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Abstract—FPGA is a promising hardware accelerator in mod-
ern high-performance computing systems, e.g. cloud computing,
big-data processing, etc. In such a system, power is a key factor
of the design requiring thermal and energy-saving considerations.
Modern power estimators for FPGA either support specific
hardware provided by vendors or contain power models for
certain types of conventional FPGA architectures. However, with
technology advancement, novel FPGA of versatile architectures
are introduced to further augment current FPGA architecture
at various aspects, such as emerging FPGA with non-volatile
memory, nanowire interconnection of reconfigurable array, etc.
To evaluate the power consumption of various FPGA designs, the
power estimator has to be made more flexible and extendable
for supporting new devices and architectures. We introduce in
this paper a novel power estimator with hierarchical library
supporting power models at different levels, e.g. novel circuit
of components, emerging memory devices, architecture of time-
multiplexing fashion, etc. The power estimator also supports
coarse-grain or fine-grain power estimation defined by users
for achieving complexity-accuracy trade-off. Simulation results
of benchmarks of our power estimator against commercial one
demonstrate accuracy of our tool. Furthermore, we present
an example of RRAM FPGA power estimation, which has
novel memory devices and potential of power gating. Our tool
demonstrates flexibility to well support, but not limited to, the
power estimation of such state-of-the-art FPGAs.

I. INTRODUCTION

Field-Programmable Gate Array (FPGA) has advantages of
post-fabrication reconfiguration, low development risk, fast im-
plementation to market and low cost for low volume products,
etc [1]. Under high throughput and/or low latency requirement
of modern applications, system designers adopts FPGA as
auxiliary processors to boost performance. FPGA chips are
found in Microsoft’s Catapult system accelerating large-scale
data center applications [2] and in Convey system for real-time
signal processing applications [3].

Given that power consumption is an important metric to
evaluate electronic systems and the fact FPGAs are extensively
utilized nowadays, FPGA power analysis attracts a decent
amount of research efforts. For modern FPGAs, vendors pro-
vide power estimation tools for specific commercial products
themselves, such as Xilinx Power Estimator (XPE) [4] and
PowerPlay Early Power Estimators (EPE) [5]. There are also
academic FPGA CAD tools proposed to evaluate FPGA power

consumption under certain architecture assumptions [6], [7]. K.
Poon et al. propose a power model for FPGAs which includes
very detailed model for each components [8]. The power
consumption models are validated with HSPICE simulation.
However, the existing power models are not sufficient to
estimate power of new circuit designs with new technology
nodes and advanced features. L. Shang et al. propose detailed
switching activity model for dynamic power consumption [9].
The work is based on a commercial product and the analysis
is based on measurement, so it is hard to be used to predict
power of other commercial products or academic architectures.
F. Li, et al. propose a flexible power estimation tool with
a mix-level power model for FPGAs [6]. It pre-sets delay
information and provide circuit models for SRAM FPGA.
However, the tool is based on a conventional FPGA archi-
tecture and lack of support for advanced technology nodes
and techniques. Versapower proposed by J. Goeders et al. can
support power estimation for all architectures supported by
VPR [7]. The work takes switching activity information from
switching activity estimation tool ACE2.0 for dynamic power
estimation [10]. Though it provides multiple technology nodes
to estimate power, options are still limited for exploration of
emerging FPGA architectures with new devices and circuits.

In this paper, we propose a full-customized power esti-
mation tool based on hierarchical library targeting emerging
FPGAs. The customized hierarchical library contains power
models for various circuit components ranging from high-
level blocks to low-level devices, which enables the tool to
perform power estimation at both coarse-grain and fine-grain
level; meanwhile complexity-accuracy tradeoff is allowed. Our
tool can be easily extended to support emerging technologies.
We validate our tool against commercial tool for its estimation
accuracy and provide discussions of how to expand the tool
for support of emerging technologies, such as non-volatile
memory based FPGA and features like power gating.

The remaining paper is organized as follows. Section II
introduces the framework of our power estimation tool. Sec-
tion II covers more specific details about power library struc-
ture and estimation methodology. In Section III, we present the
validation of the proposed tool and power estimation results of
an example emerging FPGA to demonstrate the great flexibility
of the proposed tool. Section IV concludes the paper and gives
future direction.
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Fig. 1. Flow of the proposed power estimation tool.

II. POWER ESTIMATION TOOL

A. Overview of the tool flow

The flow of the proposed power estimation tool is shown in
Fig. 1. The tool takes in four major inputs: FPGA architecture
description, placement and routing result, switching activity
information and a power library. The four inputs provide
information of four necessary steps of FPGA power estimation:

• What resources are available and how are they orga-
nized on FPGA?

• What resources are utilized to implement a circuit?

• How are these resources been utilized?

• How to estimate power of the resources based on their
utilization condition?

FPGA architecture description file is in the XML format
defined by VPR which only supports island-style FPGAs for
now. Hierarchy is inherited in the nature of XML format.
The format is easily comprehensible processable by human
and programs. We extract information from the file and build
the architecture correspondingly with FPGA organization and
connection details. The architecture file along with a netlist
of the circuit to be implemented on FPGA serve as input
to VPR. The netlist is technology-mapped and optimized in
the format of Berkeley Logic Interchange Format (blif) by
ABC [11]. In this case, VPR will pack, place and route it
and give the physical synthesis results to our tool. For the
record, VPR is not the only choice here, any results generated
by any other packing, placement or routing algorithm or tools
are acceptable as long as the results are in the VPR format and
does not go against architecture assumptions. We decouple our
power estimator from physical synthesis tool like VPR to allow
flexibility of supporting different FPGA architectures and CAD
flows. Users can use this tool to evaluate their packing, routing
and placement algorithms’ performance with respect to power
consumption. The netlist is fed to the switching activity esti-
mation tool ACE2.0 as well. By assigning signal probabilities
and switching activities to primary inputs of the circuit, it will
calculate signal probability and switching activity information
of every net in the netlist. Such information is then input to
our power estimator to provide guidance in evaluating dynamic
power consumption of the circuit. Power library, as the most
important concept in this paper, will be elaborated in detail
in the next section. Basically it contains information about
how much power a typical component consumes under certain
conditions, and how we scale it to adapt to various scenarios
in order to get reliable power results.

B. Custom-defined Library

As shown in Fig. 2, our power estimation scheme is a
hierarchical approach. All the high-level components in the
architecture are composed of lower-level components, and the
bottom level components are basic elements in our estimation
framework. At the top level of abstraction, FPGAs can be
divided into 3 major parts: logic resources, routing resources
and clock tree. Different FPGAs have different designs and
organizations of the three constituents, varying from typical
island-style design [12], hierarchical design [13] to 3D de-
sign [14].

A general island style FPGA architecture is shown in
Fig. 3. Logic resources in island-style architectures are usu-
ally grouped as complex logic blocks (CLBs). They can be
programmed to implement various logic functions. CLBs are
surrounded by a ”sea” of routing resources. Routing elements
are normally composed of routing tracks, connection blocks (C
blocks) and switching blocks (S blocks). Connection blocks
provide programmability to connections between CLB pins
and routing tracks, while switching blocks provide programma-
bility for track-to-track connections. Clock trees are used to
propagate clock signal and synchronize operations of circuits.
Again the design of these components are not identical in
all island-style FPGA designs. There can be different amount
of logics in one CLB, typically different number of look-up
tables; the programmable switches in connection blocks and
switching blocks can be implemented differently by multi-
plexers, pass-transistors or tri-state buffers. CMOS designs of
look-up tables, multiplexers, pass-transistors or buffers can be
further decomposed into physical wires and CMOS transistors.

Performing power estimation at which level is sometimes
hard to determine. At higher levels, power estimation is fast
but usually suffers from inaccuracy, while at lower levels,
it is time-consuming and leaves little flexibility on design
details. We understand the need of making tradeoff at different
abstraction levels and provide the best possible power esti-
mation according to available design details or user specified
abstraction level.

Fig. 2 shows three levels we can look at an FPGA architec-
ture, from high abstraction to high resolution. In the top level,
e.g., defined as Abstract level, the FPGA consists of logic,
routing resources and clock tree. If we zoom into these high-
level components and decompose them in the Basic level, we
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can divide them into basic components. The Logic Resources
include complex blocks like CLBs, DSPs and IO blocks, etc.
The Routing Resources are composed of connection blocks,
switching blocks and routing tracks. The elements at this
level can be further decomposed into primary elements in
Detail level, such as look-up tables (LUT), D-flip-flops (DFF),
multiplexers (MUX), Buffers, etc. Our estimator usually should
perform power estimation on Detail and Basic level, and the
power library is supposed to contain power information for
required components in the two levels. In previous academic
tools, the primary elements at our bottom level are usually
further decomposed into wires and transistors, but we do not
wish to go that far since transistor level estimation usually
takes significantly longer time and is not necessarily more
accurate then our framework when estimating power of an
entire FPGA. Another important reason for us to choose them
as the primary components is that the connectivity between
them are usually simple, wires and transistors usually have
very complicated connections to form Detail level components
and not suitable to serve as libraries.

For each component defined in the library, it should give
power information under two scenarios: static power consump-
tion and dynamic power consumption. Static power informa-
tion is the average power consumption of the component when
switching activity is zero for all the inputs of the component
with all possible input signal combinations. Dynamic power
consumption related information, however, can be presented
in two ways: macro-based or model-based. In macro-based
style, dynamic power information is the average dynamic
power consumption of the component when all the inputs
of the component are random bit streams. In model-based
style, however, dynamic power information is a coefficient
vector with the length of component input size, in which each
coefficient indicates the contribution of switching activity of
the corresponding input signal to dynamic power consumption
of the component. A specific example of how to use the library
power information is provided in Section II-C2.

What are the flexibilities that users are guaranteed under
this framework? First of all, users are able to choose at
which level they want to perform their power estimation. For
example, black boxes like multipliers, Block RAMs, DSP
blocks or I/O pads on FPGAs are hard to decompose into
basic elements due to their complexity or confidentiality, or
sometimes the accurate power consumption measurement is
readily available. In this case, users may prefer to regard
these components as atomic and perform power estimation
at coarser grained level. In the library, users can estimate
power of different types of components at different abstraction
level. For example, for the DSP blocks, the estimation can be
at Basic level, and for CLB power estimation, Detail level

may be provided for higher accuracy. Another very important
consideration is the continuous technology scaling, CMOS
is facing its limit and emerging technologies are evolving
fast, such as non-volatile memory, carbon nanotube transistors,
etc. For emerging technologies and devices based on them,
theoretical power models may not be available yet, and their
power models usually comes from real measurement. Our
library based power models sufficiently support the emerging
technologies without any change in entire power estimation
flow. Users with cutting edge FPGA techniques can simply
replace the power information of original outdated components
and perform power estimation directly.

Power library should always remain consistent with FPGA
architecture assumptions in the architecture description file.
For example, any component defined in the power library
will be ignored and all its children will be discarded if the
component is not defined in the architecture file, and any
component in the power library should store power related
information conforming timing and area constraints of the
component specified in the architecture file.

C. Power Estimation Procedure

1) Top Down Approach: During power estimation, the tool
will start with top-level components first in the architecture,
the estimator checks if it is defined in the power library. If
yes, the estimator extract corresponding power information
from the library, calculate corresponding power and ignore
the detail implementation of this component. If the component
is expanded in further details, the estimator breaks the com-
ponent into lower-level children components and query them
in the library recursively. If not, the power of the undefined
components will be ignored and a warning is reported.

In general, FPGA power is divided into three parts: logic,
routing and clock power (Special circuits like I/O pads and
clock generators on FPGA are usually not considered, but
in this tool, they are welcome to be defined in the power
library and contribute to the overall power consumption).
Configuration bit SRAM cells consumes static power but the
power is usually included in the corresponding logic or routing
components. However, as shown in Equation (1), in this work
we include power of writing configuration bit cells as well.
This power, or often referred as reconfiguration power in
FPGA, is the power consumed during writing operation of
configuration cells to initialize or change the functionality
of FPGA circuits. Modern FPGAs usually provide features
like partial reconfiguration or dynamic reconfiguration, which
require run-time writing of reconfiguration cells and bring in
reconfiguration power overhead. But reconfiguration power is
not considered in any previous FPGA power estimation tools
before. We are the first to integrate reconfiguration power in
an FPGA power estimation tool.

Equations (2) and (3) explain the break down of the logic
and routing resources from Abstract level down to Basic level
according to Fig. 2. Among them, clock network power is
special that it was calculated separately with methods intro-
duced by [7]. Configuration power is discussed later. If a
Basic level component is not defined in the library, it will be
further decomposed by our tool down to Detail level.
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As shown in Fig. 4, a user-defined CLB could be a cluster
of four 6-input LUTs with a fully populated M-to-24 crossbar
from CLB inputs to LUT inputs which provides intra-CLB
connections. M is the sum of CLB input pin count and FlipFlop
feedback count, which is available from the architecture de-
scription. For instance, if a CLB contains 33 input pins and 4
FlipFlops, M would be equal to 37. In the library, users can
decide whether they provide the power-related information for
the entire CLB directly. If they do, the tool would use the
library to generate atomic power consumption of the entire
CLB. By default, though, the crossbar will be decomposed
by out tool to 24 M-to-1 multi-level multiplexers, which are
again recursively divided into multiple single level multiplexers
provided by the library. LUTs and FlipFlops can be primary
components and will not be decomposed further to wires and
transistors.

PFPGA = Prouting + Plogic + Pclock + Pconf (1)

Prouting = ΣPtrack.D +ΣPsb.D +ΣPcb.D

+ΣPtrack.S +ΣPsb.S +ΣPcb.S
(2)

Plogic = ΣPclb.D +ΣPdsp.D +ΣPio.D

+ΣPclb.S +ΣPdsp.S +ΣPio.S
(3)

2) Power Estimation of Single Component: When the top
down approach reaches the granularity at which users define
their power library, power estimation of single components at
that level will be triggered. In Equations (2) and (3), suffixes .D
and .S present dynamic power and static power of a component
respectively. In this section, we will mainly introduce our
procedure in dynamic and static power estimation of one single
component.

Static power of a single component is directly extracted
from the power library as in Equation (4). As mentioned in
Section II-B, the static power information stored in the power
library is the power consumption of the component whose
input signals at zero switching activity, and this static power
value Libstatic is averaged among all possible input signal
combinations.

PComponent.S = Libstatic (4)

Dynamic power, on the other hand, is more complicated be-
cause it is related to run-time switching activity and frequency
of the component. We use SA to present the switching activity
of a component, which is the average number of both 0-to-1
and 1-to-0 transitions happened per clock cycle and divide by
2.

We introduced in Section II-B that we provide two styles
of defining dynamic power information in the power library.
In macro-based style, the power library will provide a mea-
sured/simulated average power number Libdynamic for the
component, representing an average dynamic power consump-
tion value of the component. In this scenario, the component’s
all input signals are independent random bit streams at the
same bit rate 1/fmeasure. The tool then apply Libdynamic

to our power estimation with Equation (5). In this equation,
SAmeasure is the average switching activity of the compo-
nent during measurement/simulation. In macro-based style,
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as all input signals are independent random bit streams, the
occurrence probability of 0-to-1 and 1-to-0 transitions is 0.5.
According to the previous definition of SA, we divide the prob-
ability of transitions by 2 and SAmeasure is numerically 0.25
in model-based dynamic power library definition. SAcurrent

is the average SA of all input signals of the components with
the help of ACE in the FPGA synthesis flow. fcurrent is the
current frequency of the implemented circuit, reciprocal of the
critical path delay decided by placement and routing results.

PComponent.D =
SAcurrent ∗ fcurrent
SAmeasure ∗ fmeasure

∗ Libdynamic (5)

Model-based dynamic power estimation for single com-
ponents, however, is based on the observation that for some
components input signal SA would have asymmetric influences
on dynamic power consumption. Taking a LUT6 component
depicted in Fig. 5 as an example, input 0 (least significant
bit) controls on/off states of 64 transmission gates, while
input 5 (most significant bit) only controls on/off states of 2
transmission gates. Flipping the value of input 0 would most
probably cost more dynamic power in the LUT6 than toggling
input 5.

Fig. 6 elaborates how dynamic power scales with variance
in SA of the LSB. Values stored in 64 SRAM cells are assigned
randomly and signals of each input pin are generated by
HSPICE Pseudo Random-Bit Generator Source (PRBS). By
changing the bit rate parameter of PRBS, we are able to get
signals of different SA at specific clock frequency. We keep
other input pins’ SA remain the same while varying SA in
LSB. The figure shows a linear relationship between dynamic
power consumption of a LUT6 and the SA of LSB. Fig. 7
further presents how dynamic power varies with SA of all
LUT6 input pins with different slopes in the linear regression
curve.
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Such modeling methodology discards the obscurity in the
details of a black box component and allows users to define
dynamic power consumption of a single component through
a vector of coefficients indicating the impact of input signal
SA on overall dynamic power consumption. Hence in model-
based dynamic power information definition, users need to
provide a coefficient vector with the length of number of
input pins of the component. Each coefficient in the vector
provides the information about how dynamic power of this
component scales with the switching activity of this pin. For
now we assume linear relationships only and the values in
the coefficient vector is acquired from the slope value of
linear regression curve of different HSPICE simulation results.
Dynamic power consumption is estimated with Equation (6),
where SAi is the switching activity of the ith input pin of the
component and coefi is the aforementioned linear regression
slope corresponding to the ith input pin SA.

PComponent.D = Σ(SAi ∗ coefi) (6)

Power consumption of tracks are considered differently,
however. Tracks in FPGAs are designed not to be identical, and
there can be length-1, length-2, length-4 or even longer track
segments. But the capacitance of tracks are relatively easy
to obtain. In our tool, track power is estimated by Equation
(7). Capacitance of a length-1 track segments Cwire should
be provided by the library (related to the design and feature
node). Ptrack.S is considered zero.

Ptrack.D = SA ∗ Vdd2 ∗ Cwire ∗ length ∗ f (7)

D. Extensions to the Framework

1) Run-Time Reconfiguration: New participants in FPGA
power consumption can be easily estimated by enriching
the power library. In Equation (1), Pconf is the power of
configuration bit cells. Normally Pconf is zero that if an
FPGA is only configured once and users do not care too much
about the power consumption of the initial configuration. But
power consumption of run-time reconfigurable FPGA becomes
assessable if we support one more parameters for configu-
ration memory cells, write energy, denoted Econf.write. We
take NATURE [16] as an run-time reconfiguration example.
NATURE folds a circuit into multiple reconfiguration stages,
and generate physical synthesis information for partial circuit
in every stage. For every stage, NATURE will have the critical
path information, and generate the reconfiguration frequency
freconf , which is the reciprocal of the longest critical path
delay of all stages. NATURE assumes dynamic reconfiguration
at each reconfiguration stage, so freconf is the frequency
at which configuration memory cells are overwritten during
run-time reconfiguration process. Hence Pconf is obtained by
adding up the energy of every overwritten configuration bit at
all stages and multiply by freconf as shown in Equation (8):

Pconf = freconf ∗ Σ
stages

Econf.write (8)

The total power consumption of run-time reconfiguration
is in Equation (9):

Prun−time = Pconf + ( Σ
stages

PFPGA)/num stages (9)

2) Power Gating: Emerging memory technologies are now
very popular in FPGA designs, and among them non-volatility
is one of the most important consideration when choosing a
memory design. In order to better support non-volatile memory
designs, we provide power gating for users who wants to shut
down a part of FPGA to reduce static power consumption.

In our power gating strategy based on [17], we first decide
which are the complex logic blocks are not utilized (from
placement information), and those blocks are marked as power
gated. All the lower level components inside those blocks will
not consume static power. The next step we find connection
blocks that can be power gated. Only if the two complex logic
blocks beside one connection block are both power gated, we
consider this connection block can be power gated and all
the programmable switches will consume zero static power.
Lastly, from routing information, we decide those switching
blocks does not control active track-to-track connections, and
mark them as power gated. Fig. 8 shows how power gating
works in our three-step procedure.

3) Upcoming Features: Power gating is not the only feature
this framework is capable of. It is yet very easy to be
extended to other features like multiple clock domain, partial
reconfiguration and so on. For example, we provide a choice
for users to define the clock frequency of the component
despite of the critical path delay information from physical
synthesis in order to support coarse-grain FPGA and multiple
clock domains in one FPGA. User can define a fixed clock
frequency 300MHz of customized component such as DSP in
the library, to make them always run at 300MHz, regardless
of the critical path delay given by the synthesis tool.

III. EXPERIMENTAL RESULTS

The accuracy of this tool highly depends on the power
information given by the hierarchical power library. However
users can use our primary power library integrated with the
tool if they do not have detailed information about low-level
FPGA architecture.

In the experiments, we use VPR flagship architecture [18]
to present our power estimation results. The architecture uses
6-input LUT as its logic resources. Such LUT6 and another
D-flip-flop compose a Logic Element (LE) and 10 LEs are
grouped into a CLB. Programmable Switches in the routing
resources of the architecture adopt multiplexer design.

We designed our primary power library accordingly to
provide power information of the following basic components:
6-input LUT (LUT6), 4-to-1 multiplexer (MUX4), D-flip-flop
(DFF), Buffer (BUFFER), 6-transistor SRAM configuration
memory cells (CONF) and routing track (TRACK). All the
components are implemented with 32nm/28nm Synopsys In-
teroperable Process Design Kit (iPDK) Library via Synopsys
University Program [19] in Typical-Typical corner. We use
HSPICE simulation to obtain dynamic and static power macros
at 200MHz clock frequency, operating at 1.05V supply voltage
and 85◦C temperature. The power information of the primary
library are presented in Table I.

VersaPower [7] is the most recent FPGA power estimation
tool which has been integrated in the current version of
VPR, which adopts VPR CAD flow as we do. It builds a
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TABLE I. POWER LIBRARY

Component Clock-activity Power (W) Zero-activity Power (W)

LUT6 1.68e-6 1.56e-7

MUX4 4.96e-8 4.90e-9

DFF 7.4e-7 8e-9

BUFFER 7.03e-7 7.13e-9

Write (J) Static Power (mW)

CONF 2.59e-9 2.41e-9

Segment-1 Capacity (pF)

TRACK 2.21

detailed low-level power model for components in the VPR
architecture. Hence it should be the perfect verification tool
for our estimation. However, we found they significantly over-
estimated dynamic power consumption when primary inputs
of a circuit has 0 switching activity, compared to commercial
power estimators.

Hence we mainly compare with commercial Altera Early
Power Estimator to help verify our tool. The architecture we
used is the flag ship architecture VPR introduced, and it is
similar to Stratix family developed by Altera in many aspects
like logic equivalence in one CLB and tuned delay numbers.
More information about the architecture is available on the
Verilog-to-Routing Project [20]. We fixed the routing channel
width to 300 to further approximate the real case in a Stratix
family FPGA according to the description of the flagship
architecture in [18].

The FPGA device we choose to present power estimation
results of commercial product is model 5SEE9H40 from
Stratix V family. It is fabricated in TSMC 28nm technology
node and support up to 1GHz clock frequency. We choose this
model because of two reasons: first it is big enough to support
most of our benchmarks, and secondly it has the simplest
structure without features like high-speed transceivers and PCI-
E hard IPs in other models in Stratix V family. We try to use
the simplest one because the architecture we use from VPR
does not have specifications on those features, and hence we
can get a closer estimation.

However, we need to mention that some of the features in
the selected model is still not available in the VPR architec-
ture like dedicated carry chains and DSP blocks. They will
introduce gaps into power estimation. We will try to give a
comprehensive analysis about them in the future. Note that
Altera provides SPICE models of the transceivers and IPs
on their website [21], and that makes our framework able to
include these features easily.

We use a set of 19 benchmarks consisting of real appli-

cation circuits provided by VPR to be implemented on both
architectures. We assume that the primary inputs of every
circuit have switching activity of 0.5 and signal probability
of 0.5 (equal chance to have 0s and 1s). The primary input
is fed to ACE2.0 to obtain detailed switching activity analysis
for our estimation.

A. Static Power

Stratix V 5SEE9H40 FPGAs have 317,000 adaptive logic
modules ALMs, and according to Altera’s Device Handbook
[22], each ALM is composed of two combinational adaptive
LUTs. Hence this device totally has 634,000 adaptive LUTs.
According to EPE, a 5SEE9H40 device consumes static power
of 1.737W , no matter what circuit it is implementing. We fixed
our VPR architecture to a 120 by 120 grid to be able to fit in
our largest benchmark, and this architecture will have 108,000
equivalent LUTs.

If we scale the size of 5SEE9H40 FPGA from 634,000
LUTs to 108,000 LUTs, we find out that this model will
consume about 296mW at a similar size of our VPR archi-
tecture. Our power estimation tool estimates that the static
power consumption of the academic FPGA architecture is
172mW . This is an acceptable estimation because static power
consumption of I/O pads, DSP blocks and block memories in
VPR architecture are ignored in our estimation while they are
estimated in EPE.

B. Dynamic Power

In this subsection, we will mainly discuss the dynamic
power consumption estimated by our tool. Without loss of gen-
erality, we are going to ignore some benchmarks that has very
small resource utilization or switching activity, as those circuits
will generate very small amount of dynamic power compared
to total power. Typically, we will analyze the dynamic power
consumption of 8 benchmarks: bgm, ch intrinsics, diffeq1,
mcml, raygentop, stereovision0, sterovision1, stereovision2. In
this subsection, I/O pad, Block Memory and DSP block dy-
namic power consumption will be ignored in both estimations
in EPE or in our tool.

To begin with, how is dynamic power evaluated in EPE?
There is no publicly available data on how EPE calculates
power, but our observations in Table II give us an insight that
EPE most likely assumes linear relationship between dynamic
power and two parameters: average switching activity of the
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circuit and the clock frequency the circuit runs on. Dynamic
power is also linearly related to the number of used LUTs and
registers in the circuit. Average fanout of nets is set to 4 in
our observation. This is a very simple and rough estimation,
without considering detailed switching activity information of
each resource in use and how placement and routing will have
influence on the dynamic power consumption. These factors
are carefully considered in our power estimation framework.

In Table III, dynamic power consumption comparison is
presented. Quartus is the synthesis tool for Altera FPGA
synthesis flow. Frequency values in the table presents the
maximum clock frequency allowed by Quartus or VPR for
each benchmark circuit. Switching activity information is ana-
lyzed in our power estimation flow, and the average number of
switching activity is provided to EPE for its power estimation.
Due to optimization techniques like carry chains used in Altera
FPGAs, critical path delay is significantly reduced compar-
ing to the architecture provided by VPR, hence maximum
frequency value obtained for each benchmark by Quartus is
higher then frequency acquired in VPR flow. To make a fair
comparison, we allow circuits to run at the same low frequency
given by VPR flow and present the scaled dynamic power in
the parentheses in EPE dynamic power column.

Considering the differences in the FPGA architecture as-
sumption,power management and optimization techniques be-
tween two CAD flows, our tool gives power estimation within
acceptable range of correctness, and shows the right trend
of how power scales with resource utilization, frequency and
switching activity. Residing at higher level of abstraction,we
sacrifice certain accuracy to gain flexibility of supporting
emerging technologies and advanced methodologies.

C. ReRAM FPGA power estimation and power gating

In order to demonstrate more on its flexibility, the tool is
used to perform power estimation for an emerging Resistive
Random Access Memory (RRAM) based FPGA [23]. Circuits
in this FPGA can not be evaluated by previous tools because
their tool flows only support CMOS based LUT, CB and
SB designs. In [23], pass gate in CB and SB Switching
are controlled by Complementary Resistive Switches (CRS)
arrays composed by RRAM. And they use 3D High-Density
Interleaved (3D-HIM) structure to build RRAM based fast
programming LUTs (refer to Fig. 9).

This design is currently not digestible by current FPGA
power estimation tools as they are no longer using traditional
CMOS transistor to build the circuits. However, we can deploy
power related parameters of these customized circuits to our
hierarchical library and generate corresponding FPGA power
estimation.

Table IV showed the power numbers of these ReRAM
circuits. In this customized power library, we add power num-
bers of a CB switch and SB switch at higher level, instead of
implementing those programmable switches with multiplexers.
We also replace the LUT6 power numbers by those from the
ReRAM design. A CB switch here contains a pass transistor,
a buffer and a ReRAM configuration cell. A SB switch, is a
group of N pass transistors, buffers and ReRAM configuration
cells, and N is decided by the architecture parameter Fs,
defining the number of fanouts of a track going through a

TABLE IV. RERAM CUSTOMIZED POWER LIBRARY

Component Clock-activity Power (W) Zero-activity Power (W)

CB Switch 5.02e-7 1.8e-7

SB Switch 6.52e-6 2.1e-6

LUT 1.97e-5 6.1e-6

Fig. 9. 3D-HIM RRAM based 6-input LUT [24].

switching block. N equals to 3 in this design. The rest of the
FPGA remains in CMOS SRAM-based design.

We found that the power numbers are significantly larger
than SRAM counterparts, and the average static power con-
sumption of the 19 benchmarks is 12.98W . However, due to
the non-volatility of ReRAM cells, we can shut down some
of the unused circuits adopting the strategy introduced in
Section II-D. We presented the ratio between static power
consumptions in scenarios with and without power gating in 19
benchmarks, to give a hint about how much static power can
be saved by this power management strategy. Fig. 10 shows
this ratio along with LUT utilization numbers, and it shows
that we can save up to 73% of static power with power gating,
especially when implementing a small circuit on a large FPGA.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a power estimation tool for
emerging FPGA architectures with a full-customized hierar-
chical power library. Under this extremely flexible framework,
we can evaluate power for a much broader range of FPGA
architectures, including emerging memory techniques, run-
time reconfiguration, power gating, etc. We evaluate our power
estimation results with our primary library with Altera’s Early
Power Estimator power estimation, and prove that our power
estimation can maintain good accuracy.
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TABLE II. OBSERVATION OF EPE DYNAMIC POWER ESTIMATION

Scenario # LUTs # FFs Clock Freq [MHz] SA Dynamic Power [mW]

Baseline 1000 1000 200 25% 22.12

2xSA 1000 1000 200 50% 44.24

0.5xSA 1000 1000 200 12.5% 11.06

2xFreq 1000 1000 400 25% 44.24

0.5xFreq 1000 1000 100 25% 11.06

+1000LUT 2000 1000 200 25% 34.23

-1000LUT 0 1000 200 25% 10.01

+1000FF 1000 2000 200 25% 32.13

-1000FF 1000 0 200 25% 12.11

TABLE III. DYNAMIC POWER ESTIMATION

Benchmark # ALUTs # LUTs Freq [MHz] Freq [MHz] Dyn Power [mW] Dyn Power [mW]
(Quartus) (VPR) (Quartus) (VPR) (EPE) (Our tool)

bgm 25840 34121 82.19 35.09 31.77 (13.56) 41.37

ch intrinsics 68 446 431.22 273.22 0.887 (0.56) 3.64

diffeq1 1598 529 95.68 50.25 5.30 (2.78) 3.65

mcml 132588 104296 32.66 9.26 39.03 (11.07) 8.76

raygentop 4222 2616 213.90 153.37 26.19 (18.78) 19.76

stereovision0 7594 14964 411.69 220.26 38.48 (20.58) 21.93

stereovision1 15012 13789 215.75 175.75 146.71 (119.51) 68.14

stereovision2 26440 36523 177.71 62.11 268.10 (93.70) 185.67

Due to its flexibility, a lot of research can be integrated into
the framework. One important task is to enlarge our primary
power library to support already existed circuits and designs.
The tool can also be upgraded to support three dimensional
FPGA power estimation as well. Other features like multiple
clock domain, partial reconfiguration power are also possible
extensions.
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