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Abstract—General Purpose Graphics Processing Units
(GPGPU) have been used in high performance computing
platforms to accelerate the performance of scientific applications
such as simulations. With the increased computing resources
required for large-scale network simulation, one GPU device
may not have enough memory and computation capacities.
It is therefore necessary to enhance the system scalability
by introducing multiple GPU devices. It is also attractive to
investigate the performance scalability of Multi-GPU simulations.
This paper describes the simulation of information propagation
on multiple GPU devices, including the optimized network
simulation algorithms, the network partitioning and replication
strategy, and the data synchronization scheme. The experimental
results for scalable random networks show that the number of
simulation steps, computation time, synchronization time, and
data transfer time all affect the overall simulation performance.
In order to compare with random networks, we also conduct
simulations of scale-free networks. We can observe that the
node replication ratio in scale-free networks is smaller than that
in random networks and therefore the cost of data transfer and
synchronization is significantly reduced. This indicates that the
network structure is also an important factor that influences
the simulation performance in a Multi-GPU system.

Index Terms—Information Propagation, Multi-GPU, Dis-
tributed Simulation, Performance Analysis

I. INTRODUCTION

The simulation of network-based information propagation

has become a very important method to discover the propa-

gation behaviors over complex networks. For example, sim-

ulations can be applied on a complex social network to

explain how the network structure influences the propagation

behaviors among the social entities over time. However, large-

scale network simulations often require large computation

and memory resources. It is therefore necessary to develop

performance-oriented simulation techniques and map those

optimized simulation methods onto high performance com-

puting (HPC) platforms. For complex networks, the network

structures are usually irregular due to the complicated relation-

ships among the nodes. Such irregularity of the data structure

may exhibit very poor locality and excessive memory access.

Thus, the underlying network layout in the memory needs to

be carefully optimized. It is an open research question how

to optimize the data structure in the memory so that benefits

can be obtained in both temporal and spatial domains during

simulation.

Recently, the GPU has been widely applied in many scien-

tific applications for general purpose computing [18]. With the

emergence of new generations of GPUs, both the computation

capacity and the memory bandwidth have exceeded the CPUs.

Therefore General Purpose GPU (GPGPU) with many-core

processors are used as accelerators for various applications,

including network processing. The Multi-GPU system can pro-

vide more computing resources to process large-scale network

simulations with massive parallelism. However, multiple GPUs

also introduce extra communication cost between different

GPU devices to handle the data consistency since the original

network is partitioned into different GPU devices. The exces-

sive data communication as well as the data synchronization

may degrade the simulation performance.

In this paper, we introduce two optimized simulation algo-

rithms based on the corresponding network structures. They

are: (1) the Adaptive Vertex-Oriented Processing Loop (A-

Loop) on the Vertex-Oriented Structure and (2) the Edge-

Oriented Processing Loop (E-Loop) on the Edge-Oriented

Structure. In addition, the A-Loop is derived from algorithmic

adaptation between two basic information propagation models,

the Independent Cascade Model [5] and the Linear Threshold

Model [6]. According to the studies on model modification

and the equivalence between the two basic models [10], we

have developed optimization strategies that enable algorithmic

adaptation at runtime in order to choose the most efficient

algorithm at each simulation step [8].

We also note that the memory space of a single GPU

device is not enough to contain very large networks. The

space limit of a single GPU memory may become a limitation

that constrains the scalability of GPU simulations. It is there-

fore necessary to design a simulation paradigm on multiple

GPU devices for large-scale network simulation. Although

the Multi-GPU system introduces a synchronization overhead

that may reduce the parallel performance, this is acceptable

if it is more important to improve memory scalability than

to obtain a performance gain. With this motivation, we show

a Multi-GPU simulation design for information propagation

over complex networks in this paper. To obtain efficient

simulation performance on multiple GPU devices, an efficient

network partitioning and replication method is important. It

should not only balance the workload in each GPU device

but also reduce the data communication and synchronization
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cost. Metis [12], a widely used graph partitioning tool, is

adopted for partitioning the input network and generating a

partition file as the output. According to the original network

file and the partition file, we propose a replication scheme to

store the information of boundary nodes and the corresponding

cross-partition edges. The specified network structure (vertex-

oriented or edge-oriented) can then be built in different GPU

devices. The boundary and replica nodes in different devices

need to be synchronized in order to maintain the network state

consistency at each simulation step.

According to the simulation performance of large scalable

random networks (generated by GTgraph [1]) on multiple

GPU devices, we observe that there are four factors that influ-

ence the performance: (1) the number of simulation steps, (2)

computation time, (3) synchronization time, and (4) data trans-

fer time. Furthermore, in order to investigate how simulation

performance is influenced by different network structures, we

generate a set of scale-free networks using the RMAT method

[2] in GTgraph. With the performance comparison between

random networks and scale-free networks, we can observe that

the node replication ratio in scale-free networks is significantly

reduced compared to random networks. Therefore, the cost of

data transfer and synchronization at the end of each simulation

step is reduced.

The rest of this paper is structured as follows. Some

background information is introduced in section II. This is

followed by a description of the optimized simulation algo-

rithms and network structures in section III. In section IV, the

detailed system design and synchronization scheme for Multi-

GPU simulation are presented. In section V, we evaluate the

experimental results of scalable random network simulation

performance on multiple GPU devices. In section VI, we

investigate how the network structure influences the Multi-

GPU simulation performance by comparing random networks

and scale-free networks. Finally, conclusions and future work

are discussed in section VII.

II. BACKGROUND

A. Simulation of Information Propagation

In conventional network studies using mathematical mod-

els, the individual is essentially ignored [16] [17]. However,

many different types of relationships or attribute combinations

usually form a complex network structure. It is therefore

necessary to apply advanced agent-based modeling and sim-

ulation methods to analyze these behaviors. The simulation

of information propagation aims to investigate the interactive

behaviors between Active nodes and Inactive nodes within

a given network. Currently, the independent cascade model

and the linear threshold model are widely used in studying

the behaviors of information propagation over networks. In

the independent cascade model, we define an initial set of

active nodes A0 at step 0. The information propagation unfolds

in discrete time steps: at step t, the newly active node vi
has a single chance to activate its inactive neighbor u with

an independent probability p(vi,u) ∈ [0, 1]. If vi succeeds

in activating u, u will transit its state from inactive to

active at step t + 1 [5]. Such a process continues until no

more possible activations are available. In the linear threshold

model, each node on the network is randomly assigned a

threshold Tu ∈ [0, 1] with a specific probability distribution

(usually a uniform distribution). At step t, each inactive

node is influenced by its active neighbors (a set At, where

At is ø if no active neighbor exists). The influence weight

between the active node vi and the inactive node u can be

expressed as an independent probability b(vi,u). Thus, node u’s

influence weight from its active neighbors can be calculated

and represented by
∑l

i=1 b(vi, u), where l denotes the number

of active neighbors [6]. If
∑l

i=1 b(vi, u) > Tu, u’s state will

transit from inactive to active at step t+ 1.

B. GPU Architecture

As illustrated in [18], many-core streaming GPUs can also

be used to perform computation in applications traditionally

handled by CPUs. With a GPU parallel computing model

such as CUDA [3], developers can ease their programming

complexity to use stream processing on non-graphics data.

Essentially, a GPGPU consists of multiple streaming multi-

processors (SMs) and each SM consists of multiple streaming

processors (SPs). For example, a Nvidia Fermi C2050 GPU

[14] card has 14 SMs and each SM consists of 32 SPs. A

set of 32 concurrent threads are grouped into a scheduling

unit, called a warp. The 448 CUDA cores can share 3 GBs

device memory with bandwidth of 144 GBs/sec. However, the

high bandwidth utilization is achieved by coalesced memory

access. A memory request issued by a warp can be coalesced

into one memory transaction if all the memory addresses

fall into the same cache line of GPU memory with size of

128 bytes. Otherwise, the number of memory transactions

is equal to the number of cache lines accessed. With the

massive parallelism, GPUs have been used to accelerate graph

processing which is relevant to network simulation. Some

research works investigate the design and implementation of

several graph algorithms such as Breadth-First Search (BFS)

and Single Source Shortest Path (SSSP) [7][11][19]. In our

previous work [8], we have shown that an average 15x parallel

speedup can be gained on one Fermi C2050 GPU device

compared to the serial CPU performance.

III. SIMULATIONS OF INFORMATION PROPAGATION OVER

COMPLEX NETWORKS

A. Algorithm Description

In this paper, we assume that the node’s threshold is

equal to the system threshold T = 1 − P , where P is the

transmissibility probability, such as the transmissibility in SIR

infectious disease studies on SARS [13]. According to the

model definition, we first introduce two types of agent-based

simulation algorithms named as C-Loop, and T-Loop. The C-

Loop and T-Loop can be considered as general simulation

approaches to represent the cascade model and the threshold

model respectively.
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C-Loop: Starting from the active nodes in the network, each

active node will go through its contact neighbors at each sim-

ulation step and test whether it can propagate the information

to the inactive neighbors with a specific probability. If the

inactive nodes receive the information, they will change state

to be active at the next step.

T-Loop: In contrast to the C-Loop, the T-Loop starts from

the inactive nodes and traces the contact neighbors’ state at

each step. The inactive node can be activated at the next step

by any active neighbor if the transmissibility with a specific

probability P is satisfied.

We can define the following notations: V : vertex set, E:

edge set, V dst: corresponding destination vertex set of the

source vertex, srci: state of the source vertex i, dstj : state

of the destination vertex j (for the E-Loop, srci and dsti are

the states of the source and destination vertex associated with

edge i), p: transmission probability.
1) Adaptive Vertex-Oriented Processing (A-Loop): Accord-

ing to the model equivalence between the C-Loop and the

T-Loop, we can carry out the algorithmic adaptation at the

proper time to obtain the best simulation performance gain.

Since only one or a few active nodes are introduced into the

network in the beginning, we can choose the C-Loop first and

swap to the T-Loop at the simulation step where the workload

of the T-Loop is less than that of the C-Loop [8].

Algorithm 1 A-Loop

Initialization:
Set C-Loop as the Initial Configuration
Set AdaptF lag = false

Iteration:
1: if AdaptF lag == false then
2: Process Network with C-Loop
3: for i = 1 → |V | do
4: if srci == Active then
5: for j = 1 → |V dst| do
6: if dstj == Inactive then
7: srci → dstj with p
8: end if
9: end for

10: end if
11: end for
12: if the Adaptation Condition is Satisfied then
13: Set AdaptF lag = true
14: end if
15: else
16: Process Network with T-Loop
17: for i = 1 → |V | do
18: if srci == Inactive then
19: for j = 1 → |V dst| do
20: if dstj == Active then
21: dstj → srci with p
22: end if
23: end for
24: end if
25: end for
26: end if

2) Edge-Oriented Processing (E-Loop): We can also pro-

cess the network simulation using an edge-oriented approach.

The E-Loop starts from each edge element and checks the

states of the connected pair of nodes. If the two connected

nodes have a different state such as Active-Inactive, the

information can be propagated from the active to the inactive

node with the given probability. The E-Loop on the edge-

oriented structure is an algorithm with constant computational

complexity in network browsing at each simulation step.

Algorithm 2 E-Loop

Iteration:
1: for i = 1 → |E| do
2: if srci == Active then
3: if dsti == Inactive then
4: srci → dsti with p
5: end if
6: else
7: if dsti == Active then
8: dsti → srci with p
9: end if

10: end if
11: end for

B. Structures of Network Storage

In this sub-section, we introduce the two different types of

data structures for the network storage in hardware.
1) Vertex-Oriented Structure: Figure 1 illustrates the

vertex-oriented structure. With this structure, each node has

a contact list for its connected neighbors, and it also appears

in its neighbors’ contact list. That is, we need to keep a

bidirectional graph for network storage for efficient process-

ing. Different from directed graphs, we use the state of the

vertex attribute (Active or Inactive) instead of the directed

edge to determine the direction of information flow between

two connected nodes.
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Fig. 1: Vertex-Oriented Structure

2) Edge-Oriented Structure: With this structure, simulation

starts from the edge array and checks the connected pair

of nodes’ states. Since the network can be considered as

an undirected graph, we only need one copy of each edge

instead of two to represent the network structure. It is therefore

possible to reduce spatial complexity in the network storage.

In practice, the memory space of the edge-oriented structure

is approximately one half of the vertex-oriented structure. The

edge-oriented structure is shown in Figure 2.

IV. SYSTEM DESIGN OF MULTI-GPU SIMULATION

In this section, we introduce the method to partition one

logical network to multiple physical partitions on GPU de-

vices. Furthermore, we describe the synchronization algorithm
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between different GPU devices that is executed at the end of

each simulation step.
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Fig. 2: Edge-Oriented Structure

A. Network Partitioning

In order to perform the network partitioning using Metis

[12], both the vertex-oriented and the edge-oriented structures

are considered as directed graphs. Metis balances the number

of vertices in each partition and also minimizes the number

of edges cut in order to minimize the data replication and

cost of synchronization. As the result of graph partitioning,

each cross-partition edge is cut and the connected head-vertex
and tail-vertex are placed into two different partitions. It

is therefore necessary to store the cross-partition edge and

associated nodes’ information in the proper partition.

For both vertex-oriented processing and edge-oriented pro-

cessing, we maintain replicas for the head vertex of each cross-

partition edge in the partition where the tail vertex resides.

Also, each cross-partition edge is stored in its tail partition.

Thus, we can process our network simulation on different GPU

devices independently.

1) Partitioning with a Vertex-Oriented Structure: With a

vertex-oriented structure, the complex network is represented

by a bidirectional graph. For each edge that is cut, the nodes

connected by that edge are both head vertices and tail vertices.

As shown in Figure 3 (where the shaded circles denote

replicas), the partitioning and replication scheme can ensure

the correct interaction between the active and the inactive

nodes. For example, suppose A is an active node in Partition 1

and node I is an inactive node in Partition 2. As the simulation

executes, the C-Loop processes A→ I in Partition 2 and the

T-Loop processes I → A in Partition 1.
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Fig. 3: Partition with Vertex-Oriented Structure

2) Partitioning with an Edge-Oriented Structure: As shown

in Figure 4, we have only one copy of the edge between a pair

of vertices in the edge-oriented structure. However, for the

purpose of partitioning, we treat the graph as unidirectional,

and for each edge that is cut, we store a replica of the head

vertex (e.g. node I) in the tail vertex (e.g. node A) partition.

During simulation execution, the direction of the edge is

not important. With the edge-oriented structure, the number

of replicas is less than that in the vertex-oriented structure.

However, in some very large-scale complex networks, there

are many cross-partition edges between vertices. Thus, nearly

every vertex is replicated in each of the other partitions. In

this case, the number of replicas may be almost the same as

that in the vertex-oriented structure.
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Fig. 4: Partition with Edge-Oriented Structure

In Multi-GPU simulation, each GPU device maintains a

Boundary Table and a Replica Table. The Boundary Table
stores the boundary vertices (nodes) in its partition which

have replicas in other partitions that point to tail vertices.

In contrast, the Replica Table is used to replicate the head

vertices which reside in the other partitions but point to

vertices in its own partition. As shown in Figure 5 (a), GPU 1

maintains a boundary table which consists of 3 segments for

the boundary nodes with replicas that reside in GPUs 2, 3, and

4 respectively. The replica table in GPU 1 stores the replica

nodes from GPUs 2, 3, and 4 respectively. Figure 5 (b) shows

the boundary and replica tables of Partition 1 in the example

given in Figure 3.

�'.(�����#�/0��

*&1�

�'.(�����#�/0��

*&1�� *&1��

2�30! ��#�/0��

� � � �

*&1� *&1�� *&1�� , � ) *

2�30! ��#�/0��

��� ���

&���!�!'(���
!(��������4�!�(����5��. �.��

*&1��
#'

)�'6

Fig. 5: Boundary and Replica Tables

B. Distributed GPU Simulation and Synchronization

Since the boundary node and its replicas in other partitions

represent the same logical node in the original network, it

is necessary to synchronize the state of the boundary and

replica nodes at the end of each simulation step. Either the
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boundary or replica node may contain the updated state result.

To perform the synchronization, we first need to copy the

boundary nodes’ state to the boundary table and copy the

replica nodes’s state to the replica table. We can then transfer

the boundary and replica tables from the GPU devices to

the Boundary Buffer and the Replica Buffer on the host

CPU to process the synchronization. The boundary/replica

buffer consists of boundary/replica tables from different GPU

devices. The synchronization between the boundary table and

replica table for 3 GPU devices is illustrated in Figure 6. The

boundary buffer updates and records the correct nodes’ state

after the Boundary-Replica synchronization.
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Fig. 6: Boundary-Replica Synchronization for 3 GPUs

We note that there may be multiple copies of boundary

nodes that reside in the boundary table. For example, in Figure

5 (b), the node C has two copies in the boundary table of

Partition 1. It is therefore necessary to synchronize the mul-

tiple copies of the boundary node after the Boundary-Replica
synchronization. As shown in Figure 7 (a), we construct a

Redundancy Table for each GPU device which resides in the

CPU. With the same size as the boundary table, the redundancy

table maintains the redundancy lists for each boundary node,

where a list stores the boundary buffer index of multiple copies

of that node.

As shown in Figure 5 (b), there are two copies of boundary

node C which map to Partition 3 and Partition 4 respectively.

Thus, each copy of C keeps the other copy’s array index in

the redundancy table, as shown in Figure 7 (b). According

to the redundancy table of each partition, we are able to

further update the boundary buffer in order to synchronize

those boundary nodes with multiple copies.
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Fig. 7: Redundancy Table for Partition 1

After the synchronization process, we can obtain the up-

dated node state in the boundary buffer on the CPU memory.

We can transfer the synchronized data from the boundary

buffer to each GPU’s boundary table and replica table. Each

GPU device can further update the boundary and replica nodes

to complete the entire synchronization procedure. The details

of the synchronization are illustrated in Algorithm 3.

Algorithm 3 Synchronization Algorithm

1: // Data Copy on Devices (GPUs)
2: for i = 1 → NumGPUs do
3: Copy boundary nodes’ status and replica nodes’ status to

Boundary and Replica Tables respectively
4: end for
5: // Data transfer from Devices to Host (GPUs → CPU)
6: for i = 1 → NumGPUs do
7: Transfer GPU’s Boundary and Replica Tables to CPU
8: end for
9: // Synchronization on Host (CPU) with OpenMP

10: for i = 1 → NumGPUs do
11: for j = 1 → NumSegments do
12: Synchronization between Boundary and Replica nodes in

different partitions
13: Update the Boundary Buffer
14: end for
15: end for
16: for i = 1 → NumGPUs do
17: for k = 1 → RedundancyListSize do
18: Check Redundancy Table and Synchronize multiple bound-

ary nodes
19: end for
20: end for
21: // Data transfer from Host to Devices (CPU → GPUs)
22: for i = 1 → NumGPUs do
23: Transfer corresponding Boundary Buffer segments to other

GPUs’s Replica Tables
24: Transfer corresponding Boundary Buffer segments to its GPU

Boundary Table
25: end for
26: // Data Copy on Devices (GPUs)
27: for i = 1 → NumGPUs do
28: Copy Boundary and Replica Tables to boundary nodes’ status

and replica nodes’ status respectively
29: end for

V. PERFORMANCE EVALUATION WITH RANDOM

NETWORKS

In this section, we evaluate the Multi-GPU simulation

performance. The transmission probability for node activating

is set to be 0.01. The experiments are conducted on a server

with two Intel Xeon E5645 CPUs and four Fermi C2050 GPU

devices. First, we show a case study on a random network

with 1 million nodes and 256 million edges (1m256m). This is

followed by a performance investigation on scalable networks.

A. Case Study with a 1m256m Random Network

The propagation behaviors on a 1m256m random network

with both vertex-oriented processing and edge-oriented pro-

cessing are shown in Figure 8. As each GPU now performs

its own random number generation [4], the state results may

not be exactly the same for different numbers of GPU devices.

However, the state results are very similar at each simulation

step. We note that all simulations converge within 20 steps.

Compared to the edge-oriented structure, the vertex-oriented

structure of the 1m256m network is too large to be executed

183183183183



���
� � �� �� ���

�

�

�

�

��	
��
�

���������
�����

��
���
�

�
��
�

��

��
�

�
��
�
��
�

�����
 ������
!"����	#$��������%&







�
'$(�
)
'$(�
�
'$(�

� � �� �� ���

�

�

�

�

��	
��
�

���������
�����

��
���
�

�
��
�

��

��
�

�
��
�
��
�

�����
 ������
!*�%�#$��������%&







�
'$(
�
'$(�
)
'$(�
�
'$(�

���

Fig. 8: 1m256m State Results during Simulation

on one GPU device. The simulation performance with vertex-

oriented processing and edge-oriented processing is shown

in Figure 9 and Figure 10 respectively. The execution times

shown are for network browsing only and do not include the

random number generation. The detailed analysis of random

number generation in a Multi-GPU system can be found in [9].

In these figures, the overall execution time is broken down into

separate times for computation, synchronization on CPU, and

data transfer between CPU and GPU.

As shown in Figure 9 (a) and (b), and Figure 10 (a) and

(b), the computation time still dominates the overall perfor-

mance both in vertex-oriented processing and edge-oriented

processing. We also note that the multiple GPUs can share

the original computation workload.

However, by increasing the number of GPU devices, the cost

of data synchronization and the cost of data transfer between

CPU and GPUs grows significantly. Figure 9 (c) and Figure

10 (c) indicate that the cost of synchronization increases with

an increasing number of newly active nodes in the network

and decreases as the propagation on the network eventually

converges. This is comparable with the network propagation

behavior shown in Figure 8. That is, most of the nodes are

activated at step 11 and step 12, and the large number of

newly active nodes may result in a large amount of state

differences between boundary and replica nodes. Thus, the

maximum synchronization cost appears between step 11 and

step 12. Furthermore, according to the experimental results,

we note that the more GPU devices we use, the higher the

synchronization cost.

In Figure 9 (d) and Figure 10 (d), we show the data transfer

performance between CPU and GPUs. Since the boundary

and the replica tables are pre-built before simulation, the

data transfer performance is quite stable at each simulation

step. Interestingly, for this 1m256m random network, we note

that the synchronization performance and the data transfer

performance with vertex-oriented processing are comparable

with edge-oriented processing. It indicates that in networks

where the number of edges per node is very large, the number

of boundary and replica nodes in the edge-oriented structure

and the vertex-oriented structure are very similar since nearly

every node is replicated in each of the other partitions.

As shown in Figure 11, according to the simulation per-

formance at each step, we can calculate the total execution

time for the entire simulation. With vertex-oriented processing,

the simulation takes 397.9ms on 2 GPUs, 418.8ms on 3
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Fig. 9: Vertex Processing on 1m256m Random Networks
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Fig. 10: Edge Processing on 1m256m Random Networks

GPUs, and 488.4ms on 4 GPUs. In contrast, with edge-

oriented processing, the simulation spends 2234.9ms on 1

GPU, 1120.0ms on 2 GPUs, 846.9ms on 3 GPUs, and 816.4ms

on 4 GPUs. The experimental results indicate that vertex-

oriented processing can obtain the best performance gain on 2

GPUs. We also observe that edge-oriented processing shows

excellent speedup on multiple GPUs compared to that of

vertex-oriented processing.
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Fig. 11: Total Execution Time of 1m256m Random Network
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B. Performance Studies with Scalable Random Networks

In this subsection, we investigate the Multi-GPU simulation

performance on scalable networks. In order to show the

performance scalability, we conduct two sets of experiments.

They are: (1) Node-Scaling experiments: we fix the number

of edges but scale up the number of nodes, and (2) Edge-
Scaling experiments: we fix the number of nodes but scale up

the number of edges (“m” denotes “million”).

• In Node-Scaling experiments, we have 1m128m,

2m128m, 4m128m, 8m128m random networks

• In Edge-Scaling experiments, we have 4m32m, 4m64m,

4m128m, 4m256m random networks

We show the total time of edge-oriented processing in

Figure 12 (a) and (b), and the total time of vertex-oriented

processing in Figure 12 (c) and (d), excluding time for random

number generation. Since the number of simulation steps may

differ for different sizes of networks, this affects the total

time (sum of the execution times for each simulation step).

We therefore show the number of simulation steps on each

network in the figure.
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Fig. 12: Total Execution Time

In the Node-Scaling experiments, we observe that the

number of simulation steps becomes larger as the number

of nodes increases, from 35 steps (1m128m network) to

200 steps (8m128m network). Note that on networks with

a smaller number of nodes, we can obtain a performance

gain by multiple GPU devices for edge-oriented processing. In

particular, we can achieve better performance with 2 GPUs for

networks with 1m, 2m, and 4m nodes than that with a single

GPU device. Compared to the constant network processing

complexity in edge-oriented processing, the vertex-oriented

processing can achieve optimized computational complexity

by using the adaptive A-Loop algorithm. Thus, the cost of

synchronization and data transfer may dominate the overall

performance with multiple GPU devices. Furthermore, with an

increased number of GPU devices, the cost of synchronization

and data transfer increase significantly and may become per-

formance bottlenecks and degrade the Multi-GPU simulation

performance.

In the Edge-Scaling experiments, we fix the number of

nodes but increase the number of edges. We note that with

the very large 4m256m network, a single GPU device is not

enough to contain the network structure. We also note that

the number of simulation steps decreases as the number of

nodes increases, from 1000 steps (4m32m network) to 60

steps (4m256m network). Due to the increasing number of

edges between the same number of nodes, the propagation

can converge in fewer simulation steps. As shown in Figure 12

(b) and (d), multiple GPUs with edge-oriented processing can

share the computational workload. However, there is a trade-

off between the computation performance improvement and

the synchronization and data transfer cost. Compared to edge-

oriented processing, the cost of synchronization and the cost

of data transfer in vertex-oriented processing are the dominant

factors that influence the simulation performance.

According to the performance comparison between Single-

GPU and Multi-GPU simulation using edge-oriented process-

ing, we can obtain better performance by Multi-GPU on

1m128m (3 GPUs), 2m128m (3 GPUs), 4m128m (2 GPUs),

and 4m256m (3 GPUs) networks respectively. In vertex-

oriented processing, we can obtain a performance gain by

Multi-GPU only on the 1m128m (2 GPUs) network.

Essentially, there are four factors which affect the sim-

ulation performance, Stimulation Steps, Computation Time,

Synchronization Time, and Data Transfer Time. It is therefore

necessary to discuss each factor in detail.

The number of simulation steps measures how long the

information propagation takes to converge. Such a convergence

behavior is highly influenced by the average number of edges

per node in random networks. However, in scale-free networks

[15], the convergence behavior is also influenced by a few

nodes which have a very large number of edges compared

to others. In the experiments with random networks, we note

that the number of simulation steps varies according to the

average number of edges per node. In practice, all the networks

can converge within the number of simulation steps shown

in the figures except the 4m32m network. In particular, the

simulation of the 4m32m network can propagate to 99.7%

nodes within 400 steps and eventually reach to 99.9% nodes

at 1000 steps. Therefore, we can conclude that if we double the

average number of edges per node, the number of convergence

steps is roughly halved.

The total computation time on GPU (sum of the com-

putation times for each simulation step, excluding the data

transfer and synchronization time at the end of each step)

is shown in Figure 13. We can observe that the workload

of network processing can be shared by multiple GPU de-

vices, both in edge-oriented processing and in vertex-oriented

processing. However, compared to the total execution time

shown in Figure 12, the cost of synchronization and data

transfer may become a bottleneck in Multi-GPU processing.

In Figure 13 (a), the number of simulation steps is the

main factor which affects the edge-oriented execution time

in Node-Scaling experiments. However, as shown in Figure

13 (b), the computation time in Edge-Scaling experiments is
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influenced not only by the number of simulation steps but

also by the number of edges. In vertex-oriented processing,

the computation time is obviously influenced by the number

of nodes. More importantly, we can observe that the Multi-

GPU computation performance is highly optimized but the

total performance is dominated by the cost of synchronization

and data transfer.
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Fig. 13: Total Computation Time on GPU

We also identify the maximum synchronization time during

simulation, which is shown in Figure 14. As we discussed

in the case study of the 1m256m network, the maximum

synchronization time appears in the middle of the simulation

when many nodes are newly activated. In the Node-Scaling
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Fig. 14: Maximum Synchronization Time

experiments, the maximum synchronization time grows sig-

nificantly when increasing the number of nodes. In the Edge-
Scaling experiments, with an increasing number of edges,

the number of cross-partition edges also increases. Thus, the

number of boundary nodes and replica nodes increases as

well. This results in a high synchronization cost since more

boundary-replica nodes need to be synchronized when we

scale up the number of edges. The experimental results also

indicate that the synchronization cost highly depends on the

number of partitions.

The data transfer time measures the time spent to collect

data from GPUs and the time spent to transfer the updated

data from CPU back to GPUs. As the performance of data

transfer only depends on the size of the boundary table and

the size of replica table in the GPU devices, the Data Transfer
Time is quite stable at each step. We can therefore measure

the data transfer performance according to the average value at

each simulation step, which is shown in Figure 15. According

to the experimental results, we note that scaling the network

size and changing the number of partitions change the size of

boundary and replica tables. Furthermore, the boundary table

size and the replica table size directly affect the data transfer

performance.
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Fig. 15: Average Data Transfer Time

According to the synchronization performance we have

discussed above, we note the maximum synchronization cost

and the average data transfer cost are directly influenced by

the same factors, including the size of the boundary and

replica tables, and the number of partitions. Therefore, we can

define a metric to investigate the data replication performance

in the Multi-GPU system. The Replication Ratio R denotes

the average node replication, where R = ReplicaBufferSize
NumberofNodes .

Given a network which is partitioned into P partitions, we

can have R ∈ [0, P − 1]. Here, R = 0 if there are no edges

between different partitions. However, R = P−1 if each node

is replicated in each of the other P −1 partitions. To compare

the replication ratio between the vertex-oriented structure and

the edge-oriented structure in the Multi-GPU system, we show

the replication ratio of scalable networks in Figure 16.

We can observe that the replication ratio increases with

an increased number of partitions. In addition, the vertex-

oriented structure shows a higher replication ratio than the

edge-oriented structure in the cases where the average number

of edges per node is relatively small, both in the node-scaling

experiments and in the edge-scaling experiments. However, in

the cases with a large number of edges per node, the vertex-

oriented structure and the edge-oriented structure show a

similar performance in data replication. That is, the replication
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ratio R approximates to P − 1.
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Fig. 16: Replication Ratio of Scalable Networks

C. Discussion of Simulation Performance of Random Net-
works on Multi-GPU

According to the detailed performance analysis of scalable

random networks, we can observe that the replication ratio of

random networks is high. The high replication ratio results

in an expensive cost of data transfer and synchronization

at the end of each simulation step. It offsets the massive

processing capability of multiple GPU devices. Furthermore,

in the simulations with vertex-oriented processing, we note

that the cost of data transfer and synchronization becomes

a bottleneck and dominates the total execution time. As the

adaptive simulation algorithm is optimized according to its

algorithmic complexity, the pure computation time on GPU

is very small. It approximates to zero in the beginning and

the end of the simulation (e.g. Figure 9 (b)). The Multi-GPU

system can only show its computing advantages in the middle

of the simulation where a large network browsing workload is

required for processing. In the beginning and the end of the

simulation, the cost of data transfer and synchronization can

be considered as a constant overhead (e.g. Figure 9 (c) and

(d)). Such an overhead is accumulated with the number of

simulation steps. Therefore, those vertex-oriented processing

experiments with a larger number of simulation steps are

significantly influenced by the cumulative cost of data transfer

and synchronization at the end of each simulation step. How-

ever, simulation performance with edge-oriented processing is

not significantly influenced by the number of simulation steps

since all performance factors are stable at each simulation step

except for the synchronization (e.g. Figure 10).

VI. PERFORMANCE STUDIES WITH SCALE-FREE

NETWORKS

We have noted that the high replication ratio of random

networks on Multi-GPU results in an expensive cost of data

transfer and synchronization. In this section, we show how

the simulation performance is influenced by the network

structures. We use the RMAT method to generate a set of scale-

free networks. The simulation performance between random

networks and scale-free networks are compared on multiple

GPUs.

As shown in Figure 17, the nodes in a scale-free network

show an unbalanced number of connected edges. With the

power-law degree distribution, a few nodes have very large

contact lists compared to others and form node clusters within

the network. The number of connections between these clus-

ters may be very small compared to the random networks with

uniform degree distribution. Thus, we may benefit from the

reduced cost of data transfer and synchronization. As shown in

the previous section, the replication ratio is an important factor

that influences the cost of data transfer and synchronization.

Such a cost of data transfer and synchronization at each

simulation step further influences the performance at each step.
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Fig. 17: Random and Scalable Networks

The replication ratio of certain scale-free networks is shown

in Figure 18. It shows that the replication ratio of the scale-

free networks is smaller than that of the random networks.
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Fig. 18: Replication Ratio Comparison

In addition, it is very interesting that for the scale-free

networks the replication ratio of 3 GPUs is close to that of 2

GPUs. With the detailed analysis of the replica buffer, we can

observe there are only a few boundary nodes in one of the

three partitions so that the total size of the replica buffer of 3

GPUs is comparable with that of 2 GPUs. Thus, the cost of

data transfer and the cost of maximum synchronization on 3

GPUs are comparable with that on 2 GPUs. The performance

analysis of data transfer and synchronization of a 1m128m

RMAT scale-free network is shown in Figure 19.
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Fig. 19: Cost of Data Transfer and Synchronization (1m128m)
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As the cost of data transfer and synchronization is re-

duced significantly in simulations of scale-free networks, we

may achieve performance improvement using multiple GPU

devices. The total execution time is shown in Figure 20,

again excluding time for random number generation. The

experiments terminate at 20 steps, 37 steps and 85 steps

for 1m128m, 2m128m, 4m128m networks respectively. We

can observe that vertex-oriented processing is still the best

algorithm in simulations of scale-free networks. Furthermore,

compared to the Multi-GPU vertex-oriented processing perfor-

mance on random networks, we note that a performance gain

can be obtained in the Multi-GPU vertex-oriented processing

on scale-free networks.
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Fig. 20: Total Execution Time of RMAT Scale-free Networks

Using a baseline of single GPU vertex-oriented process-

ing performance, the Multi-GPU system can achieve 11.3%,

30.7%, 29.1% performance improvement for simulation of the

1m128m scale-free network on 2, 3 and 4 GPUs respectively.

For the simulation of the 2m128m scale-free network, we

can achieve 7.4% performance improvement on 3 GPUs

compared to the single GPU vertex-oriented processing. For

the simulation of the 4m128m scale-free network, we cannot

obtain a performance gain in vertex-oriented processing on

multiple GPUs. This is because the number of simulation steps

for the 4m128m network is larger than that for the 1m128m

and 2m128m scale-free networks. Its cumulative cost of data

transfer and synchronization during simulation increases sig-

nificantly compared to the other two cases. Compared to the

optimized computation time of vertex-oriented processing, the

cost of data transfer and synchronization dominates the total

execution time. Thus, the Multi-GPU system cannot show

its computing advantage in vertex-oriented processing of the

4m128m network.
However, we can obtain performance improvement in edge-

oriented processing in scale-free networks. This is because

the algorithmic complexity of edge-oriented processing is

approximately constant at each simulation step. Thus, we can

observe that the Multi-GPU system can show its massive

parallel processing advantages in simulation of information

propagation. Using a baseline of single GPU edge-oriented

processing performance, we can obtain an average 10.0%,

34.4%, and 36.1% performance improvement on 2, 3, and 4

GPUs.

VII. CONCLUSIONS

With the motivation of extending the space scalability of

GPU simulation, we have presented the simulation perfor-

mance of information propagation over complex networks on

Multi-GPU. With an efficient data replication and synchro-

nization scheme, we can map the optimized A-Loop and E-

Loop simulation algorithms onto multiple GPU devices. The

simulation performance is comprehensively evaluated in large

scalable networks. The experimental results show that the

number of simulation steps, computation time, synchronization

time, and data transfer time affect the overall simulation

performance. Although the Multi-GPU system introduces an

overhead, this is acceptable if it is more important to enhance

the system scalability for very large network simulations than

to obtain a performance gain. Furthermore, we generate certain

scale-free networks using the RMAT method in GTgraph. It

shows that the replication ratio of scale-free networks is much

lower compared to random networks. The cost of data transfer

and synchronization at the end of each simulation step is also

reduced significantly. Therefore, we can obtain performance

improvement using multiple GPU devices.
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