16] to this ex-
ample. Both CPU and RAM shares of VM1, VM2 and VM3
correspond to a ratio of 1 : 1 : 2. VM1’s dominant share can be
CPU or memory, both equal to 6

20 . VM2’s dominant share is
CPU share as max(8

20 ,
1
10) = 8

20 . For VM3, its un-weighted
dominant share is memory share 8

10 . Its weight is twice of
that of VM1 and VM2, so its weighted dominant share is

8
10∗2 = 8

20 . Thus, the ascending order of three VM’s dominant
shares is VM1 < VM2 = VM3. According to WDRF, VM1’s
demand is first satisfied, and then the remanding resources are
allocated to VM2 and VM3 based on max-min fairness. We
find that VM1 is again a free rider.

In summary, the T-shirt model is not resource-efficient, and
WMMF and DRF are not economically fair for multi-resource
allocation. Intuitively, in a cooperative environment, the more
one contributes, the more she should gain. Otherwise, the
tenants would lose their sharing incentives. This is especially
important for resource sharing among multiple tenants in pay-
as-you-use clouds. Thereby, a new mechanism is needed to
reinforce the fairness of multi-resource sharing in IaaS clouds.

III. OVERVIEW
In this section, we first describe a series of requirements

that we believe any multi-resource fair sharing model for
multiple tenants should satisfy, and then give an overview of
our resource allocation model.

A. Resource Sharing Requirements
DRF [16] has defined a number of requirements/properties

that a multi-resource sharing mechanism should satisfy. Under

the context of multi-resource sharing among multiple tenants,
we consider all requirements in DRF. Particularly, we highlight
the following requirements.
• A. Sharing Incentive: Each tenant should benefit

from sharing a large resource pool with others, rather
than exclusively using her own fix-sized VMs.

• B. Gain-as-you-contribute Fairness: A tenant’s gain
from other tenants should be proportional to her
contribution to others. The ability of a tenant to gain
her unsatisfied resource demand is determined by
the value (or shares) of her other resources that are
contributed to other tenants, not by her original total
share or total resource demands.

• C. Strategy-proofness: A tenant should not be able
to benefit by lying about her resource demand, or
by deliberately buying less resource than her real
demand. This property is compatible with sharing
incentive and gain-as-you-contribute fairness, because
no tenants can get more resource than their shares by
lying or free-riding.

B. Resource Allocation Model
We now discuss how to effectively allocate multiple re-

sources to a set of cooperative VMs. We use the aforemen-
tioned allocation properties to guide the development of an
economic fair sharing policy. In the following, we use an
example to demonstrate our resource allocation model. Figure
1 shows three tenants co-located on two physical hosts. Each
tenant has two VMs. In our fine-grained resource sharing
model, each unit of resource is represented by a number of
shares. The shares of different resources (e.g., CPU, Memory)
are uniformly normalized based on their market prices [56].
To some extent, what a tenant actually purchases is resource
shares instead of fix-sized resource capacity. As share of a VM
reflects the VMs priority relative to other VMs, cloud providers
can directly use shares as billing and resource allocation
policies. The concrete design of those policies is beyond the
scope of this paper. Thus, we simply define a function f1 to
translate tenants’ payment into shares payment

f1−→ share,
and another function f2 to translate shares into resource
capacity share

f2−→ resource. For example, in Figure 1, one
compute unit and one GB memory are priced at 100 and
200 shares, respectively. Suppose VM1 is initialized with 3
compute units and 2 GB memory. Then, VM1 is allocated with
total 100 × 3 + 200 × 2 = 700 shares. For cloud providers,
share is only used as a mediator for resource allocation by
hypervisors, such as VMware proportional-share based CPU
scheduler and Xen credit scheduler. Tenants can still buy VMs
according to the total amount of resource demand.

Normalizing multiple resources with uniform shares pro-

CPU

SVM 1

Mem CPU
Mem

CPU
Mem CPU Mem

CPU

Mem
Mem

CPU

Tenant A Tenant C

ShareA=1500 ShareB=1200 ShareC=1300

GSA

300 400 200 600 100 400 100 600 200 400 300 400

SVM 2 SVM 3 SVM 4 SVM 5 SVM 6

Tenant BRT RT

WA WA

Fig. 1: Hierarchical resource allocation based on resource
trading and weight adjustment.

vides the advantage to facilitate resource trading and weight
adjustment. It allows tenants dynamically adjust the weight
of multiple resources based on their actual demands. For
example, in Figure 1, tenant A may deprive 200 memory
shares from VM2 and re-allocate them to VM1. Moreover,
one tenant also can trade the over-allocated CPU shares for
other tenants’ memory shares. For example, VM1 may trade
its 200 CPU shares for VM3’s 100 memory shares. We thus
propose dynamic resource trading between different tenants
(Section IV-A), and dynamic weight adjustment among multi-
ple VMs belonging to the same tenant (Section IV-B). Figure 1
shows the hierarchical resource allocation based on these two
mechanisms. The global share allocator (GSA) first reserves
capacity in bulk based on the tenants’ aggregate resource
demands, and then allocates shares to tenants according to
their payment. The local share/resource allocator in each node
is responsible for Resource Trading (RT) between tenants, and
Weight Adjustment (WA) among multiple VMs belonging to
the same tenant.

IV. RECIPROCAL RESOURCE FAIRNESS
We propose RRF, a new approach to multi-resource alloca-

tion that meets all the required properties described in Subsec-
tion III-A. RRF provides two complementary and hierarchical
mechanisms – inter-tenant resource trading (IRT) and intra-
tenant weight adjustment (IWA) to address fairness problems
raised in multi-resource sharing among multiple tanents.

In the following, we consider the fair sharing model in a
shared system with p types of resource and m tenants. The total
system capacity bought by the m tenants is denoted by a vector
Ω, i.e., 〈ΩCPU ,ΩRAM 〉. Each tenant i may have n VMs. Each
VM j is initially allocated with a share vector s(j) that reflects
its priority relative to other VMs. The amount of resource
share required by VM j is characterized by a demand vector
d(j). The resource share contributed to the other tenants is
characterized by a contribution vector c(j), which corresponds
to the VM’s initial share vector s(j). Correspondingly, s

′
(j)

denotes the current share vector after the resources are re-
allocated.

For simplicity, we assume that resource allocation is obliv-
ious, meaning that the current allocation is not affected by
previous allocations. Thus, a VM’s priority is always deter-
mined by its initial share vector s(j) in each time of resource
allocation.

A. Inter-tenant Resource Trading (IRT)
For multi-resource allocation, it is hard to guarantee that

the demands of all resource types are nicely satisfied without

CPUMem CPU Mem CPU Mem

Tenant A Tenant B Tenant C

Contributions

CPUMem CPU Mem

Tenant B

Re-allocate based on

contribution

Tenant A

CPU Mem

Tenant C

Unused resourceLegend： Unsatisfied demand

Fig. 2: Sketch of inter-tenant resource trading.

waste. For example, a tenant’s aggregate CPU demand may be
less than her initial CPU share, but memory demand exceeds
her current allocation. In this case, she may expect to trade her
CPU resource with other tenants’ memory resource. Thus, the
question is how to trade resources of different types among
tenants while guaranteeing economic fairness. RRF embraces
an IRT mechanism with the core idea that a tenant’s gain from
other tenants should be proportional to her contribution. The
only basis for resource distribution is the tenant’s contribution,
rather than her initial resource share or unsatisfied demand.
As shown in Figure 2, the memory resource contributed by
Tenant A is 2 times more than that of Tenant B, so Tenant A
should receive 2 times more unused CPU resource (contributed
by Tenant C) than Tenant B at first. Then, we need to check
whether the CPU resource of Tenant A is over-allocated. If so,
the unused portion should be re-distributed to other tenants.
This process should be iteratively performed by all tenants
because each allocation may affect other tenants’ allocations.
This naive approach is easy to understand but can cause
unacceptable computation overhead.

We propose a work backward strategy to speed up the
unused resource distribution. For each type of resource, we
divide the tenants into three categories: contributors, benefi-
ciaries whose demands are satisfied, and beneficiaries whose
demands are unsatisfied, as shown in Figure 3. Tenants in the
first two categories are directly allocated with their demands
exactly, and tenants in the third category are allocated with
their initial share plus a portion of contributions from the first
category. However, A challenging problem is how to divide the
tenants into three categories efficiently. Algorithm 1 describes
the sorting process by using some heuristics.

Let vectors D(i), S(i), C(i) and S
′
(i) denote the total

demand, initial share, contribution and current share of the
tenant i, respectively. Correspondingly, let Dk(i), Sk(i), Ck(i)
and S

′

k(i) denote her total demand, initial share, contribution
and current share of resource type k, respectively. We consider
a scenario where m tenants share a resource pool with capacity
Ω, with resource contentions (

∑m
i=1D(i) ≥ Ω). Our algorithm

first divides the total capacity on the basis of each tenant’s
initial share, and then caps each tenant’s allocation at her
total demand. Actually, each tenant will receive her initial
total share S(i), and then her total contribution becomes
C(i) = S(i) − D(i) (if S(i) > D(i)). For resource type k
(1 ≤ k ≤ p), the unused resource Ck(i) is re-distributed to
other unsatisfied tenants in the ratio of their total contributions.

Algorithm 1 shows the pseudo-code for IRT. We first

Uk(i)
0 1

index u = ?

① Contributors Beneficiaries

Vk(i)
index v = ?

re-sort the beneficiaries

 according to Vk(i)

② Demands are satisfied. ③ Demands are unsatisfied.

index m

Fig. 3: Sketch of IRT algorithm.

calculate each tenant’s total contribution Λ(i) (Lines 6-8).
To reduce the complexity of resource allocation, for each
resource type k, we define the normalized demand of tenant
i as Uk(i) = Dk(i)/Sk(i), and re-index the tenants so that
the Uk(i) are in the ascending order, as shown in Figure 3.
Then, we can easily find the index u so that Uk(u) < 1
and Uk(u + 1) ≥ 1. The tenants with index [1, · · · , u] are
contributors and the remaining are beneficiaries. For tenants
with index [u + 1, · · · ,m] (Uk(i) ≥ 1), we define the
ratio of unsatisfied demand of resource type k to her total
contribution as Vk(i) = (Dk(i)− Sk(i))/

∑p
k=1 Ck(i) (Lines

12-13), and re-index these tenants according to the ascending
order of Vk(i), as shown in Figure 3. Thus, tenants with
index [1, · · · , u] are ordered by Uk(i) while tenants with
index [u + 1, · · · ,m] are ordered by Vk(i). The demand of
tenants with the largest index will be satisfied at last. We
need to find a pair of successive indexes v, v + 1, (v ≥ u),
so that the share allocations of tenants with index [1, · · · , v]
are capped at their demands, and the remaining contribution
Ψk = Ωk −

∑v
i=1Dk(i) −

∑m
i=v+1 Sk(i) is distributed to

tenants with index [v + 1, · · · ,m] in proportion to their total
contributions. Some heuristics can be employed to speed up the
index searching. First, searching should start from index u+1
because tenants with index [1, · · · , u] are contributors. Second,
we can use binary search strategy to find two successive
indexes v, v + 1, (v ≥ u) till the demand of tenant with index
v is satisfied by receiving her proportion of other tenant’s
contribution, while the demand of tenant with index v + 1
still cannot be satisfied. Namely, the following inequality (1)
and (2) must be satisfied:

Sk(v) +

(
Ωk −

v−1∑
i=1

Dk(i)−
m∑
i=v

Sk(i)

)
× Λ(v)∑m

i=v Λ(i)
≥ Dk(v)

(1)

Sk(v + 1) +

(
Ωk −

v∑
i=1

Dk(i)−
m∑

i=v+1

Sk(i)

)
× Λ(v + 1)∑m

i=v+1 Λ(i)

< Dk(v + 1)
(2)

where the expressions in the big parenthesis represent the
remaining contributions that will be re-distributed to tenants
with unsatisfied demands. Once the index v is determined,
we can calculate the remaining contribution. The tenants with
index [1, · · · , v] receive shares capped at their demands (Lines
16-17), and the tenants with index [v+1, · · · ,m] receive their
initial shares plus the remaining resource in proportion to their
contributions (Lines 19-20).

We illustrate the IRT algorithm using an example in which
total capacity of 30 GHz CPU and 15 GB RAM are allocated
to 4 VMs. Assume one GHz CPU and one GB memory are

Algorithm 1 Inter-tenant Resource Trading (IRT)
Input: D = {D(1), ..., D(m)}, S = {S(1), ..., S(m)},Ω
Output: S

′
= {S′ (1), ..., S

′
(m)}

Variables: [i, C(i),Λ(i), U(i), V (i),Ψ(i)]← 0

1: for resource type k = 1 to p do
2: for Tenant i = 1 to m do
3: /*Allocate each tenant (i) her initial share S(i) */
4: S

′
k(i)← Sk(i)

5: Uk(i)← Dk(i)/Sk(i)
6: if Sk(i) ≥ Dk(i) then
7: Ck(i)← Sk(i)−Dk(i)

/*Calculate tenant(i)’s total contribution Λ(i) on all type of
resource */

8: Λ(i)← Λ(i) + Ck(i)
9: for resource type k = 1 to p do

10: Sort Uk(i) in ascending order;
11: Find the index u so that Uk(u) < 1 ≤ Uk(u + 1)
12: for Tenant i = u + 1 to m do
13: Vk(i)← (Dk(i)− Sk(i))/ Λ(i)
14: Sort Vk(i) in ascending order;
15: Find the index v using binary search algorithm so that Equation (1)

and (2) are satisfied;
16: for Tenant i = 1 to v do
17: S

′
k(i)← Dk(i) /*share is capped by demand*/

/*Ψ is the remaining contributions for re-allocation*/

18: Ψk ← Ωk −
v∑

i=1
Dk(i)−

m∑
i=v+1

Sk(i)

19: for Tenant i = v + 1 to m do
20: S

′
k(i)← Sk(i) +

Ψk×Λ(v+1)∑m
i=v+1 Λ(i)

priced at 100 and 200 shares, respectively. The VMs’ resource
demand, initial shares and demanded shares are illustrated
in Lines 2–4 of Table II. We first calculate each VM’s
contribution, as shown in Line 5 of Table II. The following
lines show the details of CPU and memory allocation based on
IRT algorithm. For CPU, VM3 and VM4 are the contributors
while VM1 and VM2 are beneficiaries. However, as VM1
contributes nothing to others, VM2 receives all unused CPU
shares (200+100) from VM3 and VM4. For memory, only
VM2 contributes 300 unused memory shares and the other
VMs are beneficiaries. As VM3 and VM4 contribute 200 and
100 shares of CPU resource to the group, VM3 and VM4
receive 200

100+200 and 100
100+200 of total total 300 unused memory

shares (i.e., 200 and 100 shares), respectively. VM1 again
receives nothing as it does not contribute anything to others.

Form this example, we have witnessed that unused re-
sources are properly re-distributed based on VMs’ contribu-
tions and free riders can not benefit from others. IRT always
tries to prevent tenants from share losing and thus guarantee
economic fairness.

Although IRT algorithm is designed for multi-resource
trading between multiple tenants, it is also applicable to re-
source trading among VMs, oblivious to the VMs’ attribution.
However, resource trading at VM-level sometimes may not
guarantee economic equity, and may not preserve tenant’s asset
completely. Therefore, we limit resource trading to multiple
tenants, and propose dynamic weight adjustment between VMs
belonging to the same tenant to further preserve the tenant’s
asset.

B. Intra-tenant Weight Adjustment (IWA)
In the cloud, a tenant usually needs more than one VM

to host her applications. Workloads in different VMs may
have dynamic and heterogeneous resource requirements. Thus,
dynamic resource flows among VMs belonging to the same

TABLE II: An example of IRT algorithm.

VMs VM1 VM2 VM3 VM4 Total
Resource Demand <6 GHz, 3 GB> <8 GHz, 1 GB> <8 GHz, 8 GB> <9 GHz, 6 GB> <31 GHz, 17 GB>

Initial Shares <500, 500> <500, 500> <1000, 1000> <1000, 1000> <3000, 3000>
Demanded Shares <600, 600> <800, 200> <800, 1600> <900, 1200> <3100, 3600>

Contributions <0, 0> <0, 300> <200, 0> <100, 0> <300, 300>

CPU allocation
Sort by UCPU (VMi) VM3 (0.8) , VM4 (0.9) , VM1 (1.1) , VM2 (1.3)
Sort by VCPU (VMi) VM3 (-) , VM4 (-) , VM2 (800−500

300 = 1) , VM1 (600−500
0 = +∞)

CPU share SCPU (VMi) VM3 (800) , VM4(900) , VM2 (500+(200+100)=800) , VM1 (500)

Memory allocation
Sort by Umem(VMi) VM2 (0.4) , VM1 (1.1) , VM4 (1.2) , VM3 (1.4)
Sort by Vmem(VMi) VM2 (-) , VM4 (1200−1000

100 = 2) , VM2 (1600−1000
200 = 3) , VM1 (600−500

0 = +∞)
Mem share Smem(VMi) VM2 (200) , VM4 (1000 + 300×100

100+200 = 1100) , VM3 (1000 + 300×200
100+200 = 1200) , VM1 (500)

Shares Allocation <500, 500> <800, 200> <800, 1200> <900, 1100> <3000, 3000>
Resource Allocation <5 GHz, 2.5 GB> <8 GHz, 1 GB> <8 GHz, 6 GB> <9 GHz, 5.5 GB> <30 GHz, 15 GB>

tenant can prevent loss of tenant’s asset. We propose dynamic
intra-tenant weight adjustment among VMs belonging to the
same tenant. We allocate share (or weight) for each VM using
a policy similar to WMMF. For each type of resource, we first
reset each VM’s current weight to its initial share. However,
if the allocation made to a VM is more than its demand, its
allocation should be capped at its real demand, and the unused
share should be re-allocated to its sibling VMs with unsatisfied
demands. In contrast to WMMF that re-allocates the unused
resource in proportion to VMs’ share values, we re-allocate
the excessive resource share to the VMs in the ratio of their
unsatisfied demands. Note that, once a VM’s resource share is
determined, the resource allocation made to the VM is simply
determined by the function share

f2−→ resource.
Algorithm 2 shows the pseudo-code for IWA. A tenant with

n VMs is allocated with total resource share S. Note that S is
a global allocation vector which corresponds to the output of
Algorithm 1. Thus, Algorithm 2 is performed accompanying
with Algorithm 1. For each tenant, we first calculate her
total unsatisfied demand and total remaining capacity for re-
allocation, respectively (Lines 2 to 6), and then distribute
the remaining capacity to unsatisfied VMs in ratio of their
unsatisfied demands (Lines 7 to 11). As VM provisioning is
constrained to physical hosts’ capacity, it is desirable to adjust
weights of VMs on the same physical node, rather than across
multiple nodes. In practice, we execute the IWA algorithm only
on each single node.

Algorithm 2 Inter-tenant Weight Adjustment (IWA)
Input: d = {d(1), ..., d(n)}, s = {s(1), ..., s(n)}, S
Output: s

′
= {s′ (1), ..., s

′
(n)}

Variables: [j,Γ,Φ]← 0
/* Allocate initial share s(j) to each VM(j) */
1: Φ ← S −

∑n
j=1 s(j) /*Calculate the difference of initial total share

and new allocated capacity */
2: for VM j = 1 to n do
3: if d(j) ≥ s(j) then
4: Γ← Γ + (d(j)− s(j)) /*total unsatisfied demand*/
5: else
6: Φ← Φ + (s(j)− d(j)) /*total remaining capacity*/

/* distribute remaining capacity to VMs with unsatisfied demand */
7: for VM j = 1 to n do
8: if d(j) ≥ s(j) then
9: s

′
(j)← s(j) +

d(j)−s(j)
Γ

× Φ
10: else
11: s

′
(j)← d(j)

C. Analysis of Fairness Properties
This subsection makes comparison between RRF, WMMF

and DRF on the properties presented in Section III-A.

Theorem 1. All WMMF-derived algorithms including DRF
and RRF satisfy the sharing incentive property.

Sketch of Proof: According to max-min fairness, each tenant
should not receive more resource than her demand if other
tenants have not received their demands. This rule ensures that
there is no wasted capacity. At any time, if the demand of
tenant i is less than her initial share (i.e.,D(i) < S(i)), she re-
ceives her demand and the unused portion should be distributed
to other tenants with unsatisfied demands. If D(i) ≥ S(i), she
receives the same amount of resource as that she pays for.
She still has opportunities to gain more resource from other
contributors. We have seen that all tenants benefit from sharing
without wasting resource. Thus, all WMMF-derived algorithms
satisfy the sharing incentive property. �

Theorem 2. Both WMMF and DRF violate gain-as-you-
contribute fairness property that RRF naturally satisfied.

Sketch of Proof: Recall that RRF leverages a resource trading
mechanism to preserve tenants’ unused resource and to meet
the unsatisfied demands of other resource types. For each
tenant, the resource gained from trading is determined by the
ratio of her contribution to that of others, rather than her
initial resource share or current demand. In contrast, WMMF
and DRF always try to maximize the minimum share and
the smallest dominant share of a tenant, respectively, they
both satisfy the smallest demand first. This is not fair for
tenants that have large contributions and also large unsatisfied
demands. Consider Example 1, both WMMF and DRF first
satisfy VM1’s unsatisfied demand, even it doesn’t contribute
anything to the other two VMs. To this end, neither WMMF
nor DRF satisfy gain-as-you-contribute fairness. �

Theorem 3. RRF satisfies strategy-proofness property, while
WMMF and DRF cannot satisfy it completely.

Sketch of Proof: Recall that resource allocation of RRF
is not directly determined by tenants’ demands, all tenants
cannot benefit by lying about their resource demands. In fact,
lying may lead to less benefit from other tenants. Consider
the following example, suppose tenant A needs 6 GHz CPU
and 3 GB RAM, and its initial shares can supply 4 GHz CPU
and 4 GB RAM. If tenant A falsely claims the demand to be
8 GHz CPU and 5 GB RAM, she will receive 4 GHz CPU

and 4 GB RAM only. However, 1 GB RAM is wasted and her
CPU demand is not satisfied yet. In contrast, if she claims her
demands honestly, there are opportunities for her to trade the
unused 1 GB RAM for more CPU resource. In addition, RRF
is also immune to free-riding as “no contribution, no gain”.

As to WMMF, it distributes the unused resource of a tenant
based on other tenants’ initial share, so it is also immune
against lying. However, WMMF cannot prevent tenants from
free-riding, as demonstrated by VM1 in Example 1.

As to DRF, consider Example 1, if VM1 lies its demands to
be < 7GHz, 3.5GB >, DRF also satisfies these demands first
because its dominant share becomes 7

20 but is still less than the
dominant shares of VM2 and VM3 (both equal to 8

20). VM1
benefits from lying and thus violates strategy-proofness. Also,
DRF cannot prevent tenants from free-riding, as demonstrated
by VM1 in Example 1. �

Table III summarizes the fairness properties presented in
Section III-A that are satisfied by WMMF, DRF, and RRF.
WMMF and DRF are not suitable for pay-as-you-use clouds
due to the lack of support for two important desired properties,
whereas RRF can achieve all these properties.

TABLE III: Properties of WMMF, DRF, and RRF.

Property Allocation Policy
WMMF DRF RRF

Sharing Incentive √ √ √

Gain-as-you-contribute Fairness √

Strategy-proofness √

V. PROTOTYPE ON XEN
To verify the effectiveness of RRF, we implement a proof-

of-concept prototype on Xen, which is supported by many
cloud stacks and public cloud providers [15]. RRF is also
applicable for other common-used hypervisors and cloud plat-
forms such as KVM and VMware, because they all support
dynamic resource allocation techniques such as proportional-
share based CPU scheduler and memory ballooning.

In the prototype, we have implemented a VM placement
algorithm to facilitate resource sharing. Our VM grouping
algorithm exploits resource multiplexing among different VMs
to improve the sharing opportunity. On the spatial dimension,
VMs with different dominant resource requirements can be
grouped based on the skewness of multiple resources. The
skewness means the similarity of two VMs or servers quan-
tified by Pearson’s Correlation Coefficient (PCC) [31]. The
multi-resource provisioning can be formulated as a multi-
dimensional bin packing problem [6]. We approximate its
optimal solution by always placing VMs to servers with reverse
skewness (PCC value). More details can be found in Appendix
A of our technical report [32].

There are also some other important details for a complete
system implementation, such as resource demand prediction,
resource allocator, resource pool scaling and load balancing.
Here, we mainly describe the resource allocator in the follow-
ing, and present other details in Appendix A of our technical
report [32].

Xen and other hypervisors have provided several tech-
niques for fairly allocating CPU time and memory to VMs [7],
[12], [53]. For CPU resource allocation, The open-source Xen
provides several schedulers for fair sharing and allocation
of CPU resource in different scenarioes [12]. We use the

credit scheduler [12] in our prototype system as it is most
commonly used in real deployments. Xen hypervisor provides
a convenient interface to configure VMs’ CPU weight (or
share). The credit scheduler then allocates CPU cycles to each
VM in proportional to its weight (share). Moreover, the credit
scheduler supports a non-workconserving mode, in which VMs
CPU time can be capped at their demands. Those features are
perfectly fit for our resource allocation requirements.

For memory allocation, Xen hypervisor also provides an
interface to dynamically adjust each VM’s memory capacity
through ballooning mechanism [7], [53]. One limitation of
ballooning mechanism is that it can’t extend a VM’s memory
footprint beyond its original maximum allocation, so dynamic
memory adjustment is constrained to the VMs’ max memory
configuration. To take full advantage of ballooning, the hy-
pervisor needs to create a VM with max memory equal to
the host’s maximum memory capacity, and then “inflates” the
guest balloon driver to shrink the VM’s memory capacity
according to the tenant’s provisioned size. When the VM needs
more memory, the hypervisor “deflates” the balloon driver
to add memory to the VM. In our previous work, we had
developed the memory hotplugging technique for VMs [33]
to overcome the limitation of ballooning. Hypervisor can
freely add/remove memory to/from VMs without suffering
the constraint of memory cap. However, all those actions are
up to the Xen hypervisor to control what VMs can decrease
their memory footprints, and vice versa. In our system, RRF
allocation algorithm makes the decision to determine how
many memory shares a VM should be allocated in each time
of memory adjustment.

Recently, there have been some Software-as-a-Service vir-
tualization technologies such as Docker [14] and LXC [34].
They are lightweight resource containers that provide several
promising features, such as portability, more efficient schedul-
ing and resource management, and less virtualization overhead.
We conjuncture that our RRF algorithm is also applicable for
the container-based resource fair sharing.

Security issue is likely to be a major concern in any shared
systems. Although multiple tenants share a large resource pool
in our system, each unit of resource is exclusively used by
users at any instantaneous times. For memory resource, RRF
uses ballooning or hotplugging to adjust each VM’s memory
allocation. No memory pages are shared by different VMs at
the same time. To this end, RRF may not causally result in a
security issue.

VI. EVALUATION
In this section, we evaluate RRF in terms of fairness of

multi-resource allocation, improvement of application perfor-
mance and VM density, and performance overhead.

A. Experimental Setup
We have implemented RRF on Xen 4.1. We deploy our

prototype in a cluster with 10 nodes. Each node is equipped
with six quad-core Intel Xeon X5675 3.07 GHz processors,
24 GB DDR3 memory and 1 Gbit Ethernet interface. The
host machines are with 64-bit Linux RHEL 5 distribution
and the hypervisor is Xen 4.1 with Linux 2.6.31 kernel. The
VMs run in para-virtualization mode, with the OSes the same
distribution Linux as the hosts. Each host is configured with
2 CPU cores and 1 GB RAM, and the remaining cores are
allocated to the VMs. Each VM is configured with 4 vCPUs,
while its initial share value is set according to the workload’s

average demand. Note that Xen credit scheduler allocates CPU
cycles to each VM in proportional to its weight (shares). Two
VMs with the same amount of shares should get the same
amount of CPU cycles, regardless of the number of vCPUs in
each VM.

We use the following workloads with diversifying and
variable resource requirements.

TPC-C: it is an on-line transaction processing (OLTP)
benchmark [52]. We use a public benchmark DBT-2 as clients,
to simulate a complete computing environment where a num-
ber of users execute transactions against a database. The
clients and MySQL database server run in two VMs separately.
We assume these two VM belong to the same tenant. We
configure 600 terminal threads and 300 database connections.
The benchmark shows a irregular on-off load pattern on CPU
demands, as shown in Figure 4. We evaluate its application
performance by throughput (transactions per minute).

RUBBoS (Rice University Bulletin Board System) [45]: it
is a typical multi-tier web benchmark. RUBBoS simulates an
on-line news forum like slashdot.org. We deploy the bench-
mark in a 3-tier architecture using Apache 2.2, Tomcat 7.0,
and MySQL 5.5. Each tier runs in a single VM. The three
VMs belong to the same tenant. Some other VMs are used to
run client workload generators. We configure 500 and 1000
concurrent users to alternately access the forum so as to
simulate a cyclical workload pattern. The workload generates
considerable CPU and memory load on the VM running DB
tier. We evaluate its application performance using the request
response time.

Kernel-build: We compile Linux 2.6.31 kernel in a single
VM. It generates a moderate and balanced load of CPU and
memory.

Hadoop: We use Hadoop WordCount micro-benchmark to
setup a virtual cluster consisting of 10 worker VMs and one
master VM. The WordCount program sums up the number of
each word from a 60 GB dataset generated by RandomTex-
tWriter program contained in the Hadoop distribution. Each
worker VM run 800 map jobs and followed by 400 reduce
jobs on average. The map stage take almost 95% of the total
execution time. The WordCount workload is CPU and memory
bound with regular and small fluctuations of resource demands.

On our test bed, we consider multiple tenants sharing
the cluster. Each tenant only runs one kind of the above
workloads. We continuously launch the tenants’ applications
to the cluster one by one until no room to accommodate any
more applications. All VMs are placed on servers based on
our tenant grouping algorithm [32]. To study the relationship
between application performance and the amount of resource
provisioned, we first use an off-line profiling scheme to
measure applications’ demands, as shown in Table IV, and
configure the initial share of tenant (i) based on a provisioning
coefficient,

α = S(i)/D(i),

which reflects the ratio of initial resource share to the average
demand. In our experiments, we specify the values of 1 CPU
core (3.07 GHz) and 1 GB RAM to be 300 and 200 shares,
respectively. This setting accords with the ratio of CPU price
to memory price in Amazon EC2 clouds [56].

The dynamic resource allocation algorithm is periodically
executed at each node (domain 0). By default, the period (or
window size) is set to 5 seconds for the purposes of fine-grained

TABLE IV: Workloads’ aggregated CPU and memory de-
mands.

App Average Demand Peak Demand
TPC-C <1.4 core, 2.2 GB> <3.2 core, 2.8 GB>

RUBBoS <8.1 core, 4.6 GB> <16.5 core, 8.4 GB>
Kernel-build <1.0 core, 0.6 GB> <1.5 core, 0.8 GB>

Hadoop <11.5 core, 10.3 GB> <12.5 core, 12.6 GB>

0 400 800 1200 1600 2000 2400 2800

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
t(i)

 /
S

(i)

Timeline (s)

 RUBBoS
 TPC-C
 Kernel-build
 Hadoop

Fig. 4: For each workload, the ratio of total resource demand
to total initial share, namely Dt(i)/S(i), varies with time.

resource sharing. We evaluate RRF by comparing the following
alternative approaches:
• T-shirt (static): Workloads are running in VMs with

static resource provision. It is the current resource
model adopted by most IaaS clouds [18].

• WMMF (Weighted Max-Min Fairness):
WMMF [29] is used to allocate CPU and Memory
resources to each VM separately.

• DRF (Dominate Resource Fairness): DRF [16] is
used to allocate multiple resources to each VM.

• IWA (Intra-tenant Weight Adjustment): We con-
duct only weight adjustment for VMs belonging to the
same tenant, without considering inter-tenant resource
trading. This is to assess the individual impact of inter-
tenant resource trading.

• RRF (IRT + IWA): We conduct hierarchical resource
allocation using both inter-tenant resource trading and
intra-tenant weight adjustment.

B. Dynamic Resource Sharing
To understand the resource allocation mechanism of RRF,

we track total resource demands and allocations of those
workloads in 45 minutes. All VMs’ capacity are provisioned
based on their average demands (i.e., α = 1). We use a
scenario where the four workloads are co-located on a single
host to illustrate the dynamic resource sharing. In Figure 4,
the curves represent the ratio of instantaneous resource demand
(i.e., the sum of CPU and memory shares) of each workload to
its average demand (initial resource share). Figure 4 shows that
RUBBOS, TPC-C and Kernel-build have significant dynamic
of resource demand over time, while Hadoop shows relatively
stable resource demand. Particularly, we observe that the total
resource demand exceed the server’s capacity during the period
of 320s–1100s, and thus there is resource contention between
these workloads. In other periods, the server can successfully

0 400 800 1200 1600 2000 2400 2800

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
t' (i)

 /
S

(i)

Timeline (s)

 RUBBoS
 TPC-C
 Kernel-build
 Hadoop

Resoure
contention

Fig. 5: For each workload, the ratio of total resource allocation
to total initial share, namely S

′

t(i)/S(i), varies with time. The
detailed allocations are based on RRF algorithm.

TPC-C RUBBoS Kernel-Build Hadoop
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 R

at
io

 o
f r

ec
ev

ie
d

sh
ar

es
 to

 in
iti

al
 s

ha
re

(
)

 T-shirt (static)
 WMMF
 DRF IWA
 RRF (IRT + IWA)

Fig. 6: Comparison of economic fairness of several resource
allocation schemes.

satisfy the resource demand of each workload.
Figure 5 shows the allocation details for each workloads

over time. In the period of 320s–1100s, we see that RRF
achieves balanced resource allocations for RUBBoS, TPC-C
and Hadoop. To some extent, the allocations imply the degree
of economic fairness. As Kernel-build is over-allocated in this
period, it contributes a small amount of resource to other
workloads. In the other periods, each workload is allocated
with its demand because the aggregated demand is less than
the server’s capacity.

C. Results on Fairness
In general, in a shared computing system with resource

contention, every tenant wants to receive more resource or at
least the same amount of resource than that she buys. We call
it fair if a tenant can achieve this goal (i.e., sharing benefit). In
contrast, it is also possible the total resource a tenant received
is less than that without sharing, which we call unfair (i.e.,
sharing loss). This is because the resource exchanging may
not equivalent, depending on the VM’s local ecosystem. To
evaluate the fairness of RRF, we define the economic fairness
degree β(i) for tenant i in a time window T as follows:

β(i) =
∑T

t=1 S
′
t(i)

T×S(i) ,

It represents the ratio of average resource share received to
the tenant’s initial share in the time window T , or more
exactly speaking, it denotes the ratio of resource value to

TPC-C RUBBoS Kernel-Build Hadoop Geo. mean
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 im
pr

ov
em

en
t T-shirt (static)

 WMMF
 DRF IWA
 RRF (IRT + IWA)

Fig. 7: Comparison of application performance improvement
of several resource allocation schemes.

tenant’s payment. β(i) = 1 implies absolute economic fairness.
β(i) > 1 implies the tenant benefits from resource sharing. In
contrast, β(i) < 1 implies the tenant loses her asset.

Figure 5 has illustrated a kind of fairness on resource
allocation at instantaneous times. In the following, we eval-
uate the economic fairness of different schemes for the four
workloads in a long period of time. All VMs’ capacity are
provisioned based on their average demands (i.e., α = 1).
Figure 6 shows the comparison of economic fairness of
different resource allocation schemes. Each bar shows the
average result of the same workload run by multiple tenants.
Overall, RRF achieves much better economic fairness than
other approaches. Specifically, RRF leads to smaller difference
of β between different applications, indicating 95% economic
fairness (geometric mean) for multi-resource sharing among
multi-tenants.

We make the following observations.
First, the T-shirt (static) model achieves 100% economic

fairness as VMs share nothing with each other. However, it
results in the worst application performance for all workloads,
as shown in Figure 7.

Second, both WMMF and DRF show significant differ-
ences on β for different workloads. As all WMMF-based algo-
rithms always try to satisfy the demand of smallest applications
first, both kernel-build and TPC-C gain more resources than
their initial shares. This effect is more significant for DRF if
the application shows tiny skewness of multi-resource demands
(such as kernel-build). DRF always completely satisfies the
demand of these applications first. Thus, DRF and WMMF
are susceptible to application’s load patterns. Applications
with large skewness of multi-resource demands usually lose
their asset. Even for a single resource type, large deviation of
resource demand also lead to distinct economic unfairness.

Third, workloads with different resource demand patterns
show different behavior in resource sharing. RUBBoS has
a cyclical workload pattern, its resource demand shows the
largest temporal fluctuations. When the load is below its
average demand, it contributes resource to other VMs and
thus loses its asset. However, when it shows large value of
Dt(i)/S(i), its demand always can not be fully satisfied if
there exists resource contention. Thus, RUBBoS has smaller
value of β than other applications. For TPC-C and Kernel-
build, although they show comparable demand deviation and
skewness with RUBBoS, they has much more opportunities
to benefit from RUBBoS because their absolute demands are

much smaller. For Hadoop, although it requires a large amount
of resource, it demonstrates only a slight deviation of resource
demands, and there is few opportunities to contribute resource
to other VMs (except in its reduce stage).

Fourth, inter-tenant weight adjustment (IWA) allows ten-
ants properly distribute some VMs’ spare resource to their
sibling VMs in proportional to their unsatisfied demands.
It guarantees that tenants can effectively utilize their own
resource. Inter-tenant resource trading can further preserve
tenants’ asset as each tenant always tries to maximize the
value of her spare resource. In addition, RRF is immune to
free-riding.

We also studied the impact of different α values. For
space limitation, we omit the figures and briefly discuss the
results. When we decrease the provisioning coefficient α (i.e.,
reduce the resource provision of each application), the β of
all applications approach to one. In contrast, a larger α value
leads to a decrease of β. That means applications preserve
their resource when there exist intensive resource contention,
but lose their asset of resource over-provisioned. Nevertheless,
a larger value of α implies better application performance.

D. Improvement of Application Performance
Figure 7 shows the normalized application performance for

different resource allocation schemes. All schemes provision
resource at applications’ average demand (α = 1). When shar-
ing is not enabled, i.e., T-shirt (static), all applications show
the worst performance, we thus refer the T-shirt model as a
baseline. All applications show performance improvement due
to resource sharing. For RUBBoS, RRF leads to much more
application performance improvement than other schemes. The
reason behind this is that RRF provides two mechanisms
(IRT + IWA) to preserve tenants’ asset, and thus RRF allow
RUBBoS reveive more resource than other schemes, as shown
in Figure 6. For other workloads, RRF is also comparable to
the other resource sharing schemes. In summary, RRF achieves
45% performance improvement for all workloads on average
(geometric mean). DRF achieves the best performance for
Kernel-build and TPC-C, but achieves very bad performance
for RUBBoS. It shows the largest performance differentiation
for different workloads. The reason is that DRF always tends
to satisfy the demand of the application with smallest dominant
share, and thus applications that have resource demand of
small sizes or small skewness always benefit more from
resource sharing. In contrast, Hadoop shows small performance
differentiation between different allocation schemes because of
its rather stable resource demands.

E. VM Density and Tenant Cost
VM density is a very important metric to evaluate cloud re-

source efficiency. Higher VM density usually implies a higher
resource utilization and more revenue for cloud providers. Our
experiments demonstrate that RRF achieves desirable VM den-
sity by fine-grained resource sharing among different tenants.
Figure 8 shows the geometric mean of normalized applications
performance and VM density with varying α values. α = α∗

denotes all VMs are provisioned at its peak demands. We refer
the configuration α∗ as a baseline for comparison. RRF and
other dynamic allocation schemes always show much better
application performance than the T-shirt model due to resource
sharing. In general, the VM density can be improved by α∗/α.
Particularly, when α is equal to one, in comparison with
provisioning resource at peak demand (i.e., α = α∗), RRF

0

1

2

3

4

5

6

*

 VM density Performance(T-shirt)
 Performance(WMMF) Performance(DRF)
 Performance(RRF)

Provisioning coefficient ()

N
or

m
al

iz
ed

 V
M

 d
en

si
ty

0.5 0.8 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 a
pp

lic
at

io
n

pe
rfo

rm
an

ce

Fig. 8: Application performance corresponds to VM density.

-10%
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
 Tenant cost reduction
 Application performance

Te
na

nt
 c

os
t r

ed
uc

tio
n

*

Provisioning coefficient ()
0.5 0.8 1.0 1.5 2.0

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 a
pp

lic
at

io
n

pe
rfo

rm
an

ce

Fig. 9: The tradeoff between tenant cost reduction and appli-
cation performance, compared to T-shirt model.

can significantly improve VM density by a factor of 2.2 at the
expense of around 15% performance penalty. This allows cloud
providers to make the tradeoff between resource efficiency and
quality of service. We conjecture that the cloud provider can
serve more tenants and increase revenue due to higher VM
density.

From the perspective of tenants, resource sharing implies
significant cost saving. Figure 9 shows the tenant cost reduc-
tion and application performance with increasing α values.
Tenant cost is reduced by (1−α/α∗) as tenant only provisions
α/α∗ resource compared to T-shirt model. When α is equal
to one, RRF can reduce up to 55% resource cost, while
the application performance degradation is less than 15%.
This observation can guide tenants to make tradeoff between
application performance and resource cost.

F. Runtime Overhead
We study the runtime overhead caused by dynamic resource

allocations in different window sizes. As RRF is deployed at
each physical node, we demonstrate the results of 10 VMs on a
node coordinated by RRF in decreasing window sizes (Figure
10). RRF causes reasonable CPU load on the host machine
(domain 0) even when the window size is 5 seconds. We also
measure the performance overhead of VMs due to resource
demand prediction in RRF. We can see that the overhead is
negligible relative to the gain from resource sharing.

VII. RELATED WORK
We review the related work in the following two categories.

30 mins 5 mins 1 min 30 secs 5secs

0%

2%

4%

6%

8%

10%
 Host CPU costs
 VMs performance overhead

Resource allocation interval

Pe
rc

en
til

es
 o

f H
os

t C
PU

 c
on

su
m

pt
io

n

0%

2%

4%

6%

8%

10%

VM
s

pe
rfo

rm
an

ce
 o

ve
rh

ea
d

Fig. 10: Performance overhead of RRF varies with the fre-
quency of resource dynamic allocations.

Resource sharing and provisioning. Despite the vast
amount of work on fair resource allocation in clusters or girds,
including Grid5000-OAR [21], Moab/Torque [40], CCS [10]
and Punch [28], we focus on the related work in virtual-
ization environments. Current hypervisors such as VMware
and Xen have provided a number of techniques to facilitate
fine-grained resource multiplexing, such as memory balloon-
ing/hotplugging [33], page-sharing [7], [53], and CPU & I/O
scheduling [12], [22]. There have been a number of studies
focusing on VM resource multiplexing strategies to improve
resource utilization. Virtual-putty [50] exploited affinities and
conflicts between co-located VMs to improve the host resource
utilization. Meng et al. [39] proposed a joint-VM provisioning
strategy to consolidate multiple VMs based on the estimate of
their total resource requirement. v-Bundle [25] offers elastic
exchange of network resource among multiple VMs belonging
to the same tenant. Those studies have not considered the
fairness issues in resource sharing.

Most IaaS clouds follow the T-shirt model [18]. In the T-
shirt model, the challenging problem is resource scaling in an
on-demand manner [3]. A number of experimental studies [19],
[54] have been conducted to study resource and performance
interference on real clouds. CloudScale [47] is a trace-driven
elastic resource scaling system that performs online resource
demand prediction and provides adaptive padding and reac-
tive estimation errors correction to reduce SLA violations.
Furthermore, several other trace-based approaches [8], [42],
[57], [59] are developed for demand prediction and capacity
provisioning. These approaches are complementary to RRF,
and can help tenants to estimate the total amount of purchase.
RRF is also complementary to these techniques for cost saving,
in the sense that it enables fine-grained sharing among VMs
within one tenant and among multiple tenants.

Fairness of resource sharing: Fairness is a major concern
of any shared computer system. (Weighted) max-min fairness
is one of the most widely used fairness mechanisms [29]. Many
data center or cluster schedulers supports max-min fairness
or its extensions, such as Hadoop’s Fair Scheduler [23],
Quincy [27], Mesos [24], and Choosy [17]. Quincy [27]
achieves fairness of scheduling concurrent distributed jobs
by formulating the problem as a min-cost flow problem.
Mesos [24] achieves fair resource sharing by using DRF [16].
Choosy [17] is job scheduler that provides Constrained Max-
Min Fairness, an extension of max-min fairness that supports

hard job placement constraints. Delay scheduling [58] and
fair completion scheduler [55] address fairness of resource
allocation for MapReduce jobs. Our previous work proposed
Long-Term Resource Fairness (LTRF) for the single-type re-
source allocation and developed a long-term job scheduler [51]
for YARN platform [2]. These job schedulers all address
the fairness problems at the level of fixed-size partitions of
nodes, called slots. In contrast, RRF achieves fairness of multi-
resource allocation at fine-grained resource level (i.e. CPU and
memory).

Many studies have considered the fairness of sharing
a single-type resource, such as I/O or network bandwidth.
Pisces [49] is a systemic implementation of max-min fairness
in multi-tenant shared key-value storage system. mclock [22]
supports proportional-share fairness for disk I/O resource
allocation in VMware ESX hypervisor. Seawall [48], Net-
share [44], FairCloud [43], Oktopus [4] and Hadrian [5] all
adopt max-min fairness to achieve statistical multiplexing on
network resource. [46] is perhaps the closest to our work. It
relies on max-min fairness to allocate bulk resource to multiple
VMs belonging to the same tenant. However, it is limited
to a single type of resource and a single tenant. In contrast,
RRF advocates resource trading between multiple tenants and
addresses the fair-sharing problem on multiple resource types.

VIII. CONCLUSION
Efficient and fine-grained resource sharing becomes in-

creasingly important and attractive for new-generation cloud
environments. This paper proposes reciprocal resource fairness
(RRF) to address the economic fairness issues in supporting
fine-grained resource sharing across multiple resource types
in IaaS clouds. RRF embraces two complementary and hier-
archical mechanisms: inter-tenant resource trading and intra-
tenant weight adjustment. RRF achieves a number of desirable
properties for fine-grained resource sharing in cloud envi-
ronments, including sharing incentive, gain-as-you-contribute
fairness and strategy-proofness. We implement RRF on Xen
platform. The preliminary results show that RRF is beneficial
for both cloud providers and tenants. For cloud providers,
RRF improves VM density than current IaaS cloud models
by 2.2X and has almost negligible runtime overhead for
real-time resource sharing. For tenants, RRF delivers better
application performance and 95% economic fairness among
multiple tenants.

ACKNOWLEDGMENT
The authors would like to thank the shepherd, Judy Qiu,

and the anonymous reviewers for their valuable comments.
We acknowledge the support from the Singapore National
Research Foundation under its Environmental & Water Tech-
nologies Strategic Research Programme and administered by
the Environment & Water Industry Programme Office (EWI)
of the PUB, under project 1002-IRIS-09.

REFERENCES
[1] Amazon. http://aws.amazon.com/solutions/case-studies/.
[2] Apache YARN. http://hadoop.apache.org/docs/current2/.
[3] AutoScaling. http://aws.amazon.com/autoscaling.
[4] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards

predictable datacenter networks. In SIGCOMM, 2011.
[5] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and

G. O’Shea. Chatty tenants and the cloud network sharing problem. In
NSDI, 2013.

[6] N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko. Bin packing
in multiple dimensions: inapproximability results and approximation
schemes. Mathematics of Operations Research, 31(1):31–49, 2006.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
SOSP, 2003.

[8] M. N. Bennani and D. A. Menasce. Resource allocation for autonomic
data centers using analytic performance models. In TEEE ICAC, 2005.

[9] A. D. Breslow, A. Tiwari, M. Schulz, L. Carrington, L. Tang, and
J. Mars. Enabling fair pricing on hpc systems with node sharing. In
SC, 2013.

[10] M. Brune, J. Gehring, A. Keller, and A. Reinefeld. Managing clusters of
geographically distributed high-performance computers. Concurrency -
Practice and Experience, 11(15):887–911, 1999.

[11] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic models
for resource management and scheduling in grid computing. Concur-
rency and computation: practice and experience, 14(13-15):1507–1542,
2002.

[12] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison of the three
cpu schedulers in xen. SIGMETRICS Performance Evaluation Review,
35(2):42–51, 2007.

[13] E. Deelman. Grids and clouds: Making workflow applications work
in heterogeneous distributed environments. IJHPCA, 24(3):284–298,
2010.

[14] Docker. https://www.docker.com/.
[15] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg. Towards

model-driven provisioning, deployment, monitoring, and adaptation of
multi-cloud systems.

[16] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: fair allocation of multiple
resource types. In NSDI, 2011.

[17] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Choosy: max-min
fair sharing for datacenter jobs with constraints. In EuroSys, 2013.

[18] D. Gmach, J. Rolia, and L. Cherkasova. Selling t-shirts and time shares
in the cloud. In CCGRID, 2012.

[19] Y. Gong, B. He, and D. Li. Finding constant from change: Revisiting
network performance aware optimizations on iaas clouds. In ACM/IEEE
SC, 2014.

[20] Google. https://cloud.google.com/customers/.
[21] Grid5000. https://www.grid5000.fr/mediawiki/index.php/Advanced OAR.
[22] A. Gulati, A. Merchant, and P. J. Varman. mclock: handling throughput

variability for hypervisor io scheduling. In OSDI, 2010.
[23] Hadoop Fair Scheduler. http://hadoop.apache.org/docs/r1.2.1/

fair scheduler.html/.
[24] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,

R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-grained
resource sharing in the data center. In NSDI, 2011.

[25] L. Hu, K. D. Ryu, D. Da Silva, and K. Schwan. v-bundle: Flexible
group resource offerings in clouds. In ICDCS, 2012.

[26] C. Iancu, S. Hofmeyr, F. Blagojevic, and Y. Zheng. Oversubscription
on multicore processors. In IPDPS, 2010.

[27] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg. Quincy: fair scheduling for distributed computing clusters. In
SOSP, 2009.

[28] N. H. Kapadia and J. A. Fortes. Punch: An architecture for web-enabled
wide-area network-computing. Cluster Computing, 2(2):153–164, 1999.

[29] S. Keshav. An engineering approach to computer networking: ATM
networks, the Internet, and the telephone network. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[30] C. Lee, P. Wang, and D. Niyato. A real-time group auction system for
efficient allocation of cloud internet applications. IEEE Transactions
on Services Computing, PP(99):1–30, 2013.

[31] J. Lee Rodgers and W. A. Nicewander. Thirteen ways to look at the
correlation coefficient. The American Statistician, 42(1):59–66, 1988.

[32] H. Liu and B. He. Reciprocal resource fairness: Towards co-
operative multiple-resource fair sharing in iaas clouds. Technical
Report 2014-TR-106, Nanyang Technological University, Singapore,
http://pdcc.ntu.edu.sg/xtra/tr/2014-TR-106-RRF.pdf, 2014.

[33] H. Liu, H. Jin, X. Liao, W. Deng, B. He, and C.-z. Xu. Hotplug
or ballooning: A comparative study on dynamic memory management
techniques for virtual machines. IEEE Transactions on Parallel and
Distributed Systems, PP(99):1–14, 2014.

[34] LXC. https://linuxcontainers.org/.
[35] M. Malawski, K. Figiela, and J. Nabrzyski. Cost minimization for

computational applications on hybrid cloud infrastructures. Future
Generation Computer Systems, 29(7):1786–1794, 2013.

[36] M. Mao and M. Humphrey. A performance study on the vm startup
time in the cloud. In IEEE 5th International Conference on Cloud
Computing (CLOUD), 2012.

[37] P. Marshall, K. Keahey, and T. Freeman. Improving utilization of
infrastructure clouds. In CCGrid, 2011.

[38] M. Maurer, I. Brandic, and R. Sakellariou. Self-adaptive and resource-
efficient sla enactment for cloud computing infrastructures. In IEEE
5th International Conference on Cloud Computing (CLOUD), 2012.

[39] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis.
Efficient resource provisioning in compute clouds via vm multiplexing.
In ICAC, 2010.

[40] Moab/Torque. http://www.adaptivecomputing.com/products/opensource
/torque/.

[41] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. Agile: elastic
distributed resource scaling for infrastructure-as-a-service. In USENIX
ICAC, 2013.

[42] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple virtualized
resources. In EuroSys, 2009.

[43] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica. Faircloud: sharing the network in cloud computing. In
SIGCOMM, 2012.

[44] S. Radhakrishnan, R. Pan, A. Vahdat, G. Varghese, et al. Netshare and
stochastic netshare: predictable bandwidth allocation for data centers.
ACM SIGCOMM Computer Communication Review, 42(3):5–11, 2012.

[45] RUBBOS. http://jmob.ow2.org/rubbos.html.
[46] G. Shanmuganathan, A. Gulati, and P. Varman. Defragmenting the

cloud using demand-based resource allocation. In SIGMETRICS, 2013.
[47] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elastic resource

scaling for multi-tenant cloud systems. In SoCC, 2011.
[48] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing the

data center network. In NSDI, 2011.
[49] D. Shue, M. J. Freedman, and A. Shaikh. Performance isolation and

fairness for multi-tenant cloud storage. In OSDI, 2012.
[50] J. Sonnek and A. Chandra. Virtual putty: Reshaping the physical

footprint of virtual machines. In HotCloud, 2009.
[51] S. Tang, B.-s. Lee, B. He, and H. Liu. Long-term resource fairness:

towards economic fairness on pay-as-you-use computing systems. In
ICS, 2014.

[52] TPC-C. http://www.tpc.org/tpcc.
[53] C. A. Waldspurger. Memory resource management in vmware esx

server. In OSDI, 2002.
[54] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou. Distributed

systems meet economics: pricing in the cloud. In HotCloud, 2010.
[55] Y. Wang, J. Tan, W. Yu, L. Zhang, X. Meng, and X. Li. Preemptive

reducetask scheduling for fair and fast job completion. In ICAC, 2013.
[56] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon. Overdriver:

handling memory overload in an oversubscribed cloud. In VEE, 2011.
[57] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy. Profiling and

modeling resource usage of virtualized applications. In Middleware,
2008.

[58] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In EuroSys, 2010.

[59] Q. Zhang, L. Cherkasova, G. Mathews, W. Greene, and E. Smirni. R-
capriccio: A capacity planning and anomaly detection tool for enterprise
services with live workloads. In Middleware, 2007.

[60] A. Zhou and B. He. Transformation-based monetary costoptimizations
for workflows in the cloud. IEEE Transactions on Cloud Computing,
2(1):85–98, Jan 2014.

