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Abstract—Recently, we have witnessed that cloud providers
start to offer heterogeneous computing environments. There
have been wide interests in both clusters and cloud of adopting
graphics processors (GPUs) as accelerators for various appli-
cations. On the other hand, large-scale graph processing is
important for many data-intensive applications in the cloud.
In this paper, we propose to leverage GPUs to accelerate large-
scale graph processing in the cloud. Specifically, we develop an
in-memory graph processing engine G2 with three non-trivial
GPU-specific optimizations. Firstly, we adopt fine-grained APIs
to take advantage of the massive thread parallelism of the
GPU. Secondly, G2 embraces a graph partition based approach
for load balancing on heterogeneous CPU/GPU architectures.
Thirdly, a runtime system is developed to perform transparent
memory management on the GPU, and to perform scheduling
for an improved throughput of concurrent kernel executions
from graph tasks. We have conducted experiments on an
Amazon EC2 virtual cluster of eight nodes. Our preliminary
results demonstrate that 1) GPU is a viable accelerator
for cloud-based graph processing, and 2) the proposed
optimizations improve the performance of GPU-based graph
processing engine. We further present the lessons learnt and
open problems towards large-scale graph processing with GPU
accelerations.

Keywords-Large-scale graph processing, GPGPU, graph
partitioning, cloud computing, GPU accelerations

I. INTRODUCTION

Large-scale graph processing has become popular for

various data-intensive applications on increasingly large web

and social networks. Due to the ever increasing sizes of

graphs, many applications host their graph processing tasks

in the cloud with a large number of commodity servers [1],

[2]. Many processing tasks are batch operations in which

many vertices and/or edges of the graph are accessed within

a task. Recent studies [1], [3], [4] have developed general

programming engines for such batch graph processing

tasks on the large-scale graph, and demonstrated very

good performance and scalability in the cloud environment.

However, existing studies mainly focus on upper-level soft-

ware technologies for performance optimizations, and little

work has been done on exploiting hardware architectural

features of cloud computing. Therefore, in this paper, we

investigate whether and how we can further improve the

efficiency of those general graph processing engines with

the consideration of hardware architectural features in the

cloud.

Cloud has evolved into a platform with heterogeneous

architectures. One of the representative heterogeneous ar-

chitectures in the cloud is graphics processing units (GPUs).

Amazon and Penguin have provided virtual machines with

GPUs. In addition to the public cloud, two out of the top

ten supercomputers are with GPUs integrated (according

to Top500 list of June 2013). GPUs have become an

effective accelerator for a wide range of applications from

computation-intensive applications (e.g., [5], [6]) to data-

intensive applications (e.g, [7], [8]). Compared with

multicore CPUs, new-generation GPUs can have much

higher computation power in terms of FLOPS and memory

bandwidth. For example, an NVIDIA Tesla C2050 GPU can

deliver the peak single precision floating point performance

of over one Tera FLOPS, and memory bandwidth of 144

GB/s. In specific to graph processing, the GPU has been

used as an accelerator for various graph processing appli-

cations [9], [10], [11], [12]. Encouraged by the significant

performance improvement of graph processing by a single

GPU, this paper attempts to integrate GPUs into distributed

graph processing engines.

Most current graph engines (e.g., [1], [3], [4]) are based

on (almost) the same programming model, which mainly

adopts vertex-oriented APIs for users to develop their graph

processing tasks. For example, Pregel [1] offers the user-

defined API Compute() executed on vertices, and executes

Compute() on all the vertices in parallel. This simple

vertex-oriented programming model can be applicable to

many graph processing operations. Thus, our research

objective is to improve the efficiency of vertex-oriented

programming model in the cloud with GPU accelerations.

Particularly, we develop the following key optimization

techniques for the efficiency of GPU-accelerated vertex-

oriented graph processing systems:

• A GPU-based graph processing system architecture
with fine-grained API support: There are two key de-

sign decisions on our proposed system: 1) fine-grained

API design, and 2) in-memory graph processing. The

single vertex-based API design of current systems like

Pregel [1] offers only coarse-grained parallelism, which

is inefficient for the massive thread parallelism of the

GPU. We decide to support fine-grained APIs at the

granularity of individual vertices, edges and messages.

The second decision on in-memory processing is to

avoid the costly random accesses to the hard disk so

that the GPU advantage can be maximized. This forms

two levels of parallelism on heterogeneous systems:
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massive thread parallelism within a GPU/CPU and the

parallelism across CPUs/GPUs.

• Load balancing for heterogeneous platforms: We are

facing the cloud system with heterogeneous platforms

where load balancing is critical for the overall perfor-

mance. Thus, we develop a graph partitioning frame-

work that leverages the popular of graph partitioning

algorithm to adapt to the heterogeneity of the (virtual)

cluster. Considering in-memory processing, we develop

a simple and effective load-balanced approach for

assigning graph partitions to different machines.

• A runtime system for automatically optimizing the
memory transfer between the main memory and the
GPU memory: A large-graph processing system usually

has many concurrent graph processing tasks that can

perform on the same graph or on different graphs. We

develop a runtime system for automatically managing

the data transfer between the main memory and the

GPU memory, and for scheduling the GPU kernels

with complementary resource usage for optimized

throughput.

As a start, we develop a system prototype named G2 to re-

alize all the GPU-based optimization techniques. G2 is based

on MPI (Message Passing Interface), and integrates the

vertex-based programming model and GPU accelerations.

G2 offers the same programming interfaces as Medusa [12],

a graph processing framework on the GPUs within a single

machine. As a start, we have evaluated the efficiency of G2

with synthetic graphs in a virtual cluster of eight nodes on

Amazon EC2. The preliminary results demonstrate that 1)

each of the proposed techniques improves the effectiveness

of the GPU acceleration; 2) putting them all together, G2

achieves a significant performance improvement of 50%

over the CPU-only approach. To the best of our knowledge,

G2 is the first attempt in building a GPU-accelerated

large-scale graph processing engine. We believe that the

experiences and methodologies in this study shed light on

the design and implementation of next-generation graph

processing engines.

Organization. The reminder of this paper is organized as

follows. Section II introduces the background and related

work. Section IV presents the system overview, followed by

the design and implementation in Section IV. We present

experimental results in Section V. We discuss the lessons

and insights in Section VI, and conclude this paper in

Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the background on the GPU

and its applications in clusters and cloud computing. Next,

we review the related work on general graph processing

engines.

A. GPU

GPUs have rapidly evolved into a powerful accelerator

for many applications, especially after CUDA was released

by NVIDIA. This paper focuses on the design and im-

plementation with NVIDIA CUDA. G2 takes advantage of

the concurrent kernel execution capability of new-generation

GPUs. With the introduction of CUDA, a GPU can be

viewed as a many-core processor with a set of streaming

multi-processors (SM). Each SM executes the instructions

in the SIMD (Single Instruction Multiple Data) manner. The

SMs are in turn executed in the SPMD manner. The program

is called kernel.
In CUDA’s abstraction, GPU threads are organized in

a hierarchical configuration: usually 32 threads are firstly

grouped into a warp; warps are further grouped into

thread blocks. The CUDA runtime performs mapping and

scheduling at the granularity of thread blocks. Each thread

block is mapped and scheduled on an SM, and cannot be

split among multiple SMs. Once a thread block is scheduled,

its warps become active on the SM. Warp is the smallest

scheduling unit on the GPU.

In both cluster and cloud environments, GPUs are

often shared by many concurrent GPU kernels (most

likely submitted by multiple users). To enable sharing

GPUs remotely, a number of software frameworks such as

rCUDA [13] have been developed. Recently, new-generation

GPUs like NVIDIA Fermi GPUs support concurrent kernel

executions. Taking advantage of this new capability, a

number of multi-kernel optimization techniques [14], [15]

have been developed to improve the utilization of GPUs.

Ravi et al. [16] proposed kernel consolidation to enable

space sharing (different kernels run on different SMs)

and time sharing (multiple kernels reside on the same

SM) on GPUs. In contrast, G2 utilizes slicing the kernels

into multiple slices to create more opportunities for time

sharing. GPU virtualization has also been investigated [15]

in the previous studies. GPU accelerations have also

been considered in large-scale data-intensive applications

including MapReduce [17] and data mining [18]. While

those applications are generally applicable to graph pro-

cessing, the optimization techniques of G2 are specially re-

designed for large-scale graph processing in the cluster/cloud

environment.

B. General Graph Processing Engines

Large graphs have arisen in a wide range of data-

intensive applications like social networks and Web. In

social networks, nodes often represent users and edges

may often represent relationships between users (friendship).

Nowadays, there are plenty of large social networks. For

example, the social network of Facebook consists of a billion

nodes and more than a hundred billion edges in 2012 [19].

LinkedIn contains almost 218 million nodes in the first

quarter 2013 [20]. Moreover, social networks are evolving
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in an unprecedented rate. For example, it has been reported

that the size of the Facebook network has increased from

roughly one million users in 2004 to one billion users in

2012 [19].

Distributed and parallel algorithms have been a classical

way to improve the performance of graph processing. On

multi-core CPUs, parallel libraries such as MTGL [21],

[22] have been developed for parallel graph algorithms.

To facilitate developing distributed graph algorithms in

the cluster/grid settings, software libraries such as Parallel

BGL [23] have been developed.

Emerging platforms including cloud computing and G-

PUs are becoming popular for graph applications. Various

specific parallel graph algorithms have been developed and

optimized in the cloud [2] and on the GPU [9], [24], [25].

Recently, vertex-oriented general graph processing engines

are developed in the cloud [1], [26], [3], [27] or on the

GPU [12]. However, none of them has leveraged the power

of cloud computing and GPUs as a whole. G2 is the first

attempt to bridge this gap.

The vertex-oriented programming model is based on

the key observation from previous studies [28], [29], [4]

that many common graph algorithms can be formulated

using a form of the bulk synchronous parallel (BSP)

model. Local computations are performed on individual

vertices. Vertices are able to exchange data with each other.

The same computation and communication procedures are

executed iteratively with barrier synchronization at the end

of each iteration. This common algorithmic pattern is also

adopted by distributed graph processing frameworks such

as Pregel [1] and distributed GraphLab [26]. For example,

Pregel applies a user-defined function Compute() on each

vertex in parallel in each iteration of the BSP execution.

The communications between vertices are performed with

message passing interfaces. Hama [30] and Giraph [27] are

two open-source projects targeting at large graph processing.

Distributed GraphLab is different from other engines in that

it supports asynchronous executions whereas others are syn-

chronous. Synchronous executions are simple and suitable

for the GPU architecture, since asynchronous executions

require complicated concurrency control. For those reasons,

G2 chooses to support synchronous executions.

On the GPU, Medusa [12] shares the same design

goal as Pregel in providing a programming framework

to ease development of graph algorithms, and in hiding

the complexity of the underlying runtime from developers.

G2 adopts the fine-grained API from Medusa, extends the

support to multiple graph partitions and supports two levels

of parallelism for graph processing.

III. SYSTEM OVERVIEW

In this section, we present the rationales on the G2 design,

followed by a system overview. We present the details on

the key optimization techniques for G2 in Section IV.

A. Design Rationales

A general large-scale graph processing engine should have

the following three key features:

Performance: Since we mainly consider supporting batch

graph processing tasks, throughput is the key optimization

metric for performance. Also, a high throughput leads to

high performance and productivity as well as low total

ownership cost. On the other hand, we attempt to reduce

the response time of each job, if our optimization technique

can significantly reduce the response time without significant

throughput degration.

Scalability: Due to the increasing data volume, the effective-

ness of how a system handle such big and complex graphs

is important.

Programmability: Parallel and distributed programming is

considered as a more challenging task than sequential

programming, and even more challenging for graph tasks.

Programmability measures the convenience of the program-

ming interfaces that the graph processing systems expose to

users.

To develop a large-scale graph processing system with

high performance, scalability and programmability, we have

the following design rationales.

Firstly, encouraged by the success of GPU accelerations in

graph processing [9], [10], [11], [12], we argue that the GPU

should be considered as a viable architectural support for

high performance of large-scale graph processing. However,

using the GPU alone does not guarantee high performance.

Moreover, compared with CPUs, GPUs are still expensive

devices. Thus, we need throughput-oriented optimizations

for graph processing on CPU/GPU architectures.

Secondly, we choose in-memory processing, rather than in

external storage. The DRAM price has dropped significantly,

almost with double-digit yearly drops in the past decade. In-

memory data processing becomes a popular paradigm for

data-intensive applications. As specific for graph processing

systems, we have two other arguments: 1) accesses to graph

data are mostly random, and external storage has very poor

random accesses; 2) compared with other data types such as

texts and multimedia, graphs are relatively small, usually in

the scale of TBs (e.g., assuming each edge takes eight bytes

for a hundred billion edges of Facebook graph [19]).

Thirdly, even the baseline graph processing engine should

store the graph into partitions, as opposed to a flat storage. A

general graph processing engine should allow the flexibility

of adopting a new graph partitioning algorithm. Moreover,

with the GPU-enabled processing, graph partitioning should

adapt to the heterogeneity of CPU/GPU architectures.

Lastly, we adopt the vertex-oriented programming model

for programmability, as many general large-graph processing

engines do. The vertex-oriented programming model can

express many graph operations [1], [26], [3], [27].
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(b) The architectural design of a G2 slave node

Figure 1. G2: a GPU-accelerated in-memory graph processing engine.

B. Architectural Design Overview

We develop a GPU-accelerated large-scale graph process-

ing engine named G2. G2 supports a GPU-friendly fine-

grained API for exploiting the massive thread parallelism of

GPUs (Section IV-A).

G2 shares many similar designs as other synchronous

engines. For example, its execution is based on BSP,

and messages are the main mechanism for inter-vertex

information exchange. Figure 1(a) shows the architectural

design of G2. Taking a graph as input, G2 first performs

graph partitioning according to the specified graph par-

titioning algorithm A. Suppose A can divide the graph

into k partitions at one time. We may use A recursively

so that one graph partition can reach a fine granularity

(Section IV-B). This paper uses the graph partitioning

algorithm in Surfer [3], which is an enhanced version

of metis [31]. With the message passing and in-memory

processing requirements, we find that MPI (Message Passing

Interfaces) is a good start for building a system prototype

of G2 on top of Medusa [12].

Graph partitions are stored in persistent storage (such as

Amazon EC2) for future usage. Prior to executing graph

processing tasks, G2 starts n slave nodes and loads the graph

partitions into the main memory of each slave nodes. Load

balancing is considered in this loading process.

Figure 1(b) shows the architectural design of a slave node.

It is a heterogeneous platform, with one CPU worker and

one GPU worker to handle graph processing tasks on the

CPU and on the GPU, respectively. The CPU worker and the

GPU worker are independent with each other, and execute

multi-threaded Pthread and CUDA programs, respectively.

For GPU processing, graph partitions are stored in the main

memory initially, and is copied to the GPU memory when

necessary. G2 embraces a runtime system to management the

data transfer and concurrent kernel executions on the GPU

(Section IV-C). Each of the CPU and the GPU workers are

implemented as a MPI process.

IV. DESIGN AND IMPLEMENTATION OF G2

This section presents three key optimization techniques

for G2, including two-level parallelism with fine-grained

API support, load balancing, and runtime system.

A. Two-Level Parallelism

Basically, G2 consists of two-level parallelism: multiple-

node processing at the coarse-grained level, and thread paral-

lelism within a CPU/GPU at the fine-grained level. Existing

vertex-oriented engines such as Pregel mainly expose the

coarse-grained parallelism. They cannot fully utilize the

massive thread parallelism of the GPU. Thus, G2 supports

fine-grained APIs that are suitable for BSP execution model

on the CPU/GPU. The basic idea is that users define the

APIs with the granularity of vertices/edges/messages, and

the G2 system automatically executes those APIs on graph

partitions.

As a start, we adopt the graph processing APIs of

Medusa [12]. Medusa is designed for graph processing

on the GPUs within a machine. It supports the APIs

namely EMV APIs, which enhance the current single vertex-

based API design to support efficient and fine-grained

graph processing on the GPU. For completeness, we briefly

introduce the Medusa APIs, and more details can be found

in the paper [12].

In order to write a graph processing program in G2,

developers simply implement their codes very similar to

those in Medusa. A program basically consists of two kinds

of APIs, namely EMV APIs and system-provided APIs.

First, Medusa provides six device code APIs for develop-

ers to write GPU graph processing algorithms. Each API is

either for processing vertices (VERTEX ), edges (ELIST ,

EDGE ) or messages (MESSAGE , MLIST ), as shown in

Table I. Using these APIs, programmers can define their

computation on vertices, edges and messages. The vertex

and edge APIs can also send messages to neighboring

vertices. The idea of providing these APIs is mainly for

efficiency. It decouples the single vertex API into separate

APIs which target individual vertices, edges or messages.

Each CPU/GPU thread executes one instance of the user-

defined API. The thread configuration such as the number

of threads is tuned to maximize CPU/GPU utilization. The

fine-grained data parallelism exposed by the EMV model

can better exploit the massive parallelism of the GPU.

Second, Medusa hides the GPU-specific programming

details with a small set of system provided APIs,

as shown in Table II. Particularly, Medusa provides

EMV < type >:: Run() to invoke the device code API,

which automatically sets up the thread block configurations

and calls the corresponding user-defined function. Medusa

allows developers to define an iteration which executes

a sequence of EMV < type >:: Run() calls in one host

function (invoked by Medusa :: Run()). The iteration

is performed iteratively until predefined conditions are
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Table I
USER-DEFINED APIS IN THE EMV MODEL

API Type Parameters Variant Description
ELIST Vertex v, Edge-list el Collective Apply to edge-list el of each vertex v
EDGE Edge e Individual Apply to each edge e
MLIST Vertex v, Message-list ml Collective Apply to message-list ml of each vertex v
MESSAGE Message m Individual Apply to each message m
VERTEX Vertex v Individual Apply to each vertex v
Combiner Associative operation o Collective Apply an associative operation to all edge-lists or message-lists

Table II
SYSTEM PROVIDED APIS AND PARAMETERS IN MEDUSA

API/Parameter Description
AddEdge (void* e), AddVertex (void* v) Add an edge or a vertex into the graph

InitMessageBuffer (void* m) Initiate the message buffer

maxIteration The maximum iterations that Medusa executes (231 − 1 by default)

halt A flag indicating whether Medusa stops the iteration

Medusa :: Run(Func f ) Execute f iteratively according to the iteration control

EMV<type>:: Run(Func f ′) Execute EMV API f ′ with type on the GPU

satisfied. Medusa offers a set of configuration parameters

and utility functions for iteration control.

In summary, the fine-grained API of Medusa is suitable

for G2, which offers simple yet effective CPU/GPU co-

processing to exploit both processors.

B. Load balancing

There are a few considerations for load balancing of G2.

Firstly, slave nodes in G2 may have different processing

capabilities and memory capacities. As shown in Figure 1,

G2 runs on heterogeneous architectures. The heterogeneity

can come from 1) users can acquire virtual machines of

different types: some with GPUs and others without; 2)

the GPUs can belong to different generations and thus

have different hardware processing power. Thus, we need

to assign the graph partitions according to the processing

capability of the slave node. Basically, a node with higher

processing power should be assigned with more graph

partitions. The other constraint is in-memory processing.

All the assigned graph partitions should fit into the main

memory of the slave node. Also, a graph partition should

be smaller than the main memory and the GPU memory of

each slave node.

Secondly, as we may apply the graph partitioning multiple

times in a recursive manner, graph partitions form a

hierarchy. The number of cross-partition edges is a straight

measure for network traffic, which varies across different

partition pairs. As the previous study [3], the subpartitions

generated from the same graph partition tend to have a larger

cross-partition edges than those generated from different

graph partitions at the same level. Given a data graph, we

need to determine the number of graph partitions and assign

graph partitions carefully according to the hierarchy.

We solve the problem as the steps illustrated in Algorith-

m 1. We briefly present some remarks on those steps.

In Line 2, we choose the largest of the three values for fine

granularity and better quality of load balancing.

Algorithm 1 Graph partitioning and load balancing

1: Check whether the graph can fit into the memory of all

the slave nodes. If false, raise an error to users.

2: Calculate P = max(n2, ||G||m , ||G||d ) (n is the number of

slave nodes, m and d are the smallest main memory

capacity and GPU memory respectively in the slave

nodes, ||G|| denotes the size of the graph G);

3: Divide the graph into P partitions with the specified

graph partitioning algorithm;

4: Estimate the processing capability of the slave nodes;

5: Calculate the number of partitions for each slave node,

according to their processing capability and memory

capacities;

6: Assign graph partitions to each slave node;

In Line 4, we estimate the processing capability for

each slave node. This is a tricky problem, since slave

nodes can have different processing capabilities on different

graph processing tasks. For example, the performance

improvement of the GPU over the CPU varies significantly

on graph processing tasks, which can be over an order of

magnitude differences according to the previous study [12].

As a start, we assemble a series of common graph processing

tasks (e.g., those in Section V) as the benchmark, and

run them against each kind of slave nodes. Suppose the

total execution time of finishing the benchmark to be t,
we calculate its processing capability to be 1

t . A higher

processing capability means a shorter time for processing

the same amount of graph data.

In Line 5, we use an iterative approach in calculating the

number of graph partitions for each slave node. At the

beginning of each iteration, we pretend to assign all the

graph partitions to the slave nodes, and each slave node

gets its share proportionally to its processing capability.

If all slave nodes can hold the assigned graph partitions

13
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Figure 2. Runtime systems for G2: automatic memory management and
kernel execution.

in the main memory, we stop the iteration. Otherwise, we

take away some graph partitions from those “overflowed”

machines till the remaining partitions can fit into main

memory. All those graph partitions are taken as the input

to the next iteration and the slave nodes with available main

memory are the candidates to assign more graph partitions.

In Line 6, we assign the graph partitions to each slave node

according to the result of Line 5. We assign graph partitions

with the priority that assigning the graph partitions generated

with a lower ancestor in the partition hierarchy.

Finally, it is possible to have other partitioning methods

(e.g., [32]). It is our future work to evaluate their impacts

on G2.

C. Runtime System

The runtime system of G2 addresses two issues for

GPU-based graph processing. Firstly, GPUs are used as

a co-processor. A graph partition needs to be transferred

from the main memory to the GPU memory before the

kernel execution and the results may be copied back after

the kernel execution. Secondly, GPU kernels can have

very different resource usage. For example, some graph

operations (like PageRank) are more computation-intensive

and other operations (like BFS) are more memory-intensive.

They can be combined to run on the GPU for further

improvement.

The G2 runtime system embraces a two-level scheduler

to handle the memory transfers and kernel execution. Such

a design is inspired by the classic multi-level process

scheduler design in operating systems [33]. Particularly, in

operating systems, the memory and the CPU are two major

resources and they are managed by two levels of schedulers:

one for selecting the processes to allocate in the main

memory (after memory allocations, processes are considered

to be ready), and one for selecting the ready process to

execute on the CPU. Similarly, a kernel also has states,

depending on whether the input data are available on the

GPU. Thus, we develop two levels of scheduling: memory

command scheduler and kernel scheduler. As a start, we

adopt our previous work [34] that performs kernel slicing

and scheduling for higher resource utilization. Due to the

space limitation, we refer the readers to our paper [34] for

more details. We briefly present the design for completeness.

Figure 2 shows an overview of the G2 runtime system.

The runtime system maintains two queue structures: waiting

queue and ready queue. The waiting queue stores kernels

in waiting state, and the ready queue stores the kernels

in ready state. Initially, kernels are submitted and are

temporarily buffered in the waiting queue. The memory

command scheduler automatically schedules execution of

GPU memory commands. If a kernel has all its input

data available on the GPU (i.e, its depending memory

commands and dependent executions are all finished), the

kernel is migrated from the waiting queue to the ready

queue. The kernel scheduler performs co-scheduling on

ready kernels according to how much their resource usage

is complementary with each other. The purpose of kernel

slicing is to divide a (ready) kernel into multiple slices so

that the finer granularity of each slice as a kernel can create

more opportunities for time sharing. Then, the slices from

the two kernels are co-scheduled and executed on the GPU

until either kernel is finished.

The memory command scheduler is responsible for

handling memory commands from applications, preparing

the input data for the kernel as well as copying the output

data to the main memory if appropriate. The memory

command scheduler maintains the memory commands for

the same kernel into one queue. When all the memory

commands of the kernel are available in the queue, the

memory command scheduler schedules those commands. If

the commands from more than one kernel are ready for

execution, we adopt the FCFS (First Come First Serve)

algorithm for simplicity.

When implementing memory command scheduler, we

make the following considerations. First, we need to change

the synchronous function calls for memory commands to

asynchronous ones. As a result, those function calls simply

puts the commands into the queue of the corresponding

kernel, and return immediately without really executing

the memory commands. Second, we perform the memory

commands of the same kernel in a batch so that we can

avoid the device memory allocation deadlock. Third, we

prefer to allocate page-locked host memory to exploit the

GPU’s capability of overlapping kernel execution with PCI-e

data transfer. If the page-locked memory reaches the system

limit, unlocked memory is allocated.

V. PRELIMINARY RESULTS

This section presents our preliminary results on our

research prototype. More extensive experiments will be

included in our technical report [35].

A. Methodology

We have conducted our experiments on Amazon EC2.

We use eight GPU instances. Each instance has 16 vCPU,

22.5GB DRAM and 2 NVIDIA Tesla M2050 GPUs. The

network is 10Gbps, shared with other instances in Amazon

EC2. We develop a system prototype named G2 on top

of MPICH2 v1.4.1. We use G2 to implement a set of
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Figure 3. Overall performance of G2.

common graph processing operations. The graph processing

operations include PageRank, breadth first search (BFS),

single source shortest paths (SSSP) and two-hop friends list

(TFL). TFL finds the list of two-hop friends for analyzing

social influence spread, community detection and so on. The

ratio of the selected vertices is 10% in our experiments. For

simplicity, PageRank runs for 10 iterations. Implementing

those operations with G2 is straightforward and thus we omit

the details for space interests.

As a start, we mainly use synthetic graphs for a full

control on evaluating the efficiency and scalability of

G2. We generate synthetic graphs simulating small world

phenomenon. We first generate multiple small graphs with

small-world characteristics using an existing generator [36],

and next randomly change a ratio (pr) of edges to connect

these small graphs into a large graph. The default value of

pr is 10%. We varied the sizes of the synthetic graphs to

evaluate the scalability. As G2 adopts in-memory processing,

we use one half of the main memory to store the graph

and the remaining memory for intermediate results. The

local cluster supports a graph with 36 GB at most (with

144 million vertices and 8 billion edges), and the virtual

cluster supports the graph up to 96 GB (with 384 million

vertices and 21 billion edges). By default, we use the largest

graph setting for assessing G2. All reported results are
normalized to the results of the baseline engine with CPU-
only approach.

B. Preliminary Results

We first present the preliminary results of running a single

application, followed by co-running multiple applications.

As a start, we present the results for co-running two

applications.

Single-Application Evaluations. Figure 3 shows the

overall performance comparison for running the four opera-

tions on the virtual cluster of Amazon EC2. For comparison,

we implement two variants of G2: one with GPU only and

the other one with both the CPU and the GPU. Overall,

G2 with GPU only achieves an improvement by 40%.

Combining the CPU and the GPU, G2 achieves an even

more significant performance improvement by 50%.

Multi-Application Evaluations. As a preliminary study

on multiple applications, we run three combinations on two

applications: 1) BFS+BFS: each application consists of 10
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Figure 4. The impact of G2 runtime system.

times of BFS; 2) PageRank+PageRank: each application

consists of a PageRank of 10 iterations; 3) BFS+PageRank:

one application runs PageRank of 10 iterations and the other

application runs BFS of 10 times. To assess the performance

impact of individual techniques, we disable individual

techniques: “G2(w/o MM)” and “G2(w/o KS)” mean the

runtime system without memory management and without

kernel scheduling, respectively. The results are shown in

Figure 4. The runtime system can further improve the

performance by 12% when automatic memory management

and kernel scheduling are both enabled on BFS+PageRank.

BFS+BFS and PageRank+PageRank have relatively small

performance improvement, since the resource usage is not

complementary for those two cases.

VI. LESSONS AND OPEN PROBLEMS

G2 is simply a starting point for GPU-accelerated large-

scale in-memory graph processing. This study will open up

many research opportunities towards hardware-accelerated

large-scale graph processing.

Architectural Design. In G2, in-memory processing and

GPU are the two key techniques for the performance.

However, as the increasing popularity of graph-centric

applications (such as the fast growing social graphs and web

graph), it is yet to confirm whether those two techniques are

the most favorable system design in terms of performance,

energy consumption and total ownership cost, among others.

Thus, in addition to main-memory based solution, one may

investigate other emerging storage such as solid state drive

(SSD), which also exhibits much faster random I/O speed

than hard disks. As for the GPU, one may explore other

accelerators like Intel Xeon Phi. More research efforts are

required on efficient data structures and algorithms for

graphs on such a hybrid system.

Application needs. Web and social network have been

two main driving applications for graph processing. Their

application needs evolve, from offline processing to online

processing. Many application needs such as data consistency

and transaction management received relatively less research

attention. They have already been difficult problems for flat

data like distributed relational databases, and will be more

challenging for GPU accelerations and graph operations.

Computation Model. “One size does not fit all.” Applica-

tion needs drive the computation model. Current systems
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are mainly based on vertex oriented execution model. It

is an open problem to extend those models with advanced

database techniques such as indexes and different needs in

applications and hardware architectures.

Other optimization criteria. In cloud computing, energy

consumption and monetary cost [37] are also important

optimization criteria. While GPU accelerations can signif-

icantly improve the performance, we still need to carefully

evaluate them in terms of energy efficiency and monetary

cost efficiency. New algorithms and architectural designs

may be invented for those new optimization goals.

VII. CONCLUSIONS AND FUTURE WORK

Large graph processing is an important big data ap-

plication. This paper proposes to accelerate large-scale

graph processing with GPUs in the cloud environment.

Specifically, we develop G2 as a GPU-accelerated in-

memory graph processing engine. Based on vertex-oriented

programming model, we develop a series of GPU-specific

optimizations including the fine-grained API design, load-

balanced graph partitioning, GPU-optimized runtime sys-

tems for GPU memory management and concurrent kernel

executions. Putting them all together into G2 leads to

significant performance improvement over its counterparts.

Our preliminary results demonstrate the performance im-

provement is by 50% on a virtual cluster in Amazon EC2.
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