GViewer: GPU-Accelerated Graph Visualization and
Mining

Jianlong Zhong and Bingsheng He

Nanyang Technological University

1 Introduction

Visualization is an effective way of identifying the patterns of interests (such as commu-
nities) in graphs including social networks and Web [8l6]]. There have been a number of
tools developed for graph visualizations, e.g., Tulip, Gephi and GMine [8]. All of these
tools use the CPU as the main power to calculate the graph layouts for visualization,
such as force-directed layout [2]. However, the layout calculation is usually compu-
tation intensive, for example, the force-directed layout has the complexity of O(N?),
where IV is the number of vertexes in the graph. In our experiments, the CPU-based so-
lution takes more than half one hours on the CPU to layout a graph with 14.5 thousand
vertexes.

Instead of laying out the entire graph, existing tools usually address this performance
issue with an off-line multi-scale approach, where the entire graph is partitioned with
the multi-level partitioning algorithm. The graph layout is limited to the graph data at
the lowest level, and each partition consists of dozens of vertexes. While the multi-level
approach improves the response time, the static graph partitioning has limited the flow
and the scope of graph exploration. Users can only follow the pre-computed multi-level
graph layout to explore the graph. Additionally, there is little information visualized for
boundary vertexes at each graph partition. The limited flexibility hurts the effectiveness
of visualization on graph mining.

With the limitations of existing graph visualization tools in mind, we propose to
accelerate the graph layout calculation with graphics processors (GPUs), and further
to support interactive graph visualization and mining. The adoption of GPU is moti-
vated by the recent success of GPGPU (General Purpose computation on GPUs), where
GPUs have become many-core processors for various database tasks [415]. As a start,
we develop a graph layout library on the GPU. The library includes multiple commonly
used graph layouts [[8], such as force-directed layout [2]], spectral layout [1] and tree
layout [3]. The inherent data parallelism of calculating the graph layouts facilitates im-
plementing the algorithm on the GPU. Moreover, we utilize the GPU hardware features
to reduce the memory latency. As a result, the GPU-based graph layout calculation on a
NVIDIA Quadro 5000 GPU is over 8.5 times faster than its CPU-based counterpart on
the Intel quad-core W3565 CPU. As a side product, calculating the graph layout on the
GPU eliminates the overhead of data transfer between the main memory and the GPU
memory. Note, existing approaches need to transfer the graph layout data from the main
memory to the GPU for rendering.

With the accelerated layout calculation as a building block, we develop user interac-
tions for graph visualization and mining. Currently, user interactions include the simple

A. Datta et al. (Eds.): SocInfo 2011, LNCS 6984, pp. 304-307, 2011.
(© Springer-Verlag Berlin Heidelberg 2011



GViewer: GPU-Accelerated Graph Visualization and Mining 305

graph operations, i.e., filtering, vertex selections, zooming in/out, and drilling in/out.
Thanks to the GPU acceleration, these user interactions offer good interactive user
experiences.

We have implemented these techniques into a system named GViewer. We will
demonstrate the following two key aspects of GViewer: (1) Efficient graph layout calcu-
lation. GViewer performs the graph layout calculation at runtime for the subgraph spec-
ified in the user interaction. Additionally, we also perform a side-by-side comparison
between the GPU-based algorithm and its CPU-based counterpart. (2) User interactions
in GViewer to support graph visualization and mining.

2 System Implementation

We implement GViewer with a recent GPU programming framework named CUDA.
Currently, GViewer supports the commonly used graph layouts [8], such as force-
directed layout [2], spectral layout [[1] and tree layout [3]]. We use OpenGL for graphics
rendering and the CUDA-OpenGL inter-operability support for collaboration between
computation and visualization.

GPU-Accelerated Graph Layout. The force-directed layout has good quality layout
result, strong theoretical foundations, simplicity and interactivity [2]. The basic idea
of the force-directed layout is physical simulation, where vertexes are modeled as ob-
jects with mechanical springs and electrical repulsion among them. The edges tend to
have uniform length because of the mechanical spring force, and vertexes that are not
connected tend to be drawn further apart due to the electrical repulsion.

The force-directed layout calculation is an iterative process. In each iteration, the
algorithm calculates the new position for each vertex based on its current position, the
total spring force from its neighbor vertexes and the total electrical repulsion from its
unconnected vertexes. That is, for each iteration, we need to calculate the force (either
spring force or repulsion) between any two vertexes. A basic implementation is that
each GPU thread calculates the force for a vertex, through scanning the vertex list and
calculating the force during the scan. While the basic implementation takes advantage
of the thread parallelism of the GPU, it incurs excessive memory accesses.

We improve the memory performance of the basic implementation with two hard-
ware features of GPU, i.e., coalesced accesses and shared memory. In CUDA, T' GPU
threads are grouped into a warp (I' = 32 in current CUDA). If the threads in a warp
access consecutive memory addresses, these accesses are coalesced into a single re-
quest such that the bandwidth utilization is improved. The shared memory is a piece
of fast on-chip memory for storing the frequently accessed data. Combining these two
features, a warp first reads 1" vertexes into the shared memory, and then each thread in
the warp calculates the partial forces on the 7" vertexes. Next, this calculation repeats
until the vertex list is exhausted. With the coalesced access and the shared memory, the
number of memory requests is significantly reduced.

The spectral layout [[1]] is based on the calculation of the eigenvector of the adja-
cency matrix of the graph. We implement the Lanczos algorithm for the eigenvector
calculation [7] with CUDA BLAS library.



306 J. Zhong and B. He

The tree layout is to show a rooted tree-like formation for a graph. It is suitable for
a tree-like graph. We use breadth first traversal (BFS) to generate the tree layout. The
GPU-based BFS is performed in k iterations. Initially, the input set includes s only,
where s is a root vertex defined by the user. In each iteration, we span one hop from the
input set of vertexes in order to get all the neighbor vertexes within one hop. We use an
array flag to indicate whether a vertex is firstly accessed in the kth iteration. Initially,
only the flag for s is set to be zero, and other flags are -1. At the ¢th iteration, we get
the neighbor list of the vertex whose flag equals to (i — 1). This is implemented using a
map primitive [4]]. A map is similar to a database scan, with a CUDA feature coalesced
access memory optimizations for bandwidth utilization. Next, we set the flag for each
vertex in the neighbor list: if the flag is -1, it is set to be ¢; otherwise, the flag does not
change. The iteration ends when no flag is set within the iteration. Given the BFS result,
we can calculate the position of each vertex in the display region, by considering the
tree height and the fanout [3]].

3 Case Studies

We evaluate GViewer on a commodity machine with 2GB RAM, one NVDIA Quadro
5000 GPU and one Intel quad-core W3565 CPU. The operating system is Windows 7.
We extract an undirected graph from DBLP (http://dblp.uni-trier.de/xml/) for demon-
stration: each author as a vertex, and two connected vertexes meaning co-authorship
between the two corresponding authors. The co-authorship represents the relationship
between any two authors of the same paper. The extracted graph consists of 820 thou-
sand vertices and 5.7 million edges.

We present the major result, including the comparison between the CPU- and the
GPU-based implementation, and community discovery.

Timeline for CPU (sec)

0 171 341 512 682 853 1024 1194
0 20 40 60 80 100 120 140

Timeline for GPU (sec)

Fig. 1. Side-by-side comparison between the GPU- and the CPU-based force-directed layout

GPU vs. CPU-based layouts. We conduct a side-by-side comparison between the CPU
and the GPU. Figure [l shows the screen shots during the process of the CPU- and the
GPU-based visualization on the graph with D = 96 and C = 8 in the force-directed
layout. Along the time line, we can imagine the difference on the user experience be-
tween the CPU- and the GPU-based visualizations. For example, in order to see the
fourth screen shot, the user needs to wait for 512 seconds on the CPU-based visualiza-
tion, and only needs to wait for 60 seconds on the GPU-based visualization. Note, the
FD-layout algorithm takes around one thousand iterations before the layout becomes
stable.



GViewer: GPU-Accelerated Graph Visualization and Mining 307

Community Discovery. We demonstrate the flow of exploring the graph with a specific
author in order to find his/her co-authorship community. We use Jiawei Han as an exam-
ple of community discovery: (1) As the first step, we select “Jiawei Han” and highlight
its neighbors with two hops. The result is omitted here. (2) We drill down from Jiawei
with two hops. GViewer visualizes the subgraph with the force directed layout (The
figure is omitted due to space constraints). We observed that Jiawei has a large two-hop
co-author community. (3) If we set the number of hops to be one, we can easily find
that Jiawei’s most important coauthors (Figure[2).

Fig. 2. One hop from “Jiawei Han”

Acknowledgement. This work is supported by an NVIDIA Academic Partnership
(2010-2011) and an AcRF Tier-1 grant in Singapore.

References

1. Beckma, B.: Theory of Spectral Graph Layout. Technical report, MSR-TR-94-04 (1994)

2. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw.
Pract. Exper. 21(11) (1991)

3. Grivet, S., Auber, D., Domenger, J.-P., Melancon, G.: Bubble tree drawing algorithm. In: In-
ternational Conference on Computer Vision and Graphics (2004)

4. He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N., Luo, Q., Sander, P.: Relational joins on
graphics processors. In: SIGMOD (2008)

5. He, B., Yu, J.X.: High-throughput transaction executions on graphics processors. In: Proc.
VLDB Endow., vol. 4, pp. 314-325 (February 2011)

6. Koenig, P.-Y., Zaidi, F., Archambault, D.: Interactive searching and visualization of patterns
in attributed graphs. In: Proceedings of Graphics Interface (2010)

7. Parlett, B.N.: The symmetric eigenvalue problem. Prentice-Hall, Inc., Upper Saddle River
(1998)

8. Rodrigues Jr., J.F., Tong, H., Traina, A.J.M., Faloutsos, C., Leskovec, J.: Gmine: a system for
scalable, interactive graph visualization and mining. In: VLDB (2006)



	GViewer: GPU-Accelerated Graph Visualization and Mining
	Introduction
	System Implementation
	Case Studies
	References




