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Abstract. Subgraph matching is the task of finding all matches of a
query graph in a large data graph, which is known as an NP-complete
problem. Many algorithms are proposed to solve this problem using
CPUs. In recent years, Graphics Processing Units (GPUs) have been
adopted to accelerate fundamental graph operations such as breadth-
first search and shortest path, owing to their parallelism and high data
throughput. The existing subgraph matching algorithms, however, face
challenges in mapping backtracking problems to the GPU architectures.
Moreover, the previous GPU-based graph algorithms are not designed to
handle intermediate and final outputs. In this paper, we present a simple
and GPU-friendly method for subgraph matching, called GpSM, which is
designed for massively parallel architectures. We show that GpSM out-
performs the state-of-the-art algorithms and efficiently answers subgraph
queries on large graphs.

1 Introduction

Big networks from social media, bioinformatics and the World Wide Web can be
essentially represented as graphs. As a consequence, common graph operations
such as breadth-first search and subgraph matching face the challenging issues
of scalability and efficiency, which have attracted increasing attention in recent
years. In this paper, we focus on subgraph matching, the task of finding all
matches or embeddings of a query graph in a large data graph. This problem
has enjoyed widespread popularity in a variety of real-world applications, e.g.,
semantic querying [1,2], program analysis [3], and chemical compound search [4].
In such applications, subgraph matching is usually a bottleneck for the overall
performance because it involves subgraph isomorphism which is known as an
NP-complete problem [5].

Existing algorithms for subgraph matching are generally based on the filtering-
and-verification framework [3,6-12]. First, they filter out all candidate vertices
which cannot contribute to the final solutions. Then the verification phase follows,
in which backtracking-based algorithms are applied to find results in an incremen-
tal fashion. Those algorithms, however, are designed to work only in small-graph
settings. The number of candidates grows significantly high in medium-to-large-
scale graphs, resulting in an exorbitant number of costly verification operations.
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Several indexing techniques have also been proposed for faster computation [3,9];
however, the enormous index size makes them impractical for large data graphs
[14]. Distributed computing methods [13,14] have been introduced to deal with
large graphs by utilizing parallelism, yet there remains the open problem of high
communication costs between the participating machines.

Recently, GPUs with massively parallel processing architectures have been
successfully leveraged for fundamental graph operations on large graphs, includ-
ing breadth-first search [15,16], shortest path [15,17] and minimum spanning tree
[18]. Traditional backtracking approaches for subgraph matching, however, can-
not efficiently be adapted to GPUs due to two problems. First, GPU operations are
based on warps (which are groups of threads to be executed in single-instruction-
multiple-data fashion), and different execution paths generated by backtracking
algorithms may cause a so-called warp divergence problem. Second, GPU imple-
mentations for coalesced memory accesses are no longer straightforward due to
irregular access patterns [19].

To address these issues, we propose an efficient and scalable method called
GpSM. GpSM runs on GPUs and takes on edges as the basic unit. Unlike
previous backtracking-based algorithms, GpSM joins candidate edges in parallel
to form partial solutions during the verification phase, and this procedure is
conducted repeatedly until the final solution is obtained. An issue raised by
such parallel algorithms is the considerable amount of intermediate results for
joining operations, while backtracking algorithms only need to store less of such
data during execution. We resolve this issue by adopting the pruning technique
of [20], further enhancing it by ignoring low-connectivity vertices which have
little or no effect of decreasing intermediate results during filtering.

To highlight the efficiency of our solution, we perform an extensive evaluation
of GpSM against state-of-the-art subgraph matching algorithms. Experiment
results on both real and synthetic data show that our solution outperforms the
existing methods on large graphs.

The rest of the paper is structured as follows. Section 2 gives formal def-
initions and related works. In section 3, we introduce the filtering-and-joining
approach to solve the problem. The filtering and joining phases are discussed in
Section 4 and 5. Section 6 extends our method to deal with large graphs. Exper-
iment results are shown in Section 7. Finally, Section 8 concludes our paper.

2 Preliminaries

2.1 Subgraph Matching Problem

We give a formal problem statement using undirected labeled graphs, though our
method can be applied to directed labeled graphs as shown in the Experiment
Results section.

Definition 1. A labeled graph is a 4-tuple G = (V, E, L,l), where V is the
set of vertices, E C V x V 1is the set of edges, L is the set of labels and [ is a
labeling function that maps each vertex to a label in L.
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Definition 2. A graph G = (V, E, L,l) is subgraph isomorphic to another
graph G' = (V' E' | L' l"), denoted as G C G, if there is an injective function (or
a match) f:V — V', such that V(u,v) € E, (f(u), f(v)) € E', l(u) =U'(f(u)),
and l(v) =U'(f(v)).

uq U, Us
oI
A—9—9
Uy Us Ug
(a) Query graph Q (b) Data graph G

Fig. 1. Sample query and data graph

Subgraph Matching Problem is defined as follows: Given a large data graph
G and a query graph @, we find all matches of @) in G. For example, the subgraph
matching solution of the query graph @ in the data graph G in Figure 1 is
{(ulv Ul)’ (u2’ ’Ug), (Ug, 1}3), (U4, UG)? (u57 ’07)’ (uﬁa US)}'

Definition 3. Given a query graph Q = (V,E,L,l) and a data graph G =
(V',E',L',l"), a vertex v € V' is called a candidate of a vertex u € V if
l(u) =1 (v), degree(u) < degree(v) where degree(u), degree(v) are the number
of wvertices connected to edges starting vertex u and v respectively. The set of
candidates of u is called candidate set of u, denoted as C(u).

The query vertex ug in Figure la has a label of B and a degree of 3. For the
data graph vertex vs in Figure 1b, the label is also B and the degree is 3 which
is equal to the degree of uz. Therefore, v3 is a candidate of uz. The candidate
set of uz is C(ug) = {vs, va}.

An adjacency list of a vertex u in a graph G is a set of vertices which are
the destinations of edges starting from u, denoted as adj(u). For example, the
adjacency list of ug is adj(ug) = {ug, u4, us}.

2.2 Subgraph Matching Algorithms

Most of state-of-the-art subgraph matching algorithms are based on backtracking
strategies which find matches by either forming partial solutions incrementally
or pruning them if they cannot produce the final results, as discussed in the
works of Ullman [6,10], VF2 [7], QuickSI [8], GADDI [9], GraphQL [1] and
SPath [3]. One of open issues in those methods is the selection of matching order
(or visit order). To address this issue, TurboISO [11] introduces the strategies
of candidate region exploration and combine-and-permute to compute a ‘good’
visit order, which makes the matching process efficient and robust.

To deal with large graphs, Sun et al. [14] introduce a parallel and distributed
algorithm (which we call STW in this paper), in which they decompose the query
graphs into 2-level trees, and apply graph exploration and join strategy to obtain
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solutions in a parallel manner over a distributed memory cloud. Unlike STW,
our method uses GPUs in order to keep the advantages of parallelism during
computation, while simultaneously avoiding high communication costs between
participating machines.

2.3 General-Purpose Computing on GPUs

GPUs are widely used as commodity components in modern-day machines.
A GPU consists of many individual multiprocessors (or SMs), each of which
executes in parallel with the others. During runtime, threads on each multi-
processor are organized into thread blocks, and each block consists of multiple
32-thread groups, called warps. If threads within a warp are set to execute dif-
ferent instructions, they are called diverged; computations in diverged threads
are only partially parallel, thus reducing the overall performance significantly.
The GPU includes a large amount of device memory with high bandwidth and
high access latency, called global memory. In addition, there is a small amount of
shared memory on each multiprocessor, which is essentially a low latency, high
bandwidth memory running at register speeds.

Due to such massive amounts of parallelism, GPUs have been adopted to
accelerate data and graph processing [15,16,23,27]. Harish et al. [15] implement
several common graph algorithms on GPUs including BFS, single source short-
est path and all-pair shortest path. Hong et al. [23] enhance BFS by proposing a
virtual warp-centric method to address the irregularity of BFS workload. Merrill
et al. [16] propose a BFS algorithm which is based on fine-grained task man-
agement and built upon an efficient prefix sum; this work has generally been
considered as one of the most complete and advanced works regarding BFS
traversal on GPUs. Finally, Medusa is a general programming framework for
graph processing in GPU settings [25], providing a rich set of APIs based on
which developers can further build their applications.

3 GpSM Overview

We introduce a GPU-based algorithm called GpSM to solve the problem of
subgraph matching. Unlike previous CPU methods with complicated pruning
and processing techniques, our algorithm is simple and designed for massively
parallel architectures.

3.1 Filtering-and-Joining Approach

We find that STW method [14] simultaneously filters out candidate vertices and
matches of basic units (i.e. 2-level trees), and thus generates a large amount
of irrelevant candidate vertices and edges. Our method performs the two tasks
separately in order to reduce intermediate results. The main routine of the GPU-
based algorithm is illustrated in Algorithm 1.
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The inputs of GpSM are a connected query graph ¢ and a data graph g. The
vertex sets and edge sets of ¢ and g are V,, B, and V;, F, respectively. The
output is a set of subgraph isomorphisms (or matches) of ¢ in g. In our method,
we present a match as a list of pairs of a query vertex and its mapped data
vertex. Our solution is the collection M of such lists.

Algorithm 1. GpSM(q,g)
Input: query graph q, data graph g
Output: all matches of qin g

1 C:= InitializeCandidateVertices(q,g);
2 C := RefineCandidateVertices(q,g,C);

3 E := FindCandidateEdges(q,g,C);

4 M := JoinCandidateEdges(q,g,E);

5 return M

Our method uses a filtering-and-joining strategy. The filtering phase con-
sists of two tasks. The first task filters out candidate vertices which cannot be
matched to query vertices (Line 1). After this task there can still be a large set
of irrelevant candidate vertices which cannot contribute to subgraph matching
solutions. The second task continues pruning this collection by calling a refining
function, RefineCandidateVertices. In the function, candidate sets of query ver-
tices are recursively refined either until no more candidates can be pruned, or
up to a predefined number of times (Line 2). The details of the filtering phase
will be discussed in Section 4. In the joining phase, GpSM collects candidate
edges based on the candidate vertices obtained in the previous phase (Line 3)
and combines them to produce the final subgraph matching solutions (Line 4)
which are finally returned to users. Section 5 gives the detailed implementation
of the joining phase.

3.2 Graph Representation

In order to support graph query answering on GPUs, we use three arrays to
represent a graph G = (V, E): vertices array, edges array, and labels array. The
edges array stores the adjacency lists of all vertices in V, from the first vertex
to the last one. The vertices array stores the start indexes of the adjacency lists,
where the i-th element of the vertices array has the start index of the adjacency
list of the i-th vertex in V. The labels array maintains labels of vertices in order
to support our method on labelled graphs. The first two arrays have been used
in previous GPU-based algorithms [15,16,23]. Figure 2 shows the representation
of the graph illustrated in Figure la in the GPU memory.

The advantage of the data structure is that vertices in the adjacency list
of a vertex are stored next to each other in the GPU memory. During GPU
execution, consecutive threads can access consecutive elements in the memory.
Therefore, we can avoid the random access problem and decrease the accessing
time for GPU-based methods consequently.
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Fig. 2. Graph Representation in GPU Memory

4 Filtering Phase

This section describes the implementation of the filtering phase on GPUs. The
purpose of this phase is to reduce the number of candidate vertices and thus
decrease the amount of candidate edges as well as the running time of the joining
phase. The filtering phase consists of two tasks: initializing candidate vertices
and refining candidate vertices.

4.1 Initializing Candidate Vertices

The first step of the filtering phase is to initialize candidate sets of all query
vertices. In the task, we take a spanning tree generated from the query graph
as the input. This section presents a heuristic approach to selecting a good
spanning tree among many spanning trees of the query graph. The approach is
based on the observation that if the filtering starts from the query vertices with
the smallest number of candidates, its intermediate results can be kept to the
minimum. Since we do not know the number of candidates in the beginning, we

estimate it by using a vertex ranking function f(u) = #ﬁbel) [11,14], where

deg(u) is the degree of u and freq(u.label) is the number of data vertices having
the same label as w.

We find a spanning tree T and a visit order O for a query graph as follows:
Initially, we pick a query edge (u,v) such that f(u) > f(v) and f(u) + f(v) is
the maximum among all query edges. We add u to the visit order O, and add
the edges connected to u to the spanning tree T', except those whose endpoints
are already in the vertices set of T', i.e. V(T'). The process continues to pick up
another query edge connected to 7" and add to O and T until no edge remains.
Figure 5a depicts the spanning tree of the Figure la graph. Also, the visit order
is us, Uso.

Algorithm 2 outlines the task of finding candidate vertices of each query
vertex from the data graph, following the visit order obtained earlier. For each
query vertex u, GpSM first checks if each of data vertex is a candidate of u
and keeps the candidacy information in the Boolean array c_set[u] in parallel
(kernel_check'; Line 7) in the case that its candidate set is not initialized (Line

! Note that all functions whose names start with kernel are device functions that run
on GPUs.
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6). It then creates an integer array (c_array) that collects the indexes of can-
didates of u from c_set[u] (kernel_collect; Line 9). GpSM calls another device
function (kernel_explore; Line 10) that prunes out all candidate vertices u’ of u
such that there is a vertex v € adj(u) which has no candidate vertex in adj(u’)
(Lines 16-18), and explores the adjacency list of u in the spanning tree in order
to filter the candidates of the vertices in adj(u) (Lines 19-22). Thus, the final
outputs are Boolean arrays c_set, which represent the filtered candidate sets of
query vertices.

Algorithm 2. Initializing candidate vertices

Input: spanning tree 7', data graph g
Output: candidate sets of vertices c_set

1 Algorithm InitializeCandidateVertices(7, g)

2 foreach vertex u € T do

3 c_setlu][v] := false; Vv € Vj

4 | dnitialized[u] := false;

5 foreach u € T in the visit order do

6 if initialized[u] = false then

7 kernel_check(c_set/u], g);

8 initialized[u] := true;

9 c.array = kernel_collect (u, c_setfu]);
10 kernel _explore(u, c_array, c_set, T, g);
11 foreach v € adj(u) do
12 L initialized[v] := true;

13 return c_set;

14 Procedure kernel_explore(u, c_array, c-set, T, g)

15 v’ = GetCandidate (c_array, warp_id);

16 if exist v € adj(u) such that no v' € adj(u') is a candidate of v then
17 c_setlu][u'] := false;

18 return;

19 foreach v € adj(u) do

20 v’ := GetAdjacentVertex (u',thread_id);
21 if v’ is a candidate of v then
22 L c_set[v][v'] := true;

GPU Implementation: We implement the two GPU device functions ker-
nel_collect and kernel_explore in the first step of the filtering phase, based on
two optimization techniques: occupancy mazimization to hide memory access
latency and warp-based execution to take advantage of the coalesced access and
to deal with workload imbalance between threads within a warp. We skip details
of the device function kernel_check since its implementation is straightforward.

1) kernel_collect. This function is to maximize the occupancy of the ker-
nel_explore execution. At runtime, warps currently running in an SM are called
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active warps. Due to the resource constraints, each SM allows a maximum num-
ber of active warps running concurrently at a time. Occupancy is the number of
concurrently running warps divided by the maximum number of active warps.
At runtime, when a warp stalls on a memory access operation, the SM switches
to another active warp for arithmetic operations. Therefore, high-occupancy SM
is able to adequately hide access latency.

| Vi | V3 |V3 I " | Vs | Vg I V7 I Vg I Vg | Vertex set of the data graph G

| 1 I 0 I 1 | 1 | 0 | 0 I 0 I 0 | 0 | Set a ‘1’ if v; is a candidate of u;

[o|1]1]2]3[3]3]3]3]Prefixscan

V1|Vz|V3|V4|V5|V5|V7|V8|V9| . .
| Scatter candidate vertices to

output, using scan results as

scatter address

Fig. 3. Collect candidate vertices of u1

A naive approach to executing kernel_explore is that only the warps cor-
responding to the true elements of c_set[u] continue filtering vertices in adj(u).
However, the approach suffers from the low-occupancy problem since warps with
the false elements are idle. For example, we assume that the maximum num-
ber of active warps on the multiprocessor is 3. In the first 3 active warps, the
occupancy is 66.66% because only the warps corresponding to v; and v3 execute
kernel_explore while the warp with vs is idle. For the next 3 concurrently run-
ning warps, the occupancy is only 33.33%. GpSM resolves the issue by adopting
a stream compaction algorithm [26] to gather candidate vertices into an array
c_array for those c_set[u] with true values. The algorithm employs prefix scan
to calculate the output addresses and to support writing the results in parallel.
The example of collecting candidate vertices of w is depicted in Figure 3. By
taking advantage of c_array, all 3 active warps are used to explore the adjacency
lists of vy, v3 and vy4. As a result, our method achieves a high occupancy.

2) kernel_explore. Inspired by the warp-based methods used in BFS algo-
rithms for GPUs [16,23], we assign to each warp a candidate vertex v’ € C'(u)
(or c_array from kernel_collect). Within the warp, consecutive threads find the
candidates of v € adj(u) in adj(u’). This method takes advantage of coalesced
access since the vertices of adj(u’) are stored next to each other in memory. It also
addresses the warp divergence problem since threads within the warp execute
similar operations. Thus, our method efficiently deals with the workload imbal-
ance problem between threads in a warp. Figure 4 shows an example of filtering
candidate vertices of us based on the candidate set of uy, C(u1) = {v1, vs,v4}.

If a data vertex has an exceptionally large degree compared to the others,
GpSM deals with it by using an entire block instead of a warp. This solution
reduces the workload imbalance between warps within the block.
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Warp 1 Warp 2 Warp 3

v v ]

Input: candidate vertices
v; of uy

T1 T2 T3 T1 T2 T3

Filter candidate vertices
of u, in adjacency list of v;

vy v v v v v
V2|V6|V7| V5|V7|V3|

Coalesced accesses

Fig. 4. Filter candidate vertices of us based on adjacency lists of C'(u1) = {v1,vs,va}

4.2 Refining Candidate Vertices

After filtering out candidate vertices for the first time, there can be still a large
number of candidate vertices which cannot be parts of final solutions. To address
this issue, we propose a recursive filtering strategy to further prune irrelevant
candidate vertices. The size of candidate edges and intermediate results are then
reduced consequently.

We observe the followings: 1) Exploring non-tree edges (i.e. those that form
cycles) can reduce the number of irrelevant candidates significantly; and 2) the
more edges a vertex has, the more irrelevant candidates of the vertex the filtering
techniques aforementioned can filter out. Based on the first observation, from
the second round of the filtering process, our method uses the original query
graph for exploration rather than a spanning tree of the query graph. Based on
the second observation, our method ignores query vertices connected to small
number of edges, called low connectivity vertices. For small-size query graphs,
a low connectivity vertex has the degree of 1. As for big query graphs, we can
increase the value of degree threshold to ignore more low connectivity vertices.
The query graph obtained after removing low connectivity vertices from @ is
shown in Figure 5b.

u; Us

Uy U; [VEY
Uy Usg Ug

(a) Spanning tree (b) Simplified graph

Uy Us

Fig. 5. Spanning tree and simplified graph of Q

GPU implementation: The main routine of the refining task is similar to the
filtering in the previous section. The differences are as follows: 1) kernel_check is
not necessary for the refining process and 2) we only use the pruning task (Lines
16-18) in the kernel_explore function. By taking advantage of the c_set array
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generated in the initialization step, the refinement can verify the candidate con-
ditions easily and reduce the random accesses during the candidate verification.

Ideally, the optimal candidate sets of query vertices are obtained when the
refinement is recursively invoked until no candidate is removed from the candi-
date sets. However, our experiments show that most of irrelevant candidates are
pruned in the first few rounds. The later rounds do not prune out many can-
didates, but lead to inefficiency and reduce the overall performance. Therefore,
the refining task terminates after a limited number of rounds.

In the tasks of initializing and refining candidate sets of query vertices, GpSM
requires O(|Vg| x |V,]|) space to maintain Boolean arrays which are used to collect
candidate vertices and O(|Vy]) space to keep the collected set. Let S be the
number of SMs. Each SM has P active threads. For each visited vertex, the
prefix scan in kernel_collect executes in O(|V,| x log(|Vy|)/(S x P)) time while
kernel_explore runs in O(|Vy| x |dg4|/(S x P)), where dg is the average degree
of the data graph. Assume that the candidate refinement stops after k£ rounds,
the total time complexity of the filtering phase is O(|Vg| x k x (|Vg| x log(|Vy|) +
[Vl 1dg )/ (S x P)).

5 Joining Phase

In the joining phrase, GpSM first gathers candidate edges in the data graph and
then combines them into subgraph matching solutions.

The output of each query edge (u,v) in the task of gathering candidate edges
is represented as a hash table, as depicted in Figure 6. The keys of this table are
candidate vertices u’ of u, and the value of a key u’ is the address of the first
element of the collection of candidate vertices v" of v such that (uv/,v") € E,.
An issue of the step is that the number of the candidate edges is unknown, and
thus that we cannot directly generate such a hash table. To address this issue,
we employ the two-step output scheme [22] as follows: 1) Given a query edge
(u,v), each warp is assigned to process a candidate vertex u’ of v and counts the
number of candidate edges starting with «’ (designated as (u’,v")). The system
then computes the address of the first v for u’ in the hash table of (u,v). 2)
It then re-examines the candidate edges and writes them to the corresponding
addresses of the hash table.

0

1
3LV5

Vs

A\ 4

V2

A 4

V)

Fig. 6. Candidate edges of (u1,uz)

After finding the candidate edges, GpSM combines them to produce subgraph
matching solutions as follows: Initially, we pick a query edge (u,v) with the
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smallest number of candidate edges, and mark as visited the vertices u, v and the
edge (u,v). Here the candidates of (u, v) are partial subgraph matching solutions.
We select the next edge among the unvisited edges of the query graph, denoted
by (u’,v’), such that 1) both v’ and v’ are visited vertices, or 2) if there is no
such edge, either u’ or v’ is a visited vertex. If there are multiple such edges,
we select the one with the smallest number of candidates. Candidate edges of
(u',v") are then combined with the partial solutions. The procedure is conducted
repeatedly until all query edges are visited.

GPU Implementation: The GPU implementation for the task of gathering
candidate edges is similar to that of the filtering phase, except introducing the
two-step output scheme. For the task of combining partial subgraph matching
solutions, we apply the warp-based approach as follows: Each warp 4 is responsi-
ble for combining a partial solution M;(q) with candidate edges of (u,v), where u
is already visited. First, the warp retrieves the candidate vertex of u from M;(q)
(e.g., u'). It looks up the hash table storing candidate edges of (u,v) to find the
key u’ and retrieve the candidate vertices v’ of v from the hash table. By using
our data structure of candidate edges, this task can be done in logarithmic time.
Threads within the warp then verify whether (u/,v") can be merged to M;(q),
in which GpSM again follows the two-step output scheme to write the merged
results.

Shared Memory Utilization. The threads within the warp i should share the
partial solution M;(q) and access them frequently. We thus store and maintain
M;(q) in the shared memory instead of the device memory, which efficiently
hides the memory stalls.

Let C(e;) be the candidate edges of the edge e;. The joining phase is done

in O(H‘i“l‘ |C(es)| x log(]V4])/(S x P) time. Note that the running time of the
joining phase highly depends on the number of candidates of query edges. There-
fore, reducing the number of candidate vertices in the filtering phase plays an
important role in decreasing both the running time and the memory used to
maintain partial solutions.

6 Extended GpSM for Very Large Graphs

In real-world applications, the sizes of data graphs might be too large to be stored in
the memory of a single GPU device. In general, such large graphs have many labels,
and thus the vertices corresponding to the labels of a given query graph, together
with their adjacency lists, are relatively small. Based on the observation, we make
an assumption that the relevant data of query graph labels are small enough to
fit into the GPU memory. Therefore, we can make GpSM work efficiently on large
graphs by storing them with the inverted-vertez-label index data structure in CPU
memory or hard disk and, given a query graph, by retrieving only relevant vertices
and their adjacency lists to the GPU memory.

For each label [ in the data graph G, we use three array structures. The first
array contains all vertices that have the label of [ (designated as V;.) The other
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CPU
[ Data | Index Inverted Label‘
| Graph Graph \ Index \
[ Query | { (
Graph | Results |
- A
v GPU
Gpsm ||
| vy | Vs | Vg | vy | Vs | vy | A | Execution
(a) Index of label B (b) System overview

Fig. 7. GpSM Solution on large graphs

two arrays are the vertices and edges arrays corresponding to V;, as defined in
Section 3.2. An entry of the inverted-vertex-label index for label B of the data
graph in Figure 1b is depicted in Figure 7a.

Figure 7b provides a system overview of our solution for large-graph subgraph
matching using both GPUs and CPUs. Here rectangles indicate tasks while the
others represent data structures used in our solution. The first task is to create
an inverted-vertex-label index which is then stored in the hard disk. In order to
decrease the time to transfer data from the hard disk, we keep the most frequent
vertex labels in the main memory. Given a query graph, our solution retrieves
all the data associated with the query labels from the main memory or hard disk
and transfers them to the GPU memory to further search for subgraph matching
solutions, which are finally returned to the main memory.

7 Experiment Results

We evaluate the performance of GpSM in comparison with state-of-the-art sub-
graph matching algorithms, including VF2 [7], QuickSI (in short, QSI) [§],
GraphQL (in short, GQL) [1] and TuroboISO [11]. The implementations of VF2,
QuickSI and GraphQL used in our experiments are published by Lee and col-
leages [21]. As for TurboISO, we use an executable version provided by the
authors.

Datasets. The experiments are conducted on both real and synthetic datasets. The
real-world data include the Enron email communication network and the Gowalla
location-based social network?. On the other hand, the synthetic datasets are gen-
erated by RMAT generator [24], and vertices are labeled randomly. As for query
graphs, given the number of vertices IV and the average number of edges per vertex
D (called degree), we generate connected labeled query graphs of size N, randomly
connecting the vertices and making their average degree D. Except for experiments
with varying degrees, the query graphs always have the degree of 2.

Environment. The runtime of the CPU-based algorithms is measured using
an Intel Core i7-870 2.93 GHz CPU with 8GB of memory. Our GPU algorithms

2 These datasets can be downloaded from Stanford Dataset Collection website. See
https://snap.stanford.edu/data for more details.
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are tested using CUDA Toolkit 6.0 running on the NVIDIA Tesla C2050 GPU
with 3 GB global memory and 48 KB shared memory per Stream Multiprocessor.
For each of those tests, we execute 100 different queries and record the average
elapsed time. In all experiments, algorithms terminate only when all subgraph
matching solutions are found.

7.1 Comparison with State-of-the-art CPU Algorithms

The first set of experiments is to evaluate the performance of GpSM compared
to the state-of-that-art algorithms. These comparisons are performed on both
synthetic and real datasets. The input graphs are undirected graphs because the
released version of TurboISO only works with undirected graphs.

Synthetic Datasets. The size of the synthetic data graphs of the first experi-
ment set varies from 10,000 vertices to 100,000 vertices. All the data graphs have
10 distinct labels and the average degree of 16, and can fit into GPU memory.
The query graphs contain 6 vertices and 12 edges. Figure 8 shows that GpSM
clearly outperforms VF2, QuickSI and GraphQL. Compared to TurboISO, our
GPU-based algorithm runs slightly slower when the size of the data graphs is
relatively small (i.e. 10,000 vertices). However, when the size of data graphs
increases, GpSM is more efficient than TurboISO. We thus make further com-
parisons with TurboISO in more experiment settings.

——QSI
——VF2
——GQL
—%—TurbolSO
0 L L L Il L L —*—GPSM
10 20 30 40 50 60 70 80 90 100
Number of Data Vertices (x1000)

Average elapsed time (msec.)

Fig. 8. Varying data sizes

Real Datasets. As for real-world datasets, Gowalla network consists of 196,591
vertices and 950,327 edges while Enron network has 36,692 vertices and 183,831
edges. In these experiments, we use 20 labels for Gowalla nerwork and 10 labels
for Enron network. The number of query vertices varies from 6 to 13.

Figure 9a shows that TurbolSO anwsers the subgraph matching queries
against the Gowalla network efficiently when the size of query graphs is small.
As the number of vertices increases, however, the processing time of TurboISO
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Fig. 9. Experiment on real datasets

grows exponentially. In contrast, GpSM shows almost linear growth. The two
methods show similar performance difference when evaluated against the Enron
network, as plotted in Figure 9b.
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Fig. 10. Comparison with TurboISO

Comparison with TurboISO. We also compare the performance of GpSM
with TurbolSO, varying the size of query graphs and the degree of the data
graphs, as shown in Figure 10. The data graphs are synthetic undirected graphs
with 100,000 vertices and 10 labels.

Figure 10a shows the performance results of GpSM and TurboISO on the
query graphs whose numbers of vertices vary from 6 to 14. In the experiment,
the degree of the data graph is 16. Figure 10b shows their performance results
when the vertex degree increases from 8 to 24, where the query graph size is
fixed to 10. As shown in the two figures, the performance of TurboISO drops
significantly while that of GpSM does not. This may be due to the fact that the
number of recursive calls of TurbolSO grows exponentially with respect to the
size of query graphs and the degree of the data graph. In contrast, GpSM takes
advantage of the large number of threads in GPUs to handle candidate edges in
parallel and thus keep the processing time rising slowly.
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7.2 Scalability Tests

We test the extended GpSM against very large graphs. The data graphs are
directed graphs which are generated using the RMAT generator. The number of
data vertices varies from 1 million to 2 billion vertices while the number of labels
varies from 100 to 2000 according to the vertex number. The average degree of
the data vertices is 8. The data graph is stored as follows: When the data graph
is small, i.e from 1 million to 25 million vertices, we store it in the GPU global
memory. If the vertex number of the data graph is between 25 million and 100
million, CPU memory is used to maintain the data graph. For data graphs with
200 million vertices and above, we store them in both CPU memory and hard
disk. The largest number of vertices per label of the 25-million-vertex graph is
around 350,000 while that of the 2-billion-vertex graph is nearly 1,400,000. The
query graphs used in the experiments consist of 10 vertices and 20 edges.

When the data graph size is 25 million vertices, we perform two experiments.
The first one maintains the whole data graph in GPU memory and the second
uses CPU memory. As shown in Figure 1la, the second experiment answers
subgraph matching queries slower than the first one, due to the time for data
transfer from CPU memory to GPU memory.
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Fig. 11. Scalability Tests

The details of the running time are shown in Figure 11b, from which we
observe the followings: 1) The time taken for GPU execution (i.e. subgraph
matching) grows linearly as the data graph size increases, as expected from
our time complexity analysis in Sections 4 and 5. 2) The GPU execution time
takes around 11~20% of the total running time, while the rest is taken by data
transfers between GPU and CPU or hard disk. 3) The data transfer time also
grows almost linearly as the data graph size increases, though the transfer from
hard disk adds additional running time.

8 Conclusions

In this paper, we introduce an efficient method which takes advantage of GPU
parallelism to deal with large-scale subgraph matching problem. Our method
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called GpSM is simple and designed for massively parallel processing. GpSM is
based on filtering-and-joining approaches, efficient GPU techniques of coales-
cence, warp-based and shared memory utilization, and a recursive refinement
function for pruning irrelevant candidate vertices. Experiment results show that
our method outperforms previous backtracking-based algorithms on CPUs and
can efficiently answer subgraph matching queries on large graphs. In future, we
will further improve the efficiency of GpSM for large graphs, for example, by
dealing with large amount of intermediate results that do not fit into the GPU
memory and also by adopting buffering techniques.
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