
Kernelet: High-Throughput GPU Kernel
Executions with Dynamic Slicing

and Scheduling
Jianlong Zhong and Bingsheng He

Abstract—Graphics processors, or GPUs, have recently been widely used as accelerators in shared environments such as
clusters and clouds. In such shared environments, many kernels are submitted to GPUs from different users, and throughput is
an important metric for performance and total ownership cost. Despite recently improved runtime support for concurrent GPU
kernel executions, the GPU can be severely underutilized, resulting in suboptimal throughput. In this paper, we propose Kernelet,
a runtime system to improve the throughput of concurrent kernel executions on the GPU. Kernelet embraces transparent
memory management and PCI-e data transfer techniques, and dynamic slicing and scheduling techniques for kernel executions.
With slicing, Kernelet divides a GPU kernel into multiple sub-kernels (namely slices). Each slice has tunable occupancy to allow
co-scheduling with other slices for high GPU utilization. We develop a novel Markov chain-based performance model to guide
the scheduling decision. Our experimental results demonstrate up to 31 percent and 23 percent performance improvement on
NVIDIA Tesla C2050 and GTX680 GPUs, respectively.

Index Terms—GPGPU, performance modeling, task scheduling, Kernel slicing, Markov chain

Ç

1 INTRODUCTION

THE graphics processing unit (or GPU) has become an
effective accelerator for a wide range of applications

from computation-intensive applications (e.g., [16], [17],
[29]) to data-intensive applications (e.g, [5], [10]). Com-
pared with multicore CPUs, new-generation GPUs can
have much higher computation power in terms of FLOPS
and memory bandwidth. For example, an NVIDIA Tesla
C2050 GPU can deliver the peak single precision floating
point performance of over one Tera FLOPS, and memory
bandwidth of 144 GB/s. Due to their immense computation
power and memory bandwidth, GPUs have been integrat-
ed into clusters and cloud computing infrastructures. In
Top500 list of June 2013, two out of the top ten super-
computers are with GPUs integrated. Amazon and
Penguin have provided virtual machines with GPUs. In
both cluster and cloud environments, GPUs are often shared
by many concurrent GPU programs (or kernels) (most likely
submitted by multiple users). Additionally, to enable
sharing GPUs remotely, a number of software frameworks
such as rCUDA [3] and V-GPU [32] have been developed.
This paper studies whether and how we can improve the
throughput of concurrent kernel executions on the GPU.

Throughput is an important optimization metric for
efficiency and the total ownership cost of GPUs in such

shared environments. First, many GPGPU applications
such as scientific and financial computing tasks are usually
throughput oriented [4]. A high throughput leads to high
performance and productivity. Second, compared with
CPUs, GPUs are still expensive devices. A high throughput
not only means a high resource utilization but also a low
total ownership cost. That might be one of the reasons that
GPUs are usually deployed and shared to handle kernels
from multiple users.

Recently, we have witnessed the success of GPGPU
research. However, most studies focus on single-kernel
optimizations (e.g., new data structures [9] and GPU
friendly computing patterns [5], [6]). Despite the fruitful
research, a single kernel usually severely under-utilizes
the GPU. This severe underutilization is mainly due to
the inherent memory and computation behavior of a
single kernel (e.g., random memory accesses and lack
of instruction level parallelism). In our experiments, we
have studied eight common kernels (details are presented
in Section 5). On C2050, their average IPC is 0.52, which
is far from the optimal value (1.0). Their memory
bandwidth utilization is only ranging from 0.02 percent
to 14 percent.

Recent GPU architectures like NVIDIA Fermi [18]
architecture supports concurrent kernel executions, which
allows multiple kernels to be executed on the GPU
simultaneously if resources are allowed. In particular,
Fermi adopts a form of cooperative kernel scheduling. Other
kernels requesting the GPU must wait until the kernel
occupying the GPU voluntarily yields control. Here, we
use NVIDIA CUDA’s terminology, simply because CUDA
is nowadays widely adopted in GPGPU applications. A
kernel consists of multiple executions of thread blocks with
the same program on different data, where the execution

. The authors are with the School of Computer Engineering, Nanyang
Technological University, Singapore 639798. E-mail: {jzhong2, bshe}@
ntu.edu.sg.

Manuscript received 18 May 2013; revised 17 Sept. 2013; accepted 24 Sept.
2013. Date of publication 7 Oct. 2013; date of current version 16 May 2014.
Recommended for acceptance by F. Mueller.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.257

1045-9219 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141522

order of thread blocks is not defined (known as SPMD
(Single Program Multiple Data) execution model). On
Fermi GPUs, one kernel can take the entire GPU if it has
sufficient thread blocks to occupy all the multi-processors
(even though it can have severely low resource utilization).
Concurrent execution of two such kernels almost degrades
to sequential execution of individual kernels. Recent
studies [23] on optimizing concurrent kernels mainly focus
on kernels with low occupancy (i.e., the thread blocks of a
single kernel cannot fully utilize all GPU multiprocessors).
However, the occupancy of kernels is usually high after
single-kernel optimizations in practice.

Individual kernels as a whole cannot realize real sharing
of the GPU resources. This paper investigates whether we
can slice the kernel into small pieces and then co-schedule
slices from different kernels for higher GPU resource
utilization. One observation is that GPU kernels conform to
the SPMD execution model. A kernel execution can usually
be divided into multiple slices, each consisting of multiple
thread blocks. Slices can be viewed as low-occupancy kernels
and can be executed simultaneously with slices from other
kernels. The GPGPU concurrent kernel scheduling problem is
thus converted to the slice scheduling problem.

With slicing, we have two more issues to address.
The first issue is on the slicing itself: what is the suitable
slice size? How to perform the slicing in a transparent
manner? The smallest granularity of a slice is one thread
block, which can lead to significant runtime overhead
of submitting too many such small slices onto the GPU for
execution. To the other extreme, the largest granularity of
the slice is the entire kernel, which degrades to the non-
sliced execution. The second issue is to select the slices for
co-scheduling to maximize GPU utilization.

To address those issues, we develop Kernelet, a runtime
system with dynamic slicing and scheduling techniques
to improve the GPU utilization. Kernelet transparently
performs memory management and data transfer man-
agement between the main memory and the GPU
memory. Given the kernels that are ready to execute on
the GPU (i.e., the input data are available on the GPU
memory), Kernelet dynamically performs slicing on the
kernels, and the slices are carefully designed with tunable
occupancy to allow slices from other kernels to utilize the
GPU resources in a complementary way. For example,
one slice utilizes the computation units and the other one
utilizes the memory bandwidth. We develop a novel and

effective Markov chain based performance model to
guide kernel slicing and scheduling decisions. Compared
with existing GPU performance models (e.g., [11], [25])
which are limited to a single kernel only, our model are
designed to handle heterogeneous workloads (i.e., slices
from different kernels). We further develop a greedy
algorithm to always co-schedule slices from the two
kernels with the highest estimated performance gain.

We have evaluated Kernelet on two latest GPU
architectures (Tesla C2050 and GTX680). The GPU kernels
under study have different memory and computational
characteristics. Experimental results show that 1) our
analytical model can accurately capture the performance
of heterogeneous workloads on the GPU, 2) our schedul-
ing increases the GPU throughput by up to 31 percent
and 23 percent on C2050 and GTX680, respectively, 3) our
memory command scheduler overlaps up to 99 percent of
data transfer with kernel execution.

Organization
The rest of the paper is organized as follows. We introduce
the background and definition of our problem in Section 2.
Section 3 presents the system overview, followed by
detailed design and implementation in Section 4. The
experimental results are presented in Section 5. We review
the related work in Section 6 and conclude this paper in
Section 7.

2 BACKGROUND AND PROBLEM DEFINITION

In this section, we introduce the background on GPU
architectures, and our problem definition. More details
on the NVIDIA GPU architectures can be found in
Appendix A of the supplementary material which is
available in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/257.

2.1 GPU Architectures
This paper focuses on the design and implementation
with NVIDIA CUDA. With the introduction of CUDA,
a GPU can be viewed as a many-core processor with a
set of streaming multi-processors (SM). Each SM has a
set of scalar cores, which execute the instructions in
the SIMD (Single Instruction Multiple Data) manner.
The SMs are in turn executed in the SPMD manner. The
program is called kernel. Kernelet takes advantage of the
concurrent kernel execution capability of new-generation
GPUs.

We define the SM occupancy as the ratio of active
warps to the maximum active warps that are allowed to
run on the SM. Higher occupancy means higher thread
parallelism. The aggregated register and shared memory
usage of all warps should not exceed the total amount of
available registers and shared memory on an SM.

2.2 Problem Definition

Application Scenario
We consider two typical application scenarios in shared
environments as shown in Fig. 1. One is sharing the
GPUs among multiple tenants in the virtualized environ-
ment (e.g., cloud). As illustrated in Fig. 1a, there is usually

Fig. 1. Application scenarios of concurrent kernel executions on the
GPUs. (a) Virtualization. (b) Distributed environments.

ZHONG AND HE: KERNELET: HIGH-THROUGHPUT GPU KERNEL EXECUTIONS 1523

a GPU virtualization layer integrated with the hypervisor.
Fig. 1b shows the other scenario, in which GPU servers
offer API reception softwares (like rCUDA [3], [32]) to
support local/remote CUDA kernel launches. In both
scenarios, the GPU faces multiple pending kernel
launch requests. Kernelet can be applied to schedule those
pending kernels.

Our study mainly considers a single GPU. Kernelet can
be extended to multiple GPUs with a workload dispatcher
distributing tasks to individual GPUs.

We have made the following assumptions on the kernels.

1. We target at the concurrent kernel executions on
the shared GPU. The kernels are usually through-
put oriented, with flexibility on the response time
for scheduling. Still, we do not assume a priori
knowledge of the order of the kernel arrival.

2. Thread blocks in a kernel are independent with
each other. This assumption is mostly true for the
GPGPU kernels due to SPMD programming
model. Most kernels in NVIDIA SDK and bench-
marks like Parboil [28] do not have dependency
among thread blocks in the same kernel. This
assumption ensures that our slicing technique on a
given kernel is safe.

We formally define the terminology in Kernelet.

Kernel
A kernel K consists of k thread blocks with IDs, 0; 1;
2; . . . ; ðk� 1Þ.

Kernel State
A general flow for a GPGPU program consists of three
steps. First, the host code allocates GPU memory for input
and output data, and copies input data from the main
memory to the GPU memory. Second, the host code starts
the kernel on the GPU. The kernel performs the task on the
GPU. Third, when the kernel execution is done, the host
code copies results from the GPU memory to the main
memory. Thus, we define the following states for a kernel
(as illustrated in Fig. 2):

1. waiting: the kernel is in the waiting state, if its input
data is not totally available on the GPU. Initially, the
kernel is in the waiting state.

2. ready: all the input data for the kernel execution are
available on the GPU.

3. running: the kernel is sliced and its slices are being
scheduled for execution.

4. termination: all slices of the kernel finish execution
and its memory resources can be reclaimed.

Slice
A slice is a subset of the thread blocks of a launched kernel.
Block IDs of a slice is continuous in the block index space.
The size of a slice s is defined as the number of thread
blocks contained in the slice.

Slicing Plan
Given a kernel K, a slicing plan SðKÞ is a scheme slicing K
into a sequence of n slices ðs0; s1; s2; . . . ; sn�1Þ. We denote
the slicing plan to be K ¼ s0; s1; s2; . . . ; sn�1.

Co-Schedule
Co-schedule cs defines concurrent execution of n ðn � 1Þ
slices, denoted as s0; . . . ; sn�1. All the n slices are active on
the GPU.

Scheduling Plan
Given a set of n kernels K0;K1; . . . ;Kn, a scheduling plan C
ðcs0; cs1; . . . ; csn�1Þ determines a sequence of co-schedules
in their order of execution. csi is launched before csj if i G j.
All thread blocks of the n kernels occur in one of the co-
schedules once and only once. A scheduling plan embodies
a slicing plan for each kernel.

Co-Scheduling Profit

We define the performance benefit of co-scheduling n kernels

to be the co-scheduling profit CP ¼ 1� 1Pn�1

i¼0

cIPCi
IPCi

0
B@

1
CA, where IPCi

and cIPCi are IPC (Instruction Per Cycle) for sequential
execution and concurrent execution of kernel i respectively.
Our definition is similar to those in the previous studies on
CPU multi-threaded co-scheduling [13], [26].

Problem Definition
Given a set of kernels for execution, the problem is to
determine the optimal scheduling plan (and slicing) so that
the total execution time for those kernels is minimized.
That corresponds to the maximized throughput. Given a
set of n kernels K0;K1; . . . ;Kn�1, we aim at finding the
optimal scheduling plan C for a minimized total execution
time of CðS0ðK0Þ;S1ðK1Þ; . . . ;Sn�1ðKn�1ÞÞ. Note, in the
shared GPU environment, the arrival of new kernels may
trigger re-optimization.

3 SYSTEM OVERVIEW

In this section, we present the rationales on the Kernelet
design, followed by a system overview.

3.1 Design Rationale
Since kernels are submitted in an ad-hoc manner, the
scheduling decision has to be made in real time. The
optimization process should take the newly arrived kernels
into consideration. Moreover, our runtime system of slicing
and scheduling should be designed with light overhead.
The overhead of slicing and scheduling should be small
compared with their performance gain.

Fig. 2. Kernel state transitions.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141524

Unfortunately, finding the optimal slicing and sched-
uling plans is a challenging task. The solution space for
such candidate plans is large. Due to the limited PCI-e
bandwidth and GPU memory capacity, different memory
management and data transfer orders result in different
opportunities for co-scheduling optimizations. For slicing
a kernel, we have the factors including the number of
slices as well as the slice size. For scheduling a set of slices,
we can generate different scheduling plans with co-
scheduling slices from different kernels. All those factors
are added up into a large solution space. Considering
newly arrived kernels makes the huge scheduling space
even larger.

Due to real-time decision making and light-weight
requirements, it is impossible to search the entire space to
get a globally optimal solution. The classic Monte Carlo
simulation methods are not feasible because they usually
exceed our budget on the runtime overhead and violate
the real-time decision making requirement. There must be
a more elegant compromise between the optimality and
runtime efficiency. Particularly, we make the following
considerations.

First, inspired by the classical multi-level design on
process scheduling in operating systems [27], we decouple
the scheduling decisions into two independent levels:
memory command scheduler on handling memory manage-
ment and data transfer commands and kernel scheduler on
performing co-scheduling on the ready GPU kernels. With
the two-level scheduler design, the first level aims at fully
utilizing the PCI-e bus bandwidth, and the second level
aims at fully utilizing the GPU computation resources.

Second, the scheduling considers two kernels only.
Previous study [13] on the CPU has shown, when there
are more than two co-running jobs, finding the optimal
scheduling plan is an NP-complete problem. Following
previous studies [13], [23], we make our scheduling decision
on co-scheduling two kernels only.

Third, once we choose two kernels to schedule, their
slice sizes keep unchanged until either kernel finishes.

3.2 System Overview
We develop Kernelet as a runtime system to generate the
slicing and scheduling plans for optimized throughput.
Kernelet also automatically manages the device memory to
facilitate sharing GPU among multiple applications and
exploits opportunities of overlapping PCI-e data transfer
with kernel execution.

Fig. 3 shows an overview of Kernelet. Kernelet maintains
two queue structures: waiting queue and ready queue. The
waiting queue stores kernels in waiting state, and the ready
queue stores the kernels in ready state. Initially, kernels are

submitted and are temporarily buffered in the waiting queue.
The memory command scheduler automatically schedules
execution of GPU memory commands. If a kernel has all
its input data available on the GPU (i.e, its preceding
memory commands in the program are all executed), the
kernel is migrated from the waiting queue to the ready
queue. The kernel scheduler performs co-scheduling on
ready kernels based on our performance model, which
estimates the performance of co-scheduling slices from two
different kernels in a probabilistic manner. Usually, a kernel
is submitted in the form of SASS or PTX code. Once the
scheduling plan is obtained, the kernel slicer transforms the
kernel code into slices. Then, the slices from the two kernels
are co-scheduled and executed on the GPU until either
kernel finishes. We will describe the detailed design and
implementation of each component in the next section.

4 KERNELET METHODOLOGY

In this section, we first briefly introduce our kernel slicing
mechanism. Next, we present details of the kernel sched-
uler, followed by our performance model. More details on
two-level scheduling can be found in Appendix B of the
supplementary file available online.

4.1 Kernel Slicing
The purpose of kernel slicing is to divide a (ready) kernel into
multiple slices so that the finer granularity of each slice as a
kernel can create more opportunities for time sharing.
Moreover, we need to determine the minimum slice size for
keeping low slicing overhead (i.e., the difference between the
total execution time of all slices and the original kernel
execution time). Particularly, we experimentally determine
the the minimum slice with slicing overhead not greater than
p% of the kernel execution time. In this study, p% is set to
be 2 percent by default. We focus on the implementation of
slicing on PTX or SASS code. Note that, we choose thread
blocks as the units for slicing, instead of warps, because warps
within the same thread block usually have data dependency
with each other, e.g., with the usage of shared memory.

Kernelet performs kernel slicing by transforming a
single kernel invocation into a set of invocations. We
propose the index rectification process to ensure the output
is exactly the same as the original kernel invocation. The
transformation takes the PTX/SASS code of the kernel as
input, and does not require the source code. We give one
example and more details on kernel slicing in Appendix B
of the supplementary file available online.

4.2 Scheduling
According to our design rationales, our scheduling decision is
made on the basis of two ready kernels, to avoid the complexity
of scheduling three or more kernels as a whole. Thus,
we develop a greedy scheduling algorithm, as shown in
Algorithm 1. The scheduling algorithm considers new arrival
kernels in Lines 2-4 in the main algorithm. The main procedure
calls the procedure FindCoSchedule to obtain the optimal co-
schedule in Line 6. The co-schedule is represented in four
parameters hK1;K2; size1; size2i, where K1 and K2 denote the
two selected kernels with slice sizes size1 and size2 respectively.

Fig. 3. Design overview of Kernelet.

ZHONG AND HE: KERNELET: HIGH-THROUGHPUT GPU KERNEL EXECUTIONS 1525

Algorithm 1 Scheduling algorithm of Kernelet

1: DenoteR to be the set of kernels pending for executions;

2: if A new kernel call K comes then

3: Add K into R;

4: Perform profiling if the kernel has not been submitted
before;

5: while R! ¼ null do

6: hK1;K2; size1; size2i ¼ FindCoScheduleðRÞ;
7: Denote the co-schedule to be c;

8: Execute c on the GPU;

9: while R does not change, and K1 and K2 both still
have thread blocks

10: Generate co-schedule according to c and execute it on
the GPU;

Proc. FindCoScheduleðRÞ
Function: generate the optimal co-schedule from R.

1: Generate the candidate space for co-schedules C;
2: Perform pruning on C according to the computation and

memory characteristics of input kernels;

3: Apply the performance model (Section 4.3) to compute
CP for all the co-schedule in C;

4: Obtain the optimal co-schedule with the maximizedCP ;

5: Return the result co-schedule;

In Procedure FindCoSchedule, we first consider the entire
candidate space consisting of co-schedules on pair-wise
kernel combinations. Because the space may consist of
C2
n co-schedules (n is the number of kernels for consider-

ation), it is desirable to reduce the search space. Therefore,
we perform pruning according to the computation and
memory characteristics of input kernels (More details can
be found in Appendix B of the supplementary file available
online). After pruning, we apply the performance model
(Section 4.3) to estimate the CP for all co-schedules, and
pick the one with the maximized CP for execution on
the GPU.

4.3 Performance Model
We need a performance model for two purposes: firstly,
to select the two kernels for co-scheduling; secondly,
to determine the number of thread blocks for each kernel
in the co-schedule (i.e., the slice size). Previous perfor-
mance models on the GPU [11], [25], [31] assume a single
kernel on the GPU, and are not applicable to concurrent
kernel executions. They generally assume that the thread
blocks execute the same instruction in a round-robin
manner on an SM. However, this is no longer true on
concurrent kernel executions. The thread blocks from
different kernels have interleaving executions, which cause
non-determinism on the instruction execution flow. It is
not feasible to statically predict the interleaving execu-
tion patterns for warps from multiple kernels. To capture
the non-determinism, we develop a probabilistic perfor-
mance model to estimate the performance of co-schedule.
Our performance model has very low runtime overhead,
because it uses a series of simple parameters as input and
leverages the Markov chain theory to get the performance
of concurrent kernel executions.

Table 1 summarizes the notations used for our perfor-
mance model.

Since the GPU adopts SPMD model, we use the
performance estimation of one SM to represent the
aggregate performance of all SMs on the GPU. We model
the process of kernel instruction issue as a stochastic
process and devise a set of states for an SM during
execution. Based on the state transition probabilities of
the SM, we develop our Markov chain-based model for
single-kernel executions (homogeneous workloads). We
then extend the model for concurrent kernel executions
(heterogeneous workloads).

For presentation clarity, we begin with our description
on the model with the following assumptions, and relax
those assumptions at the end of this section. First, we
assume that all the memory requests are coalesced. This is
the best case for memory performance. We will relax this
assumption by considering both coalesced and uncoa-
lesced memory accesses. Second, we assume that the GPU
has a single warp scheduler. We will extend it to the GPU
with multiple warp schedulers.

Homogeneous Workloads
We first investigate the performance of a single kernel
executed on the GPU and each SM accommodates W active
warps at most.

An active warp can be in either of two states: idle or
ready. An idle warp is stalled by memory access, while a
ready warp has at least one instruction ready for execution.
Its state transition is illustrated in Fig. 4. When a warp is

TABLE 1
Notations in the Performance Model

Fig. 4. Warp state transition diagram.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141526

currently in the ready state, we have two cases for state
transitions by definition:

. remaining in the ready state with the probability of
Pr!r ¼ 1�Rm.

. transiting to the idle state with the probability of
Pr!i ¼ Rm.

When a warp is currently in the idle state, we also have
two cases for state transitions:

. transiting to the ready state with the probability of

Pi!r ¼ 1
ðL

ðW�IÞÞ
¼ W�I

L , where I is the number of idle

warps on the SM. (W � I warps will be executed in a
round, and W � I is also the time duration for the
execution of one round.)

. remaining in the idle state with the probability of
Pi!i ¼ 1� Pi!r ¼ L�WþI

L .

We specifically define the time step and state transition
of the Markov chain model to capture the GPU architec-
tural features. Although lack of official documentation,
we assume the GPU adopts a round-robin style warp
scheduling policy to minimize block synchronization
overhead. This assumption is also adopted in previous
studies [1], [11]. In each round, the warp scheduler polls
each warp to issue its ready instructions so all ready
warps can make progress. We model the SM state based
on the number of idle warps. We denote Si to be the SM
state where i warps are idle on the SM ði ¼ 0; 1; . . . ;W Þ.
Thus, we consider the state change of the SM in one
round and use round as time step in our Markov chain-
based model. In each round, every ready warp has an
equal chance to issue instructions. In contrast, models for
the CPU usually assume that the CPU will keep executing
one thread until this thread is suspended and model each
cycle as a step.

We use IPC to represent the throughput of the SM.
Thus, the number of idle warps on the SM is a key
parameter for IPC. More outstanding memory requests
usually lead to higher latency because of memory conten-
tion [1]. We adopt a linear memory latency model to
account for the memory contention effects. We calculate L
as L ¼ a0 � xþ b0, where x is the number of outstanding
memory requests, and a0 and b0 are the constant para-
meters in the linear model. We follow the previous micro
benchmarks on varying the number of outstanding mem-
ory requests [1] to obtain a0 and b0.

For homogeneous workload, the probabilities of state
transitions are the same for all ready warps in a round.
We assume when SM transits from Si to Sj, Ni!r idle
warps transit to the ready state and Nr!i ready warps
transit to idle state. The following conditions hold by
definition:

0 � Ni!r � Si
0 � Nr!i � W � Si
Nr!i �Ni!r ¼ Sj � Si:

8<
: (1)

With those constraints, there are multiple possible transi-
tions from Si to Sj (the transition probability is denoted as
Pij). Since the possible transitions are mutually exclusive
events, Pij is calculated as the sum of the probabilities of all

possible transitions. With all entries of the transition matrix
P obtained, we can calculate the steady-state vector of the
Markov chain. This is done by finding the eigenvector �
corresponding to the eigenvalue one for matrix P [21]

� ¼ ð�0; �1; . . . ; �W Þ: (2)

In Equation (2), �i is the probabilities that the SM is in state
Si in each round, i.e., the probability there are i idle warps
in one round. The duration of the time step is ðW � iÞ
cycles. In the case i ¼W , the round duration is one,
indicating no warp is ready and the SM experiences an idle
cycle. Hence, the estimated IPC is the ratio of non-idle
cycles given in equation (3), where

PW�1
i¼0 �iðW � iÞ is the

total non-idle cycles and �W is the total idle cycles

IPCK ¼
PW�1

i¼0 �iDiPW
i¼0 �iDi

: (3)

Heterogeneous Workloads
When there are multiple kernels running concurrently,
the model needs to keep track of the state of each
workload. Although we only consider two concurrent
kernels (K1 and K2) in scheduling, our model can be used
to handle more than two kernels.

Suppose there are two kernels K1 and K2, and each
has w1 and w2 active warps respectively ðw1 þ w2 ¼W Þ.
The number of possible states of the SM will be
ðw1 þ 1Þ � ðw2 þ 1Þ. The state space is represented as a
value pair ðp; qÞ with 0 � p � w1 and 0 � q � w2, where p
and q are the numbers of idle warps of K1 and K2

respectively. We first consider individual workload
state transition probabilities based the single kernel model.
State transitions of the two kernels are independent
with each other, since they are scheduled independently.
Thus, the probability that the SM transits from state ðpi; qi0 Þ
to state ðpj; qj0 Þ is the product of the individual transition
probabilities.

The steady state vector of our two kernel Markov chain-
based model is denoted as � ¼ f�ð0;0Þ; �ð0;1Þ; . . . ; �ðw1;w2Þg.
With �, we calculate the IPC of each workload using the
same method for homogeneous workloads, except the
parameters are defined and calculated in the context of two
kernels. For example, the round duration is equal to the
total number of ready warps of both kernels. Individual
IPCs of K1 and K2 is calculated as the ratio of non-idle
cycles for each workload, as shown in Eqs. (4) and (5),
respectively. The concurrent IPC is the sum of individual
IPCs (Eq. (6))

IPCK1
¼
Pw1�1

i¼0

Pw2

i0¼0 �ði;i0Þ � ðw1 � iÞPw1

i¼0

Pw2

i0¼0 �ði;i0Þ �Dði;i0Þ
(4)

IPCK2
¼
Pw1

i¼0

Pw2�1
i0¼0 �ði;i0Þ � ðw2 � i0ÞPw1

i¼0

Pw2

i0¼0 �ði;i0Þ �Dði;i0Þ
(5)

C ¼ IPCK1
þ IPCK2: (6)

With the estimated IPC, we now discuss how to estimate
the optimal slice size ratio for two kernels. We define the
slice ratio which minimizes the execution time difference of
co-scheduled slices as the balanced slice ratio. By minimizing
the execution time difference, the kernel-level parallelism

ZHONG AND HE: KERNELET: HIGH-THROUGHPUT GPU KERNEL EXECUTIONS 1527

is maximized. The execution time difference is calculated
as DT in Eq. (7)

DT ¼ 1

IPCK1

� IK1
� PK1

� 1

IPCK2

� IK2
� PK2

����
����: (7)

IKi and PKi represent the number of instructions per block
and the slice size of kernelKi ði ¼ 1; 2Þ. Since PKi is less than
the maximal number of active thread blocks, only a limited
number of slice ratios need to be evaluated to get the
balanced ratio.

Uncoalesced Access
So far, we assume that all memory accesses are coalesced
and each memory instruction results in the same number of
memory requests. However, due to the different address
patterns, memory instructions may result in different
amounts of memory requests. On Fermi GPUs, one
memory instruction can generate 1 to 32 memory requests.
Here we consider the two most common access patterns:
fully coalesced access, and fully uncoalesced access. We
extend our model to handle both coalesced and uncoa-
lesced accesses by defining three states for a warp: ready,
stalled on coalesced access (coalesced idle), and stalled on
uncoalesced access (uncoalesced idle). The memory oper-
ation latency depends on the memory access type. Since
uncoalesced access generates more memory traffic, its
latency is higher than that of coalesced access. We also use
the linear model to estimate the latency. By identifying the
ratio of coalesced and uncoalesced memory instructions,
we can easily extend the two-state model to handle three
states and their state transitions. Distinguishing between
coalesced and uncoalesced accesses increases the accuracy
of our model.

Adaptation to GPUs with Multiple Warp Schedulers
Our model assumes there is only one warp scheduler.
New-generation GPUs can support more than one warp
schedulers. The latest Kepler GPU features four warp
schedulers per SMX (SMX is the Kepler terminology for
SM) [19]. We extend our model to handle this case by
deriving a single pipeline virtual SM based on the
parameters of the SMX. The virtual SM has one warp
scheduler, and its parameters such as active thread blocks
and memory bandwidth are obtained by dividing the
corresponding parameters of the SMX by the number of
warp schedulers. This virtual SM can still capture the
memory and computation features of a kernel running
on the SMX. Experimental results in Appendix C of the
supplementary file available online show that perfor-
mance modeling on the virtual SM provides a good
estimation on the Kepler architecture.

We develop an efficient implementation on reducing the
model calculation cost and obtaining input parameters.
The details about those issues can be found in Appendix B
of the supplementary file available online.

In summary, our probabilistic model has captured
the inherent non-determinism in concurrent kernel execu-
tions. First, it simply requires only a small set of profiling
results on the memory and computation characteristics of
individual kernels. Second, with careful probabilistic

modeling, we develop a performance model that is
sufficiently accurate to guide our scheduling decision.
The effectiveness of our model will be evaluated in the
experiments (Section 5).

5 EVALUATION

In this section, we present the experimental results for
evaluating Kernelet on latest GPU architectures.

5.1 Experimental Setup
We have conducted experiments on a workstation
equipped with one NVIDIA Tesla C2050 GPU, one NVIDIA
GTX680 GPU, two Intel Xeon E5645 CPUs and 24 GB RAM.
We note that C2050 and GTX680 are based on Fermi and
Kepler architectures, respectively. One C2050 SM has two
warp schedulers, and each can serve half a warp per cycle
(with a theoretical IPC of one). In contrast, one GTX680
SMX features four warp schedulers and each warp
scheduler can serve one warp per cycle (with a theoretical
IPC of eight considering its dual-issue capability). More
details about those two architecture can be found in
Appendix C of the supplementary file available online.
Our implementation is based on GCC 4.6.2 and NVIDIA
CUDA toolkit 5.0.

Workloads
We choose eight benchmark applications with different
memory and computation intensivenesses. Sources of the
benchmarks include the CUDA SDK, Parboil Benchmark
[28], CUSP [2] and our home grown applications. The
benchmark applications include: Pointer Chasing (PC),
Sum of Absolute Differenes (SAD), Sparse Matrix Vector
Multiplication (SPMV), Matrix Multiplication (MM), Mag-
netic Resonance ImagingVQ (MRIQ), Black Scholes (BS),
and Tiny Encryption Algorithm (TEA). Details about the
benchmark applications can be found in Appendix C of
the supplementary file available online.

To evaluate the two-level scheduler design in Kernelet,
we define a scale factor ðsfÞ for each application. We define
scale factor equals one, when input data size of the
application equals the default size. Given a scale factor of
sf , we scale the input data size of the application to be sf
times as that with the scale factor of one. We vary the scale
factor to evaluate different cases for computation/memory
characteristics. Particularly, we are interested in two cases.
In Case I, all the scale factors equal one ðsf ¼ 1Þ. The
transfer of input data is done once at the beginning and
repeatedly accessed by serials of kernel invocations. This
case represents the applications where many kernels
continuously access the input data that can fit into the
GPU memory (e.g., GPU-based query processing in
databases [9]). In this case, the data transfer overhead is
ignorable (the input data transfer is amortized among
many kernel executions and the output transfer is over-
lapped with the kernel execution). Thus, we can study the
sole impact of kernel slicing and co-scheduling. In Case II,
we evaluate the impact of different scale factors. Particu-
larly, we evaluate the effectiveness of both kernel co-
scheduling and the overlapping on PCI-e data transfer and
the kernel execution. The GPU memory may not be large

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141528

enough to accommodate all working sets and the PCI-e
data transfers are more frequent than Case I.

To assess the impact of kernel scheduling under
different mixes of kernels, we create four groups of kernels
namely CI, MI, MIX and ALL (as shown in Table 2). CI
represents the computation-intensive workloads, whereas
MI represents workloads with intensive memory accesses.
MIX and ALL include a mix of CI and MI kernels. ALL has
all the eight kernels. In each workload, we assume the
application arrival conforms to Poisson distribution. The
parameter � in the Poisson distribution affects the weight
of the application in the workload. For simplicity, we
assume that all application has the same �. We also assume
� is sufficiently large so that at least two kernels are
pending for execution at any time for a high utilization of
the GPU. In the experiments, two instances of each kernel
are submitted per second on average (� ¼ 2 instances per
second). Thus, we fix the total number of instances of
kernel executions for all scheduling algorithms and
compare their total execution times (from submitting the
first kernel till the completing the last kernel).

Comparisons
To evaluate the effectiveness of kernel scheduling in
Kernelet, we have implemented the following scheduling
techniques:

. Kernel Consolidation (Base): the kernel consolida-
tion approach of concurrent kernel execution [23].

. Oracle (OPT): OPT uses the same scheduling
algorithm as Kernelet, except that it pre-executes
all possible slice ratios for all combinations to obtain
the CP and then determines the best slice ratio and
kernel combination. In another word, OPT is an
offline algorithm and provides the best throughput
for the greedy scheduling algorithm.

. Monte Carlo-based co-schedule (MC): We adopt
the Monte Carlo method to generate the performance
distribution of random co-scheduling plans in the
solution space. In each Monte Carlo simulation, we
randomly pick kernel pairs for co-scheduling with
random slice ratios. We denote the result of MC to be
MCðsÞ, where s is the number of Monte Carlo runs.

5.2 Results on Model Prediction
We evaluate the accuracy of our performance model in
different aspects, including the estimation of IPCs for
single kernel and concurrent kernel executions, and CP
prediction for concurrent kernel executions. Due to space
limitation, we present results on CP in this section, and
more experiments can be found in Appendix C of the
supplementary file available online.

For the eight benchmark applications, we run every
possible combination of kernel pairs and measure the IPC
for each combination. Fig. 5 compares the measured and
predicted IPCs with the suitable slice ratio given by our
model. For all the figures comparing the predicted and
measuredIPC and CP in this paper and the supplementary file
available online, we also show the two lines (y ¼ x� 0:2 for
C2050 and y ¼ x� 1:6 for GTX680) to highlight the scope
where difference between prediction and measurement is within
�20 percent of the peak IPC. Note, the theoretical IPCs
for C2050 and GTX680 are one and eight respectively.
If the result falls in this scope, we consider the estimation
well captures the trend of the measurement. Fig. 5 shows
most of the predictions are with this scope. More results
of model prediction can be found in Appendix C of the
supplementary file available online. For different kernel
combinations and slicing ratios, our model is able to well
capture the trend of concurrent executions for both
dynamic and static slice ratios.

5.3 Results on Kernel Scheduling
In this section, we evaluate the effectiveness of our kernel
scheduling algorithm by comparing with Base and OPT.
To simulate the continuous kernel submission process,
we initiate 1000 instances for each kernel and submit them
for execution according to Poisson distributions. Different
scheduling algorithms are applied and the total kernel
execution time is reported.

Results for Case I
We first study Case I, where PCI-e data transfer overhead is
small. Fig. 6 shows the total execution time of executing
those kernels on C2050 and GTX680. We also include the
performance of sequential execution for reference. On all
the four workloads with different memory and computa-
tion characteristics, Kernelet outperforms Base (with the
improvement 5/31 percent for C2050 and 7/23 percent for
GTX680). Kernelet achieves similar performance to OPT
(with the difference 1/3 percent for C2050 and 4/15 percent
for GTX680). The performance improvement of Kernelet
over Base is more significant on MIX and ALL, because
Kernelet have more chances to select kernel pairs with
complementary resource usage. Base only slightly im-
proves the sequential execution since each individual
kernel has sufficient thread blocks to entirely occupy the
GPU. We also show the number of kernel combinations
pruned during kernel scheduling with varying pruning
parameters in Appendix C of the supplementary file
available online.

TABLE 2
Workload Configurations

Fig. 5. Comparison between predicted and measured concurrent kernel
execution IPCson twoGPUswith optimal slice ratio. (a) C2050. (b)GTX680.

ZHONG AND HE: KERNELET: HIGH-THROUGHPUT GPU KERNEL EXECUTIONS 1529

We finally study the execution time distribution of
the scheduling candidate space. Fig. 7 shows the CDF
(cumulative distribution function) of the execution time
of the MC(1000) (1000 Monte Carlo simulations) on ALL
workload. None of the random schedules is better than
Kernelet. It demonstrates that random co-schedules hurt
the performance with a high probability due to the huge
space of scheduling plans.

Results for Case II
In Case II, we can evaluate the impact of memory transfer/
computation overlapping and kernel co-scheduling. Fig. 8
shows the total execution time including all memory
transfers and kernel executions comparison with different
algorithm variants ‘‘O1; O2’’ for sf ¼ 1 on C2050. We
observed similar results on GTX680. While the total input
data size of all kernels is roughly equal to the GPU memory
size, each kernel execution accesses different input data.
Thus, PCI-e data transfer is necessary for each kernel
execution, unlike Case I. Considering many kernel execu-
tions, the total working set size of all kernel executions
is much larger than the GPU memory size. In our notation,
O1 ¼ Y;N represents the algorithm with and without
memory/computation overlapping respectively, and
O2¼Y;N represents the algorithm with kernel co-scheduling
in Kernelet and the default execution method, respectively.
Thus, Y � Y represents our fully optimized Kernelet
system. Overall, Kernelet is up to 9.2 percent, 13.0 percent,
16.8 percent, and 17.5 percent faster than the other three
variants on CI, MI, MIX and ALL, respectively. It is the
combined improvement of kernel scheduling and memory
transfer/computation overlapping.

Let us analyze the impact of individual techniques in
more details. Comparing Y; Y and N; Y , we find that the

memory transfer/computation overlapping improves the
performance by 9 percent, thanks to the automated
memory management techniques. We divide the data
transfer time on PCI-e into two categories, depending on
whether the memory transfer is overlapped with GPU
kernel execution. In Kernelet, the ratios of the memory
transfer that overlaps with GPU kernel execution are
99 percent, 95 percent, 97 percent, and 97 percent on CI,
MI, MIX and ALL for Y; Y , respectively. Most of PCI-e data
transfer overhead is hidden by the kernel execution.

Comparing Y; Y and Y;N , we find that kernel co-
scheduling achieves a smaller performance improvement
compared with those in Case I. The improvement of kernel
co-scheduling is 5/12 percent on the four workloads. Fig. 9
shows the performance for different algorithm variants
for MIX when sf ¼ 1 and sf ¼ 2:5. When sf ¼ 2:5, the total
input data size of all kernels exceeds the GPU memory
size. Kernelet consistently improves the performance for
varying scale factors. We also note that, when sf ¼ 2:5,
95 percent of the PCI-e data transfer is overlapped with
kernel execution in MIX for Y; Y .

6 RELATED WORK

In this section, we discuss the related work in multi-kernel
executions on the GPUs. We also review existing studies on
scheduling on multi-core CPUs in Appendix D of the
supplementary file available online.

In the past few years, GPU architectures have under-
gone significant and rapid improvements for GPGPU
support. Due to lack of concurrent kernel support in early
GPU architectures, researchers initially proposed to merge
two kernels at the source code level [7]. They have three
major disadvantages compared with our approach. First,

Fig. 6. Comparison between different scheduling methods on both C2050 and GTX680. (a) C2050. (b) GTX680.

Fig. 7. CDF (cumulative distribution function) of execution time of
MC(1000).

Fig. 8. Execution time comparison of different Kernelet variants on
C2050 ðsf ¼ 1Þ.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141530

they will increase the resource usage of each thread block,
leading to lower SM occupancy and performance degrada-
tion. Second, those approaches require source code, which is
usually unavailable in shared environments. Third, it requires
two kernels with different block sizes avoiding using barriers
within the thread block, otherwise deadlocks may occur.

Recently, new-generation GPUs like NVIDIA Fermi
GPUs support concurrent kernel executions. Taking ad-
vantage of this new capability, a number of multi-kernel
optimization techniques [8], [15], [24] have been developed
to improve the utilization of GPUs. Ravi et al. [23] proposed
kernel consolidation to enable space sharing (different
kernels run on different SMs) and time sharing (multiple
kernels reside on the same SM) on GPUs. However, kernel
consolidation does not have space sharing and has little
time sharing when the launched kernels have sufficient
thread blocks to fully occupy the GPU. Furthermore, they
determined the kernel to be consolidated with heuristics
based on the number of thread blocks. In contrast, Kernelet
utilizes slicing to create more opportunities for time
sharing, and develops a performance model to guide the
scheduling decision. Wende et al. [30] exploited space
sharing for concurrent execution of kernels with a small
number of thread blocks. Peters et al. [22] used a persistently
running kernel to handle requests from multiple applica-
tions. GPU virtualization has also been investigated [8],
[15]. Pai et al. [20] proposed elastic kernels to allow
concurrent execution of thread blocks from different
kernels. However, their scheduling policies have not
considered the co-scheduling opportunities from different
memory/computation characteristics.

Recent studies also address the problem of GPU
scheduling when multiple users share one machine, e.g.,
RGEM [14] and PTask [24] manage the GPU at the
operating system level. All those scheduling methods do
not consider how to schedule concurrent kernels to fully
utilize the GPU resources. Automatic memory and data
transfer management has been studied [12]. Most studies
rely on advanced programming analysis techniques to
automate and optimize the data transfer between the
GPU memory and the main memory. Those techniques are
orthogonal to Kernelet.

As for performance models on GPUs, Hong [11] and Sim
[25] proposed analytical models based on the round-robin
warp scheduling assumption. All those models are de-
signed for a single kernel. Moreover, they usually require
extensive hardware profiling and/or simulation processes.
In contrast, our performance model is designed for
concurrent kernel executions on the GPU, and relies on a

small set of key performance factors of individual kernels
to predict the performance of concurrent kernel executions.

7 CONCLUSION

Recently, GPUs have been more and more widely used in
clusters and cloud environments, where many kernels are
submitted and executed on the shared GPUs. This paper
proposes Kernelet to improve the throughput of concurrent
kernel executions. Kernelet implements transparent memory
management and data transfer techniques on the GPU,
creates more sharing opportunities with kernel slicing, and
uses a probabilistic performance model to capture the non-
deterministic performance features of multiple-kernel execu-
tions. We evaluate Kernelet on two NVIDIA GPUs, Tesla
C2050 and GTX680, with Fermi and Kepler architectures
respectively. Our experiments demonstrate the accuracy of
our performance model, and the effectiveness of Kernelet by
improving the concurrent kernel executions by 5/31 percent
and 7/23 percent on C2050 and GTX680, respectively.

REFERENCES

[1] S.S. Baghsorkhi, I. Gelado, M. Delahaye, and W.-M.W. Hwu,
‘‘Efficient Performance Evaluation of Memory Hierarchy for
Highly Multithreaded Graphics Processors,’’ in Proc. PPoPP, 2012,
pp. 23-34.

[2] N. Bell and M. Garland, Cusp: Generic Parallel Algorithms for Sparse
Matrix and Graph Computations Version 0.3.0. accessed on May 16, 2013.
[Online]. Available: http://cusplibrary.github.io/.

[3] J. Duato, A. Pena, F. Silla, R. Mayo, and E. Quintana-Orti,
‘‘rCUDA: Reducing the Number of GPU-Based Accelerators in
High Performance Clusters,’’ in Proc. HPCS, 2010, pp. 224-231.

[4] M. Garland and D.B. Kirk, ‘‘Understanding Throughput-Oriented
Architectures,’’ Commun. ACM, vol. 53, no. 11, pp. 58-66, Nov. 2010.

[5] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, ‘‘GPUTeraSort:
High Performance Graphics Co-Processor Sorting for Large Data-
base Management,’’ in Proc. SIGMOD, 2006, pp. 325-336.

[6] N.K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and
J. Manferdelli, ‘‘High Performance Discrete Fourier Transforms
on Graphics Processors,’’ in Proc. SC, 2008, pp. 1-12.

[7] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, ‘‘Fine-Grained
Resource Sharing for Concurrent GPGPU Kernels,’’ in Proc. HotPar,
2012, pp. 1-6.

[8] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar,
and P. Ranganathan, ‘‘GViM: GPU-Accelerated Virtual Machines,’’
in Proc. HPCVirt, 2009, pp. 17-24.

[9] B. He, M. Lu, K. Yang, R. Fang, N.K. Govindaraju, Q. Luo, and
P.V. Sander, ‘‘Relational Query Coprocessing on Graphics Proces-
sors,’’ ACM Trans. Database Syst., vol. 34, no. 4, pp. 1-39, Dec. 2009.

[10] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and
P. Sander, ‘‘Relational Joins on Graphics Processors,’’ in Proc.
SIGMOD, 2008, pp. 511-524.

[11] S. Hong and H. Kim, ‘‘An Analytical Model for a GPU
Architecture with Memory-Level and Thread-Level Parallelism
Awareness,’’ in Proc. ISCA, 2009, pp. 152-163.

[12] T.B. Jablin, P. Prabhu, J.A. Jablin, N.P. Johnson, S.R. Beard, and
D.I. August, ‘‘Automatic CPU-GPU Communication Manage-
ment and Optimization,’’ in Proc. PLDI, 2011, pp. 142-151.

[13] Y. Jiang, X. Shen, J. Chen, and R. Tripathi, ‘‘Analysis and
Approximation of Optimal Co-Scheduling On Chip Multipro-
cessors,’’ in Proc. PACT, 2008, pp. 220-229.

[14] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R.R. Rajkumar, ‘‘RGEM: A Responsive GPGPU Execution Model
for Runtime Engines,’’ in Proc. IEEE RTSS, 2011, pp. 57-66.

[15] T. Li, V. Narayana, E. El-Araby, and T. El-Ghazawi, ‘‘GPU
Resource Sharing and Virtualization on High Performance
Computing Systems,’’ in Proc. ICPP, 2011, pp. 733-742.

[16] R. Nath, S. Tomov, T.T. Dong, and J. Dongarra, ‘‘Optimizing
Symmetric Dense Matrix-Vector Multiplication on GPUs,’’ in
Proc. SC, 2011, pp. 1-10.

Fig. 9. Impact of kernel co-scheduling for different sf on C2050.

ZHONG AND HE: KERNELET: HIGH-THROUGHPUT GPU KERNEL EXECUTIONS 1531

[17] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, ‘‘Bandwidth
Intensive 3-D FFT Kernel for GPUs Using CUDA,’’ in Proc. SC,
2008, pp. 1-11.

[18] NVIDIA, Whitepaper NVDIA’s Next Generation CUDA COm-
pute Architecture: Fermi, v1.1 edition.

[19] NVIDIA, Whitepaper NVIDIA GeForce GTX 680, v1.0 edition.
[20] S. Pai, M.J. Thazhuthaveetil, and R. Govindarajan, ‘‘Improving

GPGPU Concurrency with Elastic Kernels,’’ in Proc. ASPLOS, 2013,
pp. 407-418.

[21] A. Papoulis and R. Probability, Stochastic Processes. New York, NY,
USA: McGraw-Hill, 1991, vol. 3.

[22] H. Peters, M. Koper, and N. Luttenberger, ‘‘Efficiently Using a
CUDA-Enabled GPU as Shared Resource,’’ in Proc. CIT, 2010,
pp. 1122-1127.

[23] V.T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar, ‘‘Support-
ing GPU Sharing in Cloud Environments with a Transparent
Runtime Consolidation Framework,’’ in Proc. HPDC, 2011,
pp. 217-228.

[24] C.J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel,
‘‘PTask: Operating System Abstractions to Manage GPUs as
Compute Devices,’’ in Proc. SOSP, 2011, pp. 233-248.

[25] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, ‘‘A Performance
Analysis Framework for Identifying Potential Benefits in GPGPU
Applications,’’ in Proc. PPoPP, 2012, pp. 11-22.

[26] A. Snavely and D.M. Tullsen, ‘‘Symbiotic Job Scheduling for a
Simultaneous Multithreaded Processor,’’ in Proc. ASPLOS, 2000,
pp. 66-76.

[27] W. Stallings, Operating Systems: Internals and Design Principles,
6/E. New Delhi, India: Pearson Education India, 2009.

[28] J.A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G.D. Liu, and W.-M.W. Hwu, ‘‘Parboil: A Revised
Benchmark Suite for Scientic and Commercial Throughput
Computing,’’ Univ. Illinois at Urbana-Champaign, Chicago,
IL, USA, IMPACT Tech. Rep. IMPACT-12-01, 2012.

[29] V. Volkov and J.W. Demmel, ‘‘Benchmarking GPUs to Tune Dense
Linear Algebra,’’ in Proc. SC, 2008, pp. 1-11.

[30] F. Wende, F. Cordes, and T. Steinke, ‘‘On Improving the
Performance of Multi-Threaded CUDA Applications with Concur-
rent Kernel Execution By Kernel Reordering,’’ in Proc. SAAHPC,
2012, pp. 74-83.

[31] Y. Zhang and J.D. Owens, ‘‘A Quantitative Performance Analysis
Model for GPU Architectures,’’ in Proc. HPCA, 2011, pp. 382-393.

[32] ZilliansV-GPU: GPU Virtualization, accessed on May 16, 2013.
[Online]. Available: http://www.zillians.com/products/vgpu-gpu-
virtualization/.

Jianlong Zhong received the bachelor degree
in software engineering from Tianjin University,
China, in 2010 and is now pursuing the PhD
degree in the School of Computer Engineering,
Nanyang Technological University, Singapore.
His research interests include GPU computing,
cloud computing and parallel algorithms. His
recent work mainly focuses on parallel graph
processing on emerging hardware architectures
such as the GPU.

Bingsheng He received the bachelor degree in
computer science from Shanghai Jiao Tong
University in 2003, and the PhD degree in
computer science from Hong Kong University
of Science and Technology in 2008. He is
an assistant professor in Division of Networks
and Distributed Systems, School of Computer
Engineering of Nanyang Technological Univer-
sity, Singapore. His research interests are high
performance computing, cloud computing, and
database systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141532

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

