
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 1

NV-Tree: A Consistent and Workload-adaptive
Tree Structure for Non-volatile Memory

Jun Yang, Qingsong Wei, Member, IEEE, Chundong Wang, Cheng Chen, Khai Leong Yong,
and Bingsheng He

Abstract—The non-volatile memory (NVM) which can provide DRAM-like performance and disk-like persistency has the potential to
build single-level systems by replacing both DRAM and disk. Keeping data consistency in such systems is non-trivial because memory
writes may be reordered by CPU. Although ordered memory writes for achieving data consistency can be implemented using the
memory fence and the CPU cache line flush instructions, they introduce a significant overhead (more than 10X slower in performance).
In this paper, we focus on an important and common data structure, B+Tree. Based on our quantitative analysis for consistent tree
structures, we propose NV-Tree, a consistent, cache-optimized and workload-adaptive B+Tree variant with significantly reduced
consistency cost (up to 96% reduction in CPU cache line flush). To further optimize NV-Tree under various workloads, we propose a
workload-adaptive scheme in which the sizes of individual nodes can be dynamically adjusted to improve the performance over time.
We implement and evaluate NV-Tree and NV-Store, a key-value store based on NV-Tree, on an NVDIMM server. NV-Tree outperforms
the state-of-art consistent tree structures by up to 12X under write-intensive workloads. NV-Store increases the throughput by up to
7.3X under YCSB workloads compared to Redis.

Index Terms—Non-volatile Memory, Data Consistency, Tree, Workload-adaptive

F

1 INTRODUCTION

R ECENTLY, the next generation of Non-Volatile Memory
(NVM) technologies has attracted more and more atten-

tions from both industrial and academic researchers. New
types of memory such as phase-change memory (PCM) [1],
spin-transfer torque memory (STT-RAM) [2] and Memristor
[3] are under active development and have the potential to
provide comparable performance and much higher capacity
than DRAM. More important, they are persistent. The pos-
sibility of NVM working as both the main memory and the
storage device at the same time brings a revolution to the
traditional multi-layered memory and storage architecture.

Given the projected cost [4] and power efficiency of
NVM, there have been a number of proposals that replace
both disk and DRAM with NVM to build a single-level
system [4], [5], [6]. Such systems can (1) eliminate the
data movement between disk and memory, (2) fully utilize
the low-latency byte-addressable NVM by connecting it
through memory bus instead of legacy block interface [7],
[8], [9], [10], [11]. However, with data stored only in NVM,
in-memory data structures and algorithms must be carefully
designed to not only support high-throughput data process-
ing, but also efficiently avoid any inconsistency caused by
system failure. In particular, if the system crashes when an
update is being made to an in-NVM data structure, it may be
left in a corrupted (inconsistent) state as the update is only
half-done. To achieve data consistency in NVM, implement-
ing persistent and ordered memory writes is fundamental.

• J. Yang, Q. Wei (corresponding author), C. Wang, C. Chen, K. L. Yong
are with Data Storage Institute, A-STAR, Singapore.
E-mail: {yangju, WEI Qingsong, wangc, CHEN Cheng,
YONG Khai Leong}@dsi.a-star.edu.sg

• B. He is with Nanyang Technological University, Singapore.
E-mail: BSHE@ntu.edu.sg

However, a modern CPU which is designed on the basis
that main memory is always volatile DRAM may cache and
reorder memory writes to NVM for the sake of performance.
Therefore, it is non-trivial to develop consistent NVM-based
systems and data structures, as demonstrated in previous
works [12], [13], [14], [15], [16], [17]. Specifically, to guaran-
tee the order of memory writes to NVM, we must (1) prevent
them from being reordered by CPU and (2) manually flush
CPU cache lines to make data persistent in NVM. Due to
the read performance penalty [18], instead of using non-
temporal writes, most studies use CPU instructions such as
issuing memory fences and flushing cache lines to order
memory writes when reads are involved. However, these
operations introduce significant overhead [5], [19], [20]. Our
experiment shows that the performance drop caused by
these operations is more than one order of magnitude on
a traditional B+Tree [21], one of the most commonly used
data structures in storage systems [22], [23]. Therefore, such
consistency cost on NVM must be properly addressed in
order to fully utilize the superb performance of NVM.

In this paper, we propose NV-Tree, a consistent, cache-
optimized and workload-adaptive B+Tree variant which
minimizes CPU cache line flush for keeping data consis-
tency in NVM. Specifically, NV-Tree decouples tree nodes
into two parts, leaf nodes (LNs) as critical data and internal
nodes (INs) as reconstructable data. By enforcing consistency
only on LNs and reconstructing INs from LNs during failure
recovery, the consistency cost for INs is eliminated but the
data consistency of the entire NV-Tree is still guaranteed.
Moreover, NV-Tree keeps entries in each LN unsorted which
can reduce CPU cache line flush by 82% to 96% for keeping
LN consistent. On the other hand, to further increase the
CPU cache efficiency, NV-Tree adopts a sorted but pointer-
less layout for INs to facilitate the search at the expense of

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 2

periodically performing a special operation called rebuild-
ing. The excessive rebuilding may affect the overall per-
formance but the frequency of rebuilding highly depends
on the undergoing workload which is extremely diversified
in the real world. To optimize NV-Tree for its unfavorable
workloads such as the skewed write-intensive ones, we
propose a workload-adaptive scheme which dynamically
adjusts the node sizes to reduce the number of rebuilding
under different and changing workloads.

Our contributions can be summarized as follows:

1) We quantify the consistency cost for B+Tree using
existing approaches, and present two insightful ob-
servations: (1) keeping entries in LN sorted intro-
duces a large amount of CPU cacheline flush which
dominates the overall consistency cost (over 90%);
(2) enforcing consistency only on LN is sufficient
to keep the entire tree consistent because INs can
always be reconstructed even after system failure.

2) Based on the observations, we present NV-Tree,
which (1) decouples LNs and INs, and only en-
forces consistency on LNs; (2) keeps entries in LN
unsorted, and updates LN consistently without log-
ging or versioning; (3) organizes INs in a cache-
optimized format to increase CPU cache efficiency.

3) We propose a workload-adaptive scheme for NV-
Tree to further optimize for various workloads in
terms of read/write ratios and localities. In partic-
ular, with the rebuilding time reduced significantly,
the performance of NV-Tree under skewed write-
intensive workloads can be improved by 3X.

4) We implement and evaluate NV-Tree and a key-
value store based on it, named NV-Store, on a
real NVDIMM [24] platform. The experimental re-
sults show that NV-Tree outperforms CDDS-Tree
[5], the state-of-art consistent tree structure, by up to
12X under write-intensive workloads. Under read-
intensive workloads, the speedup can still be as high
as 2X. NV-Store increases the throughput by up to
7.3X under YCSB workloads compared to Redis [25].

Organization. The rest of this paper is organized as
follows. Section 2 discusses the background of NVM and
reviews the related work. Section 3 presents the motivation
and design decisions of a consistent tree structure for NVM,
followed by detailed design, implementation and optimiza-
tion of NV-Tree in Section 4 and 5. The evaluation is shown
in Section 6. Finally, Section 7 concludes this paper.

2 BACKGROUND AND RELATED WORK

2.1 Non-Volatile Memory (NVM)
Computer memory has been evolving rapidly in recent
years. A new category of memory, NVM, has attracted more
and more attention in both academia and industry [4], [26],
[27]. Early work [28], [29], [30] focuses on flash to overcome
its physical limitation such as out-of-place updates, asym-
metric I/O performance and unequal unit size for I/O and
erasure. However, flash is unsuitable to replace DRAM due
to much longer latency and worse endurance.

Recent work has focused on the next generation NVM
[31], such as PCM [32] and STT-RAM [2], which (a) is byte-
addressable, (b) has DRAM-like performance, (c) supports

TABLE 1
Characteristics of Different Types of Memory

Category Read Latency Write Latency Endurance
(ns) (ns) (# of writes per bit)

SRAM 2-3 2-3 ∞
DRAM 15 15 1018

STT-RAM 5-30 10-100 1015

PCM 50-70 150-220 108-1012

Flash 25,000 200,000-500,000 105

in-place updates and (d) provides better endurance than
flash. PCM is several times slower than DRAM and its
write endurance is limited to as few as 108 times. However,
PCM has larger density than DRAM and shows a promising
potential for increasing the capacity of main memory. Al-
though wear-leveling is necessary for PCM, it can be done
by memory controller [33], [34]. STT-RAM has the advan-
tages of lower power consumption over DRAM, unlimited
write cycles over PCM, and lower read/write latency than
PCM. Recently, Everspin announced its commercial 64Mb
STT-RAM chip with DDR3 interface [35]. In this paper,
our target NVM is referred to the next generation of non-
volatile memory which is byte-addressable and in-place-
update supported (no garbage collection needed).

As an alternative to NVM, NVDIMM [20], which is com-
mercially available [24], provides persistency and DRAM-
like performance. NVDIMM is a combination of DRAM
and NAND flash. During normal operations, NVDIMM is
working as DRAM while flash is invisible to the host. How-
ever, upon scheduled or unscheduled power offs, NVDIMM
saves all the data from DRAM to flash by using superca-
pacitor to make the data persistent. Since this process is
transparent to other parts of the system, NVDIMM can be
treated as NVM. In this paper, our NV-Tree and NV-Store
are implemented and evaluated on a NVDIMM platform.
2.2 Data Consistency in NVM
NVM-based single level systems [4], [5], [19], [20], [36] have
been proposed and evaluated using the simulated NVM
in terms of cost, power efficiency and performance. As
one of the most crucial features of storage systems, data
consistency guarantees that stored data can survive system
failure. Based on the fact that data is recognizable only if it
is organized in a certain format, updating data consistently
means preventing data from being lost or partially updated
after a system failure. However, the atomicity of memory
writes can only be supported with a very small granularity
or no more than the memory bus width (8 bytes for 64-bit
CPUs) [37] which is addressed in previous work [19], [20],
[26], so updating data larger than 8 bytes requires certain
mechanisms to make sure data can be recovered even if
system failure happens before it is completely updated. Par-
ticularly, the approaches such as logging and copy-on-write
make data recoverable by writing a copy elsewhere before
updating the data itself. For append-only data structures,
using an item counter for visibility control [38] can also
prevent the exposure of incomplete or half-updated data.
To implement these approaches, memory writes must be
executed in a certain order, e.g., the memory writes for the
copy of data must be completed before updating the data
itself. Such ordered writes are also required in pointer-based
data structures such as B+Tree. If one tree node is split,
the new node must be written completely before its pointer

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 3

being added to the parent node, otherwise, the parent node
may contain an invalid pointer if the system crashes.

Unfortunately, memory writes may be reordered by
either CPU or memory controller. Alternatively, without
modifying existing hardware, the sequence of {MFENCE,
CLFLUSH, MFENCE} instruction (referred to FLUSH in the
rest of this paper) can be executed to form ordered memory
writes [5]. Specifically, MFENCE issues a memory barrier
which guarantees the memory operations after the barrier
cannot proceed until those before the barrier complete, but
it does not guarantee the order of write-back to the memory
from CPU cache. On the other hand, CLFLUSH can explicitly
invalidate the corresponding dirty CPU cache lines so that
they can be flushed to NVM by CPU which makes the
memory write persistent eventually. However, CLFLUSH can
only flush a dirty cache line by explicitly invalidating it
which makes CPU cache very inefficient. Although such
invalidations can be avoided if the hardware itself can be
modified to implement epoch [19], CPU cache line flush
must be executed. Reducing it is still necessary to not only
improve performance but also extend the life cycle of NVM
with reduced memory write.

2.3 Related Work

Recent work proposed mechanisms to provide data con-
sistency in NVM-based systems by either modifying exist-
ing hardware or using CPU primitive instructions such as
non-temporal stores with write-combining (e.g. MOVNTDQ),
or MFENCE with CLFLUSH. As non-temporal stores with
write-combining cause severe read performance degrada-
tion due to the absence of CPU cache [18], the use of these
instructions is limited to write-only components such as
logging [39]). BPFS [19] proposed a new file system which
is resided in NVM. It adopts a copy-on-write approach
called short-circuit shadow paging using epoch which can
flush dirty CPU cache lines without invalidating them to
order memory writes for keeping data consistency. How-
ever, it still suffers from the overhead of cache line flush.
It must be implemented by modifying existing hardware
which is not practical in most cases. Volos et al. [26] pro-
posed Mnemosyne, a new program interface for memory
allocations in NVM. To manage memory consistency, it
presents persistent memory region, persistency primitives
and durable memory transaction which consist of MFENCE
and CLFLUSH eventually. NV-Heaps [40] is another way to
consistently manage NVM directly by programmers based
on epoch. It uses mmap to access spaces in NVM and gives a
way to allocate, use and deallocate objects and their pointers
in NVM. Narayanan et al. [20] proposed a way to keep the
whole system status when power failure happens. Realizing
the significant overhead of flushing CPU cache line to NVM,
they propose to flush-on-fail instead of flush-on-demand.
However, they cannot protect the system from any software
failure. In general, flushing CPU cache line is necessary to
order memory writes and used in almost all the existing
NVM-based systems [41], [42], [43], [44], [45].

The most related work to NV-Tree is CDDS-Tree [5]
which uses FLUSH to enforce consistency on all the tree
nodes. In order to keep entries sorted, when an entry is
inserted to a node, all the entries on the right side of the
insertion position need to be shifted. CDDS-Tree performs

FLUSH for each entry shift, which makes the consistency cost
very high. Moreover, it uses the entry-level versioning ap-
proach to keep consistency for all tree operations. Therefore,
a background garbage collector and a relatively complicated
recovery process are both needed. The consistency cost of
tree structures on NVM has been proven to be crucial as
similar work [45] has been published concurrently with
ours [46] to address this issue. In comparison, the wB+-
Tree in [45] does redo-logging during node split and is
tested through simulation while our NV-Tree is log-free
and evaluated on a real NVDIMM platform with practical
failure-recoverability and consistency guarantee.

A preliminary version of NV-Tree has been presented
in a previous paper [46]. This paper goes beyond the
preliminary version with the enhancement of workload-
adaptive feature as following: (1) We develop a workload
profiling algorithm for NV-Tree to learn the undergoing
workload in terms of read/write ratios and localities (Sec-
tion 5.2); (2) With different workload-adaptive requirement,
we present three different decision-making strategies for
adjusting the node size (Section 5.3); (3) We propose an
analytical model to help identify the boundary of node sizes
to avoid the performance drop because of too large/small
nodes (Section 5.4); (4) We extend the evaluation to study
the workload-adaptive NV-Tree under more workloads,
and demonstrate the self-tuning feature of NV-Tree under
skewed and dynamic workloads. Note that our preliminary
version [46] only evaluates the previous version of NV-Tree
without workload-adaptivity under low-locality workloads;
(5) Performance-wise, compared with the previous version,
the throughput of NV-Tree under skewed write-intensive
workloads can be improved by up to 3X. The throughput
of NV-Store based on workload-adaptive NV-Tree can be
improved by up to 30% under YCSB workloads.

3 PROBLEM FORMULATION

3.1 Motivations

To quantify the consistency cost, we compare the execu-
tion of performing one million insertion in (a) a standard
B+Tree [21] without consistency guarantee, (b) a log-based
consistent B+Tree (LCB+Tree), (c) a CDDS-Tree [5] using
versioning, and (d) a volatile CDDS-Tree with FLUSH dis-
abled. In LCB+Tree, before modifying a node, its original
copy is logged and FLUSHed. The modified part of it is
then FLUSHed to make the changes persistent. Note that we
only use LCB+Tree as the baseline to illustrate one way to
use logging to guarantee the consistency. We understand
optimizations (such as combining several modification to
one node into one flush) can be made to improve the
performance of LCB+Tree but it is beyond the scope of this
paper. Since CDDS-Tree is not open-source, we implement
it ourselves and achieve similar performance to that in
the original paper [5]. We are motivated by three major
observations of the experimental results.

OB1. Keeping consistency causes a huge amplification of
the CPU cache line invalidation and flush, which increases
the cache misses significantly. As shown in Figure 1a, for
one million insertion with 4KB nodes, the LCB+Tree and
CDDS-Tree are up to 16X and 20X slower than their volatile
version, respectively. Such performance drop is caused by

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 4

0

10

20

30

40

50

512B 1024B 2048B 4096B

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Node Size

B+Tree

Volatile CDDS-Tree

LCB+Tree

CDDS-Tree

(a) Execution Time

0

200

400

600

800

1000

512B 1024B 2048B 4096B

#

o
f

M
i
s
s
e
s

(
M
i
l
)

Node Size

B+Tree

Volatile CDDS-Tree

LCB+Tree

CDDS-Tree

(b) L3 Cache Misses

0

20

40

60

80

100

512B 1024B 2048B 4096B

C
a
c
h
e

L
i
n
e

F
l
u
s
h
e
s

(
M
i
l
)

Node Size

LCB+Tree

CDDS-Tree

(c) Number of Cache Line Flushes

0%

20%

40%

60%

80%

100%

L
C
B

C
D
D
S

L
C
B

C
D
D
S

L
C
B

C
D
D
S

L
C
B

C
D
D
S

P
e
r
c
e
n
t
a
g
e

Node Size

Sort LN

LN

Sort IN

IN

512B 1024B 2048B 4096B

(d) Percentage Breakdown
Fig. 1. Consistency Cost Analysis of B+Tree and CDDS-Tree For One Million Insertion With Different Node Sizes

the increased number of cache misses and additional cache
line flush. We use Intel vTune Amplifier1, a CPU profiling
tool, to count the L3 cache misses during the one mil-
lion insertion. As shown in Figure 1b, while the volatile
CDDS-Tree or B+Tree produces about 10 million L3 cache
misses, their consistent version causes about 120-800 mil-
lion cache misses which explains the performance drop.
Figure 1c shows the total number of cache line flushes in
CDDS-Tree and LCB+Tree for one million insertion. With
0.5KB/1KB/2KB/4KB nodes, the total amount of cache line
flushes is 14.8/24.6/44.7/85.26 million for LCB+Tree, and
12.1/19.0/34.2/64.7 million for CDDS-Tree.

OB2. The consistency cost of FLUSH mostly comes from
FLUSHing shifted entries in order to keep LN sorted. The
numbers of both the cache misses and cache line flushes in
LCB+Tree and CDDS-Tree are proportional to the node size
due to the FLUSH for keeping the entries sorted. Specifically,
for LCB+Tree and CDDS-Tree, all the shifted entries caused
by inserting an entry inside a node need to be FLUSHed to
make the insertion persistent. As a result, the amount of
data to be FLUSHed is related to the node size for both trees.
We further categorize the CPU cache line flush into four
types, as shown in Figure 1d, Sort LN/Sort IN stands for the
cache line flush of shifted entries. It also includes the FLUSH
of logs in LCB+Tree. LN/IN stands for the FLUSH of other
purpose such as FLUSHing new nodes and updated pointers
after split, etc. The result shows that most of the cache line
flushes (60%-94% in CDDS-Tree, 81%-97% in LCB+Tree) are
for shifting entries in LN. Note that CDDS-Tree is slower
than LCB+Tree by 11%-32% even though it produces less
FLUSHes. The reasons are that (1) the FLUSH unit in CDDS-
Tree is the entry size, which is much smaller than that
in LCB+Tree, and (2) the performance of FLUSH for small
objects is over 25% slower than that for large objects [5].

OB3. Not all the data need to be consistent to keep
the entire data structure consistent. Given a data structure,
as long as some parts of it (denoted as critical data) are
consistent, the rest (denoted as reconstructable data) can be
reconstructed without losing consistency for the whole data
structure. For instance, in B+Tree, LNs are critical while INs
are reconstructable as they can always be reconstructed from
LNs. That suggests we may reduce the consistency cost by
only enforcing consistency on critical data.

3.2 Design Decisions

Based on our observations above, we make three major
design decisions as the following.

1. https://software.intel.com/en-us/intel-vtune-amplifier-xe

D1. Selectively Enforce Data Consistency. We distin-
guish LNs and INs in a B+Tree by decoupling them as crit-
ical and reconstructable data, respectively. Different from the
traditional approach where all nodes are updated with con-
sistency guaranteed, our design only enforces consistency
on LNs but processes INs with no consistency guaranteed
to reduce the consistency cost. Upon system failure, INs are
reconstructed from the consistent LNs so that the whole tree
is always consistent.

D2. Keep Entries in LN Unsorted. We adopt un-
sorted LNs so that the FLUSH operation used in LCB+Tree
and CDDS-Tree for shifting entries upon insertion can be
avoided. Meanwhile, entries of INs are still sorted to opti-
mize search performance. Although the unsorted LN strat-
egy is not new [38], we are the first to quantify its impact on
the consistency cost and use it to reduce the consistency
cost in NVM. Moreover, based on our unsorted scheme
for LNs, both the content (entry insertion/update/deletion)
and structural (split) changes in LNs are only visible af-
ter a CPU primitive atomic write. Therefore, LNs can be
protected from being corrupted by any half-done updates
due to system failure without using logging or versioning.
Thanks to the invisibility of on-going updates, the paral-
lelism of accessing an LN is also increased because searching
is no longer blocked by the concurrent on-going update.

D3. Organizing IN in Cache-optimized Format. The
CPU cache efficiency is a key factor to the performance of
memory-only systems. Inspired by the cache-optimized data
format [47], all INs are designed to be stored in a contiguous
memory space and located by offset instead of pointers, and
all nodes are aligned to CPU cache line. As a result, higher
space utilization and cache hit rate can be achieved.

4 DESIGN AND IMPLEMENTATION

4.1 Overview of NV-Tree
We propose NV-Tree, a consistent and workload-adaptive
B+Tree variant for NVM with minimized consistency over-
head. As shown in Figure 2, all the data is stored in LNs in
a single-linked list. Each LN can also be accessed by the
LN pointer stored in its parent, denoted as PLN (parent
of leaf node). All the IN/PLNs are stored in a contiguous
memory space which means the position of each IN/PLN
is fixed upon creation. The node id of each IN/PLN is
assigned sequentially from 0 (root). Therefore it can be used
to calculate the offset of each IN/PLN to the root. Given the
memory address of the root, all the IN/PLNs can be located
without using any pointers. Each key/value pair (KV-pair)
stored in LNs is encapsulated in an LN element.

Keeping each LN and the LN list consistent in NV-Tree
without using logging or versioning is non-trivial. Different

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 5

PLN id LN

...

6 10... 11 15... 16 20... 21 25... 26 30...

1 2 3 4 5

0

id
IN

... ...

Critical Data

Reconstructable Data

nKeys

nElements flag key value

LN_Element[0]

...

IN

nKeysPLN
key[0]

LN[0]

key[1]

LN[1]

key[m]

LN[m]

...

... LN[m+1]

key[0] key[1] ... key[2m]

LN

LN_Element[1]

flag key value

Node Layout

31 32 3736 96 97 10035

Fig. 2. NV-Tree Overview and Node Layout

Algorithm 1 NV-Tree LN Lookup
1: procedure FINDLEAF(k, r)

Input: k : key, r : root
Output: LNpointer : the pointer of target leaf node

2: id← 0
3: while id /∈ PLNIDs do
4: IN ← memory address of node id
5: pos←BINARYSEARCH(key, IN)
6: id← id ∗ (2m+ 1) + 1 + pos
7: end while
8: PLN ← memory address of node id
9: pos← BINARYSEARCH(key, PLN)

10: return PLN.LNpointers[pos]
11: end procedure

from an ordinary B+Tree, both update and deletion are
implemented as insertion using an append-only strategy
discussed in Section 4.3. Any insertion/update/deletion
operations may lead to a full LN which triggers either
split/replace/merge discussed in Section 4.4. We carefully
design the write order for insertion/update/deletion and
split/replace/merge using FLUSH to guarantee the modified
data cannot be seen until a successful atomic write. When
one PLN is full, a procedure called rebuilding is executed
to reconstruct a new set of IN/PLNs to accommodate more
LNs, discussed in Section 4.5. To address the performance
issue caused by frequent rebuilding under skewed write-
intensive workloads, instead of using a fixed and equal size
for all the nodes, we design a workload-adaptive scheme to
tune the node sizes based on a workload profiling algorithm
and an analytical model, discussed in Section 5.

4.2 Locating Target LN
The procedure of locating a target LN with a given key
in NV-Tree is different from that in a standard B+Tree. As
shown in Algorithm 1, given the search key and the memory
address of root, INs are searched level by level, starting from
root with node id 0 (line 2). On each level, which child to go
in the next level is determined by a binary search based on
the given search key (line 3-7). For instance, with keys and
pointers having the same length, if a PLN can hold m keys
and m+1 LN pointers, an IN can hold 2m keys. If the node
id of current IN is i and the binary search finds the smallest
key which is no smaller than the search key is at position

Algorithm 2 NV-Tree Insertion
Input: k: key, v: value, r: root
Output: SUCCESS/FAILURE

1: if r = NULL then
2: r ← CREATENEWTREE(k, v)
3: return SUCCESS
4: end if
5: leaf ← FINDLEAF(k, r)
6: if LN has space for new KV-pair then
7: newElement← CREATEELEMENT(k, v)
8: FLUSH(newElement)
9: ATOMICINC(leaf.number)

10: FLUSH(leaf.number)
11: else
12: LEAFSPLITANDINSERT(leaf, k, v)
13: end if
14: return SUCCESS

k in current IN, then the next node to visit should have the
node id (i× (2m+ 1) + 1 + k) (line 6). On reaching a PLN,
the address of the target LN can be retrieved from the leaf
node pointer array (line 8-10).

As every IN/PLN has a fixed location once rebuilt,
PLNs are not allowed to split. Therefore, the content of
INs (PLNs excluded) remains unchanged during normal
execution. Therefore, NV-Tree does not need to use locks in
INs for concurrent tree operations which in turn increases
the concurrency of NV-Tree.

4.3 Insertion, Deletion, Update and Search
Insertion is one of the most commonly used operations. As
shown in Algorithm 2, if the target tree is empty, a new
tree contains the provided KV-pair will be created (line 1-4),
otherwise, the first step is to find the target LN (line 5). After
target LN is located, a new LN element will be generated
using the new KV-pair. If the target LN has enough space
to hold the LN element, the insertion completes after the
LN element is appended, and the nElement is increased by
one successfully (line 6-10). Otherwise, the target LN will
split before insertion (line 12, discussed in Section 4.4).
Figure 3a shows an example of inserting a KV-pair {7,b}
into an LN with existing two KV-pairs {6,a} and {8,c}.

Deletion is implemented just the same as insertion ex-
cept a special NEGATIVE flag. Figure 3b illustrates the dele-
tion of {6,a} in the original LN. A NEGATIVE LN element
{6,a} (marked as ‘-’) is inserted. Note that the NEGATIVE
one cannot be inserted unless a normal one (with a POSI-
TIVE flag) is found. The space of both the NEGATIVE and
normal LN elements are recycled by later splits.

Update is implemented by inserting two LN elements,
a NEGATIVE one with the same value and a normal one
with updated value. For instance, as shown in Figure 3c,
to update the original {8,c} with {8,y}, the NEGATIVE
LN element for {8,c} and the normal one for {8,y} are
appended accordingly.

Note that the order of appending LN element before
updating nElement in LN is guaranteed by FLUSH (line
8-10). Inspired by the visibility control mechanism used
in an appended-only data structure [38], the appended
LN element is only visible after the nElement is increased
by a successful atomic write to make sure LN cannot be
corrupted by system failure.

Search starts with locating the target LN with the given
key. After the target LN is located, since keys are unsorted
in LN, a scan is performed to retrieve the LN element with

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 6

2 + 6 a + 8 c + 7 b

3 + 6 a + 8 c + 7 b

2 + 6 a + 8 c

(a) Insert (7,b)

2 + 6 a + 8 c - 6 a

3 + 6 a + 8 c - 6 a

2 + 6 a + 8 c

(b) Delete (6,a)

2 + 6 a + 8 c

2 + 6 a + 8 c - 8 c + 8 y

4 + 6 a + 8 c - 8 c + 8 y

(c) Update (8,c)→(8,y)
Fig. 3. Example of NV-Tree Insertion/Deletion/Update

MAX1053PLN

LN List

6 + 6 a... + c - 8 c + 8 y + 10 f + 9 d8 ...

2 + 6 a + y8 + 10 f + 9 d2

(1) Copy Valid Elements to new LNs

MAX1053 8

6 + 6 a... + c - 8 c + 8 y + 10 f + 9 d8 ...

(2) Update PLN with Separate Key and LN pointers

2 + 6 a + y8 + 10 f + 9 d2

(3) Atomic Update Pointer in Left Sibling

MAX1053 8

... ...2 + 6 a + y8 + 10 f + 9 d2

Fig. 4. Example of LN Split

the given key. Note that if two LN elements have the target
key and same value but one of them has a NEGATIVE
flag, both of them are ignored because that indicates the
corresponding KV-pair is deleted. Although the unsorted
leaf increases the searching time inside LN, the entries in
IN/PLNs are still sorted so that the search performance is
still acceptable as shown in Section 6.3.

All the modification of LNs/PLNs is protected by light-
weight locks. Meanwhile, searching is never blocked by any
ongoing modification as long as the nElement is used as the
boundary of the search range in LNs/PLNs.

4.4 LN Split/Replace/Merge
When an LN is full, it is scanned to identify the number
of valid LN elements. Those NEGATIVE ones and the corre-
sponding normal ones are both considered invalid. The next
step is determined by the number of valid elements.

If the percentage of valid elements is above the minimal
fill factor (e.g., 50% in standard B+Tree), we perform split
as illustrated in Figure 4. Two new LNs (left and right) are
created and valid elements are copied to either of them
according to the selected separate key. Then the new KV-
pair is inserted accordingly. The split completes after the
pointer in the left sibling of the old LN is updated to point
to new left LN using an atomic write. Before that, all the
changes made during split are not visible to the tree.

If the percentage is below the minimal fill factor, we
check the number of LN elements in the right sibling of the
old LN. If it is above the minimal fill factor, we perform
replace, otherwise, we perform merge. For replace, those
valid LN elements in the old LN are copied to a new LN

which replaces the old one in the LN list using an atomic
write. For merge, the old LN and its right sibling will be re-
placed by a new LN which contains their valid LN elements.
Note that we use the nElement instead of the number of valid
elements in the right sibling to decide which operation to
perform because finding the latter needs to perform a scan
which is relatively more expensive. Due to space limitation,
examples of replace and merge operations are omitted here.

4.5 Rebuilding

As the memory address of each IN/PLN is fixed upon
creation, cache-optimized IN/PLNs are not allowed to split.
Therefore, the disadvantage of the cache-optimized design
is that when one PLN is full, all IN/PLNs have to be recon-
structed to make space in PLNs to hold more LN pointers.
The rebuilding procedure introduces both temporal and
spatial overhead but our experimental results in Section 6.5
show that such overhead is negligible. The first step of re-
building is to determine the new number of PLNs based on
the current number of LNs. In our current implementation,
to delay the next rebuilding as much as possible, each PLN
stores exactly one LN pointer after rebuilding.

During normal execution, we can use rebuild-from-PLN
strategy by redistributing all the keys and LN pointers in
existing PLNs into the new set of PLNs. However, upon sys-
tem failure, we use rebuild-from-LN strategy. Because entries
are unsorted in each LN, rebuild-from-LN needs to scan each
LN to find its maximum key to construct the corresponding
key and LN pointer in PLN. Rebuild-from-LN is more expen-
sive than rebuild-from-PLN but is only executed upon system
failure. Compared to a single tree operation (e.g., insertion
or search), one rebuilding may be very time-consuming in a
large NV-Tree. Although such overhead is neglectable (less
than 1%) in a long-running application under low-locality
workloads (e.g., key selection is random and uniformly dis-
tributed), the performance of NV-Tree can be significantly
affected by the excessive rebuilding under skewed (high-
locality, in which the key selection is limited in a small
region) write-intensive workloads. To optimize NV-Tree for
such workloads, we propose a workload-adaptive scheme
which is discussed in detail in Section 5.

During rebuilding, insertion/update is not allowed to
proceed but search can still be executed. It is achieved
by storing the new IN/PLNs generated by the on-going
rebuilding without deleting the existing ones. Since all the
existing nodes remain unchanged during rebuilding, they
can still be used by search operations without any locks.
Given the fact that IN/PLNs occupy much less space than
LNs do in NV-Tree, the spatial and temporal overhead of
rebuilding is totally acceptable. For instance, our experiment
results in Section 6.5 show that when inserting 100 million
entries with random keys to an NV-Tree with 4KB nodes

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 7

(>4GB), rebuilding is executed only for two times. The
rebuilding time is 41.6ms, which occupies 0.01% of the
total execution time. The size of the INs generated by the
first/second rebuilding is only about 1MB/129MB, which
occupies 0.02%/3% of the total tree size.

4.6 Recovery
Since all LNs are consistent, rebuild-from-LN described in
Section 4.5 is sufficient to recover an NV-Tree from either
normal shutdown or system failure.

To further optimize the recovery after normal shutdown,
our current implementation can achieve instant recovery by
storing IN/PLNs in NVM. More specifically, during normal
shutdown, we (1) FLUSH all IN/PLNs to NVM, (2) save
the root pointer to a reserved position in NVM, (3) and
use an atomic write to mark a special flag along with the
root pointer to indicate a successful shutdown. Then, the
recovery can (1) start with checking the special flag, (2) if it
is marked, reset it and use the root pointer stored in NVM
as the current root to complete the recovery. Otherwise,
it means a system failure occurred, and a rebuild-from-LN
procedure is executed to recover the NV-Tree.

5 OPTIMIZATION FOR SKEWED WORKLOADS

5.1 Motivation
One of the major difference between NV-Tree and other
tree structures is the additional rebuilding operation. Its
negative impact on performance highly depends on the un-
dergoing workload because different workloads may have
different rebuilding frequency. As the rebuilding is only
triggered by a full PLN, frequent rebuilding is essentially
caused by excessive splits in a small region of the entire
tree, e.g., under skewed write-intensive workloads. In order
to solve this problem, we propose a workload-adaptive
scheme for NV-Tree to (1) identify the workload locality and
(2) adjust the individual node sizes accordingly to reduce
the total number of splits and rebuilding.

5.2 Workload Profiling
The purpose of understanding a workload is to determine
the proper size of the individual tree nodes to reduce the
number of splits and rebuilding. We profile a workload
from two aspects: (1) the read/write ratio (r/w ratio) of
each node to identify a node is read-/write-intensive, and
(2) read/write locality (r/w locality) of the entire workload
to distinguish the hot/cold nodes for both read and write.

In general, we maintain two global counters, nWrites
and nReads, to track the numbers of write (inser-
tion/deletion/update) and read (search) operations, respec-
tively. Since only LNs are allowed to split in NV-Tree, we
also maintain two counters in each LN to keep track of the
number of write and read operations, nWritesLN [i] and
nReadsLN [i]. Thus, we can tell whether a node is read or
write intensive by comparing the two counters of it. To be
more precise, as the amount of data written by different
write operations is not equal, nWrites or nWritesLN [i]

represents the actual number of LN elements appended in-
stead of the write operations. The description of the statistic
information used by NV-Tree is summarized in Table 2.

Table 3 shows how to maintain the statistic information
for different tree operations in NV-Tree. Note that each

TABLE 2
Statistic Information for Workload Profiling

Counter Description

nWrites Total number of LN elements appended

nReads Total number of search operations

nWritesLN [0..N] Number of LN elements appended in each LN

nReadsLN [0..N] Number of search operations performed in each LN

TABLE 3
Summary of Maintaining Statistic Information for Different Operations

{Operation}[LN id] Change of Statistic Information

{Insertion}[i]
/{Deletion}[i]

nWrites← nWrites+ 1
nWritesLN [i] ← nWritesLN [i] + 1

{Update}[i] nWrites← nWrites+ 2
nWritesLN [i] ← nWritesLN [i] + 2

{Search}[i] nReads← nReads+ 1
nReadsLN [i] ← nReadsLN [i] + 1

{Split}[i]⇒[j,k]
nWritesLN [j] ← nWritesLN [k] ← WritesLN [i]/2
nReadsLN [j] ← nReadsLN [k] ← nReadsLN [i]/2

update operation appends two LN elements instead of one
in an insertion/deletion operation. And if one LN (i) is full
and split into two new LNs (j and k), the nWritesLN [j/k]

and nReadsLN [j/k] will be half of nWritesLN [i] and
nReadsLN [i], respectively.

Given the above statistic information, the r/w ratio of
a given LN(i) can be calculated as Rr/w[i] =

nReadsLN[i]

nWritesLN[i]
.

The LNs with Rr/w > 1 are read-intensive while those with
Rr/w < 1 are write-intensive. On the other hand, the r/w
locality of a workload can be profiled by comparing the
individual nWritesLN [i] and nReadsLN [i] to the average
nWrites
NLN

and nReads
NLN

. Those nodes with nWritesLN [i] >
nWrites
NLN

or nReadsLN [i] >
nReads
NLN

can be considered as hot-
write nodes or hot-read nodes, respectively. Similarly, there
are also cold-write/-read nodes.

5.3 Selecting Proper Node Sizes

Based on the statistic information collected over time, the
workload-adaptive algorithm determines the new node size
of the two new nodes for splitting a full node. The sizes
of write-intensive or read-intensive nodes are preferred to
be increased or decreased, respectively. However, in some
circumstances, that may not be the best choice. For instance,
if a write-intensive node is also hot-read, increasing its size
may slow down the in-node search performance. Similarly,
if a read-intensive node is also hot-write, decreasing its size
may trigger more splits.

In addition to making decision of increasing or decreas-
ing the node size, how much exactly to increase or decrease
is also an important issue because it affects the effectiveness
and sensitivity of the workload-adaptive approach. Because
of the CPU cache efficiency, the node size should be the
integral multiple of the CPU cache line size. Therefore, the
minimum size to increase or decrease is the CPU cache
line size. However, such small changes in node sizes make
the algorithm inefficient under highly-skewed workloads
because it takes a long time to get the optimal node size

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 8

Algorithm 3 Determine the new LN size
1: procedure GETNEWSIZE(id, strategy)
2: UPorDOWN ← 0
3: if

nReadsLN[id]

nWritesLN[id]
< 1 then

4: if ((s = conservative)
5: &(nWritesLN [id] >

nWrites
NLN

)

6: &(nReadsLN [id] <
nReads
NLN

))

7: ‖(s = aggressive)‖(s = balanced) then
8: UPorDOWN ← 1
9: end if

10: else
11: if ((s = conservative)
12: &(nWritesLN [id] <

nWrites
NLN

)

13: &(nReadsLN [id] >
nReads
NLN

))

14: ‖((s = balanced)
15: &(nReadsLN [id] >

nReads
NLN

)) then
16: UPorDOWN ← −1
17: end if
18: end if
19: if UPorDOWN = 0 then
20: return SizeLN [id]
21: end if
22: if UPorDOWN = −1 then
23: return SizeLN [id] − Sizecacheline

24: else
25: if

(
(s = balanced) & (nWritesLN [id] >

nWrites
NLN

)
)

26: ‖(s = aggressive) then
27: return 2 · SizeLN [id]
28: else
29: return SizeLN [id] + Sizecacheline

30: end if
31: end if
32: end procedure

for hot-write nodes. On the other hand, too much increase
or decrease in node sizes can lead to the performance drop
under low locality workloads.

Based on the criteria for whether to increase or decrease
the node size and how much change each time in node size,
we propose three basic strategy in this section.

Conservative Strategy. In this strategy, only the size of
write-intensive, hot-write, cold-read nodes are increased,
and only the size of read-intensive, cold-write, hot-read
nodes are decreased. For the other types of nodes, the node
size remains unchanged. Moreover, the size only changes
one cache line size each time. Therefore, the overall perfor-
mance can always be improved steady but slowly. However,
it takes long time to achieve the peak performance under
highly-skewed workloads. Moreover, if the workload is
dynamically changing over time, the node size will not be
changed in time to achieve better performance.

Aggressive Strategy. In this strategy, the size of all write-
intensive nodes are increased but the size of the other
types of nodes remains unchanged. Moreover, the new
size doubles the original node size. Therefore, the overall
performance can be improved much faster than that in the
conservative strategy under highly-skewed write-intensive
workloads. However, if the locality of the workload is low,
such rapid size change may lead to worse performance, es-
pecially for those read-intensive workloads. Note that as the
node size is always increased, the space utilization is much
worse in aggressive strategy than that in the conservative
strategy.

Balanced Strategy. Unlike the above two strategies, this
strategy looks for the balance among the reduction of splits,
the search performance and the space utilization. The size

of write-intensive, hot-write nodes is doubled, the size of
write-intensive, cold-write nodes is increased by the CPU
cache line size. On the other hand, the size of read-intensive,
hot-read nodes is decrease by the CPU cache line size. The
size of the rest remains unchanged.

Algorithm 3 shows the pseudo-code of selecting proper
size of the two new LNs for splitting a full LN in NV-
Tree with the above three basic strategies. Specifically, for
a write-intensive LN, the size is increased if the aggres-
sive/balanced strategy is in use or the LN is also a hot-
write cold-read one under the conservative strategy (line
3-9). For non-write-intensive LN, the size is decreased if
the LN is a hot-read cold-write one under the conservative
strategy or a hot-read one under the balanced strategy (line
10-18). After that, the new node size is returned according
to the strategy in use (line 19-31). Note that all these three
strategies change the node size one step at a time without
knowing the optimal, but the size of a write-intensive or
read-intensive node cannot be increased/decreased without
limitation because the trade-off between the cost of split
and in-node search. Enlarging or shrinking any LNs too
much can lead to performance drop. To address issue, we
propose an analytical model to help identify the maxi-
mum/minimum node size that prevents the performance
drop under on-going workload.
5.4 Analytical Model
The optimal node size should be the one that maximizing
the difference between the positive performance impact (i.e.,
the saved split cost when enlarging LNs or the saved in-
node search cost when shrinking LNs) and the negative
impact (i.e., the extra in-node search cost when enlarging
LNs or the early split cost when shrinking LNs). As the
future workload is unknown, we can only change the node
size gradually towards the local optimum instead of the
global one. However, we can still derive the boundary of
the node size when increasing or decreasing more can cause
performance drop in the near future.

We propose an analytical model to quantify the positive
and negative impact of increasing/decreasing the size of the
two new nodes created upon split. In this model, we also
take the performance of the memory in use into account
to improve the accuracy. Specifically, the positive impact of
increasing the node size is the saved split cost, denoted as in
Equation 1 where Tr(oldSize) is the execution time of reading
the node with oldSize, Tw(oldSize

2) is the execution time of
FLUSHing the two new nodes.

Positive⇑ = Tr(oldSize) + 2 · Tw(oldSize
2) (1)

The negative impact of increasing the node size is the
extra cost of in-node scan due to the larger size. We set the
time window from the current split to the next split of the
two new nodes with the new node size. Paying extra cost
of in-node scan starts when the content of the new node
grows over the old size, every in-node scan after this point
has to scan more (equal to the old size) until the new node
splits. Therefore, the negative impact can be denoted as in
Equation 2 where Sizeelement is the size of one LN element.

Negative⇑ =
(

newSize−oldSize
Sizeelement

)
· nReadsLN[i]

nWritesLN[i]
· Tr(oldSize) · 2

(2)

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 9

Similarly, the positive and negative impact of shrinking
a LN can be denoted as in Equation 3 and 4.

Positive⇓ =
(

oldSize−newSize
Sizeelement

)
· nReadsLN[i]

nWritesLN[i]
· Tr(newSize) · 2

(3)

Negative⇓ = Tr(newSize) + 2 · Tw(newSize
2) (4)

When a LN is decided to be enlarged, the newSize
will be checked to make sure Positive⇑ > Negative⇑,
otherwise, the node size will remain unchanged. Shrinking
a LN must make sure the newSize satisfies Positive⇓ >
Negative⇓. As long as the read/write performance Tr(size)

and Tw(size) of the memory in use is provided, the size limit
of LNs can be determined by the analytical model using
the statistic information nReadsLN [i] and nWritesLN [i] to
prevent the potential performance drop under a specific
workload. Note that Tr(size) and Tw(size) must be tested
thoroughly for different types of NVM because they are not
linearly proportional to the size due to the effect of cache
line hit and the use of memory fences and cache line flushes.

5.5 Rebuilding Optimization
Rebuilding is executed when any PLNs are full. Us-
ing the workload-adaptive approach to reduce the num-
ber of splits can definitely help reduce this overhead.
To further optimize NV-Tree in terms of rebuilding, we
identify and increase the size of the hot-write PLNs
during each rebuilding to delay the next one. Specifi-
cally, A PLN is considered hot-write if nWritesPLN [i] =∑

j∈(IDs of LNs in PLN [i]) nWritesLN [j] > nWrites
NPLN

. Dur-
ing rebuilding, we increase the size of all the hot-write
PLNs. To minimize the space usage, we use the default size
of INs as the unit size for enlarging PLNs.

6 EVALUATION

In this section, we firstly show the advantage of
NV-Tree over other tree structures in terms of in-
sertion/update/deletion/search performance and overall
performance under mixed workloads. To evaluate the
workload-adaptive scheme, we measure the throughput
of NV-Tree under skewed write-intensive workloads with
three strategies (conservative, aggressive and balanced),
and compare it with the throughput of NV-Tree without
workload-adaptivity (denoted as NV-Tree’). Then we quan-
tify the overhead of rebuilding by calculating the percentage
of the rebuilding time of NV-Tree in the total execution time
under insertion-only workloads. To evaluate NV-Tree from
a system perspective, we use YCSB [48], a benchmark for
KV-stores, to compare our NV-Tree-based KV-Store (NV-
Store) with Redis [25], a well-known in-memory KV-store.
Finally, we discuss the performance of NV-Tree on different
hardware including different types of NVM and CPUs with
new instructions available.

6.1 Methodology
6.1.1 Implementation Effort
We implement our NV-Tree from scratch, an LCB+Tree by
applying FLUSH and logging to a standard B+Tree [49],
and a CDDS-Tree [5]. To further optimize NV-Tree under
various workloads, we implement the workload-adaptive

feature into NV-Tree. All the results showed in this paper is
measured using the NV-Tree with workload-adaptivity.

To make use of NVDIMM as a persistent storage device,
we modify the memory management of Linux kernel to add
new functions (e.g., malloc_NVDIMM) to directly allocate
memory space from NVDIMM. The NVDIMM space used
by NV-Tree is guaranteed to be mapped to a contiguous
(virtual) memory space. The node “pointer” stored in NV-
Tree is the memory offset to the start address of the mapped
memory space. Therefore, even if the mapping is changed
after reboot, each node can always be located using the
offset. With the position information of the first LN stored
in the reserved location, our NV-Tree can be practically
recoverable after power down.

We build our NV-Store based on NV-Tree by allow-
ing different sizes of key and value. Moreover, by adding
a timestamp in each LN Element, NV-Store can support
lock-free concurrent accesses using timestamp-based multi-
version concurrency control (MVCC) [50]. Based on that,
we implement NV-Store to support Snapshot Isolation [51]
transactions. Finally, we extended YCSB to support NV-
Store to facilitate our performance evaluation.

6.1.2 Experimental Setup
All of our experiments are conducted on a Linux server
(Kernel version 3.13.0-24) with an Intel Xeon E5-2650
2.4GHz CPU (512KB/2MB/20MB L1/L2/L3 cache), 8GB
DRAM and 8GB NVDIMM [24] which has practically the
same read/write latency as DRAM. In the end-to-end com-
parison, we use YCSB (0.1.4) to compare NV-Store with
Redis (2.8.13). Note that all results shown in this section
are produced by running application on NVDIMM server
instead of simulation. The execution time measured for NV-
Tree and NV-Store includes the rebuilding overhead.

6.2 Insertion Performance

We first compare the random-key insertion performance
of LCB+Tree, CDDS-Tree and NV-Tree with different node
sizes. Figure 5 shows the execution time of inserting one
million KV-pairs (8B/8B) with randomly selected keys to
each tree with different sizes of tree nodes from 512B to 4KB.
The result shows that NV-Tree outperforms LCB+Tree and
CDDS-Tree up to 7X and 12X with 4KB nodes, respectively.
Moreover, different from LCB+Tree and CDDS-Tree that the
insertion performance drops when the node size increases,
NV-Tree shows the best performance with larger nodes. This
is because (1) NV-Tree adopts unsorted LN to avoid CPU
cache line flush for shifting entries. The size of those cache
line flush is proportional to the node size in LCB+Tree and
CDDS-Tree; (2) larger nodes lead to less LN split resulting
in less rebuilding and reduced height of NV-Tree.

The performance improvement of NV-Tree over the com-
petitors is mainly because of the reduced number of cache
line flush thanks to both the unsorted LN and decoupling
strategy of enforcing consistency selectively. Specifically, as
shown in Figure 6, NV-Tree reduces the total CPU cache
line flush by 80%-97% compared to LCB+Tree and 76%-96%
compared to CDDS-Tree.

Although the consistency cost of INs is neglectable for
LCB+Tree and CDDS-Tree as shown in Figure 1d, such
cost becomes relatively expensive in NV-Tree because the

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 10

0

5

10

15

20

25

30

35

40

45

50

512B 1024B 2048B 4096B

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Node Size

LCB+Tree

CDDS-Tree

NV-Tree

Fig. 5. Execution Time for 1 Million
Insertions

0

10

20

30

40

50

60

70

80

90

512B 1024B 2048B 4096B

C
a
c
h
e

L
i
n
e

F
l
u
s
h

(
M
i
l
)

Node Size

LCB+Tree

CDDS-Tree

NV-Tree

Fig. 6. Number of Cache Line
Flushes for 1 Million Insertions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L
C
B

N
V
T
-
A

L
C
B

N
V
T
-
A

L
C
B

N
V
T
-
A

L
C
B

N
V
T
-
A

P
e
r
c
e
n
t
a
g
e

Node Size

LN

IN

512B 1024B 2048B 4096B

Fig. 7. Cache Line Flush Break-
down for IN/LN

0

100

200

300

400

500

600

700

800

900

1 Million 10 Million 100 Million

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Number of Insertion

LCB+Tree

CDDS-Tree

NV-Tree

3265 4796

520

Fig. 8. Execution Time for 1/10/100
Million Insertions

0

2

4

6

8

10

12

14

16

512B 1024B 2048B 4096B

#

o
f

L
O
A
D
s

(
1
0
9
)

Node Size

LCB+Tree

CDDS-Tree

NV-Tree

Fig. 9. Number of LOADs Executed
for 1 Million Insertions

0

100

200

300

400

500

600

700

800

900

512B 1024B 2048B 4096B

L
3

C
a
c
h
e

M
i
s
s
e
s

(
M
i
l
)

Node Size

LCB+Tree

CDDS-Tree

NV-Tree

Fig. 10. Number of L3 Cache
Misses for 1 Million Insertions

consistency cost for unsorted LNs is significantly reduced.
To quantify the consistency cost of INs after such optimiza-
tion, we implement a modified NV-Tree, denoted as NVT-A,
which does the same optimization for LN as NV-Tree, but
manages INs in the same way as LCB+Tree and enforces
consistency for all INs. Figure 7 shows the breakdown of
CPU cache line flush for IN and LN in LCB+Tree and NVT-
A. The percentage of CPU cache line flush for IN increases
from around 7% in LCB+Tree to more than 20% in NVT-
A. This result proves that decoupling IN/LN and enforcing
consistency selectively are necessary and beneficial.

Figure 8 shows the execution time of inserting differ-
ent number of KV-pairs with 4KB node size. The result
shows that for inserting 1/10/100 million KV-pairs, the
speedup of NV-Tree can be 7.1X/6.3X/5.3X over LCB+Tree
and 12X/9.7X/8.2X over CDDS-Tree. This suggests that
although inserting more KV-pairs increases the number and
duration of rebuilding, NV-Tree can still outperform the
competitors thanks to the write-optimized design.

We further study the underlying CPU cache efficiency of
the three trees by using vTune Amplifier. Figure 9 shows the
total number of LOAD instructions executed for inserting
one million KV-pairs in each tree. NV-Tree reduces the num-
ber of LOAD instruction by about 44%-90% and 52%-92%
compared to LCB+Tree and CDDS-Tree, respectively. We
also notice the number of LOAD instructions is not sensitive
to the node size in NV-Tree while it is proportional to the
node size in LCB+Tree and CDDS-Tree. This is because NV-
Tree (1) eliminates entry shifting during insertion in un-
sorted LN, (2) adopts cache-optimized layout for IN/PLNs.

Most important, NV-Tree produces much less cache
misses. Since memory read is only needed upon L3 cache
miss, we use the number of L3 cache misses to quantify the
read penalty of FLUSH. Figure 10 shows the total number of
L3 cache misses when inserting one million KV-pairs. NV-
Tree can reduce the number of L3 cache misses by 24%-
83% and 39%-90% compared to LCB+Tree and CDDS-Tree,
respectively. This is because NV-Tree reduces the number of
CPU cache line invalidation and flush.

6.3 Update/Deletion/Search Throughput

To compare the throughput of update/deletion/search op-
erations in the three trees, we first insert one million KV-
pairs, then update each of them with new value (same size),
then search with every key and finally delete all of them. For
each type of operation, each key is randomly and uniquely
selected. After each type of operation, we flush the CPU
cache to remove the cache influence between different types
of operation.

The update/deletion/search performance with node
size varied from 512B to 4KB is shown in Figure 11. As
shown in Figure 11a, NV-Tree improves the throughput of
update by up to 5.6X and 8.5X over LCB+Tree and CDDS-
Tree. In CDDS-Tree, although update does not trigger the
split if any reusable slots are available, entry shifting is still
needed to keep the entries sorted. LCB+Tree does not need
to shift entries for update, but in addition to the updated
part of the node, it FLUSHes the log which contains the
original copy of the node. In contrast, NV-Tree uses log-
free append-only approach to modify LNs so that only two
LN elements need to be FLUSHed.

Upon deletion, NV-Tree is better than LCB+Tree but not
as good as CDDS-Tree as shown in Figure 11b. This is be-
cause CDDS-Tree simply does an in-place update to update
the end version of a corresponding key. However, with the
node size increased, NV-Tree is able to achieve comparable
throughput to CDDS-Tree because of the reduction of split.

Note that the throughput of update and deletion in
Figure 11a and 11b in LCB+Tree decreases when the node
size increases. This is because both the log size and the
amount of data to FLUSH for shifting entries are proportional
to the node size. The same trend is observed in CDDS-Tree.
By contrast, the throughput of update and deletion in NV-
Tree always increases when the node size increases because
(1) the amount of data to FLUSH is irrelevant to the node size,
(2) a larger node reduces the number of split and rebuilding.

Figure 11c shows the search throughput of the three
trees. Although the search performance of NV-Tree is af-
fected by the unsorted LN design, the results show that it
can still outperform its competitors in some cases. This is
because for the same number of KV-pairs, (1) with the same
node size, NV-Tree is always shorter than CDDS-Tree and
no taller than LCB+Tree thanks to the removal of pointers
in INs, (2) the total size of INs in NV-Tree is much smaller
than that in its competitors so the INs visited during search
in NV-Tree are more likely to be found in CPU caches.
Overall, NV-Tree with the unsorted LN design (but keys in
INs are still sorted) shows comparable search performance
to its competitors with sorted LNs, which is consistent to
the published result in [38].

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 11

0K

50K

100K

150K

200K

250K

300K

512B 1024B 2048B 4096B

T
h
r
o
u
g
h
p
u
t

(
O
p
s
/
s
)

Node Size

LCB+Tree CDDS-Tree NV-Tree

(a) Update

0K

50K

100K

150K

200K

250K

300K

512B 1024B 2048B 4096B

T
h
r
o
u
g
h
p
u
t

(
O
p
s
/
s
)

Node Size

LCB+Tree CDDS-Tree NV-Tree

(b) Deletion

0K

500K

1000K

1500K

2000K

2500K

3000K

512B 1024B 2048B 4096B

T
h
r
o
u
g
h
p
u
t

(
O
p
s
/
s
)

Node Size

LCB+Tree CDDS-Tree NV-Tree

(c) Search
Fig. 11. Update/Deletion/Search Throughput Comparison

0

10

20

30

40

50

90%/10% 70%/30% 50%/50% 30%/70% 10%/90%E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Write/Read Ratio

(Write-intensive → Read-intensive)

LCB+Tree CDDS-Tree NV-Tree' NV-Tree

Fig. 12. Execution Time of Different
R/W Ratios (Node Size = 4KB)

0K

15K

30K

45K

60K

75K

1 2 3 4 5 6 7 8 9 10T
h
r
o
u
g
h
p
u
t

(
O
p
s
/
s
)

Normalized Time

Conservative Aggressive

Balanced None

Fig. 13. Update Performance Over
Time under Skewed Workloads

0K

50K

100K

150K

200K

250K

300K

350K

400K

1KB 4KB 1KB 4KBT
h
r
o
u
g
h
p
u
t

(
O
p
s
/
s
)

Low High

Locality

NV-Tree' NV-Tree

Fig. 14. Insertion Performance with
And without Workload-adaptivity

0K

50K

100K

150K

200K

250K

300K

100% 50% 25% 10% 2% 0.5%

T
h
r
o
u
g
h
p
u
t

(
O
p
s
/
s
)

Locality (Low → High)

NV-Tree' (1KB) NV-Tree (1KB)

NV-Tree' (4KB) NV-Tree (4KB)

Fig. 15. Update Performance with
And without Workload-adaptivity

0K

15K

30K

45K

60K

75K

1 2 3 4 5 6 7 8 9 10T
h
r
o
u
g
h
p
u
t

(
O
p
s
/
s
)

Normalized Time

Conservative Aggressive

Balanced None

The locality

changes from here

Fig. 16. Update Performance Over
Time under Dynamic Workloads

6.4 Workload-adaptive Optimization

6.4.1 Different Read/Write Ratios

Firstly, we investigate the performance of NV-Tree under
low-locality workloads with different r/w ratios. Figure
12 shows the execution time of performing one million
random-key update/search operations with varied r/w ra-
tios on an existing tree with one million KV-pairs. NV-Tree
has the best performance under mixed workloads compared
to LCB+Tree and CDDS-Tree. All three trees have better
performance under workloads with fewer update. This is
because memory writes must be performed to write LN
changes to NVM persistently through FLUSH while searches
can be much faster if they hit the CPU cache. Moreover, NV-
Tree shows the highest speedup, 6.6X over LCB+Tree and
10X over CDDS-Tree, under the most write-intensive work-
load (90% insertion/10% search). As the write/read ratio
decreases, the speedup of each tree drops but NV-Tree is still
better than its counterparts under the most read-intensive
workload (10% insertion/90% search). This indicates NV-
Tree has much better insertion performance and comparable
search throughput as well. Note that NV-Tree’ (NV-Tree
without workload-adaptivity) has similar performance to
NV-Tree because the rebuilding only happens once under
such low-locality workloads.

6.4.2 Skewed (High-locality) Write-intensive Workloads

In addition to the low-locality workloads above, we also
study the tree performance under skewed workloads. The
workload we choose is the update-only workload where
keys are selected within 5% of the tree with 1KB node
size. Figure 13 shows the update throughput of NV-Tree
with different workload-adaptive strategies under such a
workload over time. Due to the excessive number of splits
and rebuilding, without the workload-adaptive algorithm,
the update throughput under the skewed workload drops
92% compared to that under low-locality workloads shown
in Figure 11a, and the drop is consistent over time. Note
that the slightly worse performance at time 8 is caused
by a rebuilding. However, with the workload-adaptivity

enabled, the performance can be improved over time under
different strategy.

As shown in Figure 13, every strategy can help improve
the performance over time but the balanced and aggressive
one can do that much faster than the conservative one.
This is because at the early stage when doubling the node
size does not reach the size limitation set by the analytical
model, the performance can be improved much faster than
slowly increasing the node size by one cache line size.
Moreover, after a certain point of time, the performance
remains unchanged for the aggressive strategy while it still
gets better but slowly for the balanced strategy. This is
because in our current implementation, if doubling the size
of a node is not allowed due to the limitation calculated
by the analytical model, the node size remains unchanged
in the aggressive strategy. However in the balanced strategy,
the node size will be increased by only one cache line size as
long as it does not exceed the limitation which can improve
the performance just like the conservative strategy does.

To quantify the effectiveness of the workload-adaptive
scheme, we compare the throughput of NV-Tree (workload-
adaptive with balanced strategy) and NV-Tree’ (NV-Tree
without the workload-adaptive scheme) under insertion
and update workloads with different localities. As shown
in Figure 14, under high-locality insertion workloads, the
throughput can be improved up to 305% with workload-
adaptive algorithm for 1KB node. Figure 15 shows the
update throughput with different localities, which are repre-
sented by the percentages of how many keys over the total
number of keys are selected for the update operations. 100%
represents the key selection is uniformly distributed which
is the lowest locality. Under the high-locality workload
(0.5%), the update throughput can be improved up to 3.2X
with the workload-adaptive scheme. Moreover, although
the update throughput drops when the locality increases
due to the more frequent rebuilding, the throughput of NV-
Tree only drops 70%/27% while that of NV-Tree’ drops
92%/31% with 1KB/4KB node sizes when the locality
changes from 100% to 0.5%. This indicates the workload-

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 12

adaptive algorithm can effectively reduce the performance
drop when the locality increases.
6.4.3 Dynamic Workloads
The workload-adaptive strategy can also detect the change
of the on-going workload. To validate this ability, we use
the settings similar to those in the previous subsection
except that we change the locality of the workload during
the execution. There are numerous ways to change the
workload in terms of the locality and read/write ratio, but
for illustration, we only show how the performance changes
when the hot-zone shifts under the update-only workload.
Specifically, the workload starts with updating the entries
with the large keys (right-most 0.5%), then shifts to updating
the entries with the small keys (left-most 0.5%).

As shown in Figure 16, the update throughput of
NV-Tree without workload-adaptive strategy remains un-
changed over time. In contrast, when the workload shifts
at the time between 5 and 6, the performance stops being
improved and drops immediately for all three strategies.
As the conservative strategy only enlarges the hot-write
nodes, the LNs in the new hot zone may not be identified as
hot-write immediately after the workload shifts, the perfor-
mance keeps drop at time 7 and starts to be improved from
time 8 eventually. However, such a phenomenon that the
performance keeps drop is not observed in the aggressive
and balanced strategy. Starting from time 7, the performance
immediately starts to be improved under all three strategies.
Furthermore, as the aggressive strategy increases the size of
write-intensive nodes, it is more responsive to the workload
shifts than the balanced strategy. Therefore, the performance
improvement of the aggressive strategy right after the work-
load shifts is much better than that of the balanced strategy.
Nevertheless, the performance improvement gets better at
time 8 for the balanced strategy because the LNs in the new
hot zone start to be identified as the hot-write nodes.

6.5 Rebuilding and Failure Recovery
To quantify the impact of rebuilding on the overall perfor-
mance, we measure the total number and time of rebuilding
with different node sizes under different number of inser-
tions. As shown in Table 4, compared to the total execution
time, the percentage of rebuilding time in the total execution
time is only about 1% for 1/10/100 million random-key
insertion workloads, which is totally neglectable.

Due to the excessive rebuilding under the sequential in-
sertion workload, the rebuilding time is increased. To quan-
tify the rebuilding optimization of the workload-adaptive
scheme, we compare the rebuilding time of the NV-Tree
with and without workload-adaptive algorithm (denoted as
NV-Tree’) for 1 million sequential insertions with 1KB node
size as shown in Figure 17. With the workload-adaptive
optimization on rebuilding, the rebuilding time can be sig-
nificantly reduced (from 44.5s to 1.4s). The slightly longer
rebuilding time under the random insertion workload is due
to the extra time for identifying hot-write PLNs.

Different from the rebuild-from-PLN during normal exe-
cution, the failure recovery performs a rebuild-from-LN. Our
previous study [46] shows that a rebuild-from-LN is 22%-47%
slower than a rebuild-from-PLN. Since we focus on the tree
performance where the off-line recovery time is not crucial,
we leave the optimization for recovery as future work.

TABLE 4
Rebuilding Time for 1/10/100 Million Insertions with 1KB/4KB Nodes

1M 10M 100M

Node Size Node Size Node Size

1KB 4KB 1KB 4KB 1KB 4KB

of Rebuilding 3 1 3 2 4 2

Rebuilding Time (ms) 52.6 0.6 57.1 41.7 1359.4 41.6

Execution Time (ms) 4672.0 3955.2 55998.5 44091.5 604111.3 518323.9

Percentage 1.13% 0.02% 0.10% 0.09% 0.23% 0.01%

To validate the recoverability and consistency, when NV-
Tree is running a 100M insertion workload, we manually
trigger the system failure by either (1) killing the process or
cut the power at randomly selected timing, or (2) terminat-
ing the program at a certain point of time such as the LN
modification (between the steps shown in Figure 3), the LN
split (between the steps shown in Figure 4) and rebuilding.
After NV-Tree is recovered from such injected failure, no
data inconsistency such as invalid pointers, pointers to
invalid data or data loss is found.

6.6 End-to-End Performance

In this subsection, we compare our NV-Store with Redis
under YCSB workloads. NV-Store is built on top of NV-Tree
which is practically durable and consistent. NV-Store’ rep-
resents the KV-Store based on NV-Tree’ without workload-
adaptive algorithm. Redis can provide persistency by using
fsync to write logs to an append-only file (AOF mode).
With different fsync strategy, Redis can be either volatile
if fsync is performed in a time interval, or consistent if
fsync is performed right after each log write. We use the
NVM space to allocate a RAMDisk for holding the log file
so that Redis can be in-memory persistent. Note that it still
goes through the POSIX interface by using fsync.

We select two typical workloads in YCSB benchmark,
StatusUpdate (read-latest) and SessionStore (update-heavy),
to evaluate NV-Store and Redis. StatusUpdate workload
has 95%/5% search/insert ratio on keys chosen from a
temporally weighted distribution to represent applications
in which people update the online status while others view
the latest status, which means newly inserted keys are
preferentially chosen for retrieval. SessionStore workload
has 50%/50% search/update ratio on keys chosen from
a Zipfian distribution to represent applications in which
people record recent actions.

Figure 18 shows the throughput of NV-Store and Redis
under StatusUpdate workload. The result shows that NV-
Store improve the throughput by up to 4.7X over both
volatile and consistent Redis. This indicates the optimiza-
tion of reducing cache line flush for insertion can signifi-
cantly improve the performance even with as low as 5%
insertion percentage. Moreover, both volatile and consistent
Redis are bottlenecked with about 16 clients while NV-Store
can still scale up with 32 clients. The high scalability of
NV-Store is achieved by the high concurrency of the tree
operations. Figure 19 shows the throughput under Session-
Store workload. NV-Store can improve the throughput by
up to 7.3X over Redis because the workload is more write-
intensive. Note that NV-Store outperforms NV-Store’ [46] by
up to 9% and 30% under these two workloads, respectively.
This indicates our workload-adaptive scheme can signifi-

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 13

44.5

0.041.4 0.12
0

10

20

30

40

50

Sequential RandomR
e
b
u
i
l
d
i
n
g

T
i
m
e

(
s
)

Workloads

NV-Tree' NV-Tree

Fig. 17. Rebuilding Time Comparison

0K

50K

100K

150K

200K

250K

300K

1 2 4 8 16 32

T
h
r
o
u
g
h
p
u
t

(
O
p
s
/
s
)

Client Number

Redis/Volatile

Redis/Consistent

NV-Store'

NV-Store

Fig. 18. Throughput of YCSB-StatusUpdate

0K

50K

100K

150K

200K

250K

300K

350K

1 2 4 8 16 32

T
h
r
o
u
g
h
p
u
t

(
O
p
s
/
s
)

Client Number

Redis/Volatile

Redis/Consistent

NV-Store'

NV-Store

Fig. 19. Throughput of YCSB-SessionStore

0

50

100

150

200

NVDIMM STT-RAM PCM

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Type of NVM

LCB+Tree

CDDS-Tree

NV-Tree

(a) Different Types of NVM

0

5

10

15

20

25

512B 1024B 2048B 4096B

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Node Size

LCB+Tree

CDDS-Tree

NV-Tree

(b) Hardware with Epoch
Fig. 20. NV-Tree Performance with Different NVM and New Hardware

cantly improve the overall performance under such skewed
(Zipfian distribution) write-intensive workloads.

6.7 NV-Tree Performance With Different Hardware

6.7.1 Different Types of NVM
Given the write latency difference of NVDIMM (same as
DRAM), PCM (180ns), STT-RAM (50ns) in Table 1, we
explicitly add some delay before every memory write in
our NV-Tree to investigate its performance on different
types of NVM. Figure 20a shows the execution time of one
million insertions in NV-Tree with 4KB nodes. Compared to
the performance on NVDIMM, NV-Tree is only 5%/206%
slower on STT-RAM/PCM, but LCB+Tree is 51%/241%
and CDDS-Tree is 87%/281% slower. NV-Tree suffers less
performance drop than LCB+Tree and CDDS-Tree on slower
NVM because of the reduction of CPU cache line flush.

6.7.2 Future Hardware: New CPU Instructions
Comparing to MFENCE and CLFLUSH, epoch and a
couple of new instructions for non-volatile storage
(CLWB/CLFLUSHOPT/PCOMMIT) added by Intel recently
[37] are able to flush CPU cache lines without explicit
invalidations which means additional cache misses can be
avoided. We estimate LCB+Tree, CDDS-Tree and our NV-
Tree performance by removing the cost of L3 cache misses
due to cache line flushes the execution time (Figure 5). For
B+Tree and volatile CDDS-Tree, such cost can be derived by
deducting the number of L3 cache misses without cache line
flushes (Figure 1b) from that with cache-line flushes (Figure
10). As shown in Figure 20b, with the cache miss penalty
removed, NV-Tree outperforms LCB+Tree/CDDS-Tree by
7X/9X with 4KB nodes. This indicates our optimization of
reducing cache line flush is still valuable when flushing a
cache line without the invalidation becomes possible.

7 CONCLUSION

In this paper, we quantify the consistency cost of existing
tree structures in NVM. Based on our observations, we

propose NV-Tree, a consistent B+Tree variant, which can
keep in-NVM data consistent with significantly reduced
consistency cost. By selectively enforcing consistency, adopt-
ing unsorted LNs and organizing INs in a cache-optimized
format, NV-Tree can reduce the number of cache line flushes
under write-intensive workloads by more than 90% com-
pared to the state-of-art consistent trees. To further optimize
NV-Tree for skewed workloads, we propose a workload-
adaptive scheme to improve the performance over time
by dynamically adjust the individual node size. We also
use NV-Tree as the core data structure to build a key-
value store named NV-Store. Both NV-Tree and NV-Store are
implemented and evaluated on a real NVDIMM platform
instead of simulation. The experimental results show that
NV-Tree outperforms LCB+Tree and CDDS-Tree by up to
7X and 12X under write-intensive workloads, respectively.
Our NV-Store increases the throughput by up to 7.3X un-
der YCSB workloads compared to Redis. The workload-
adaptive enhancement can improve (1) NV-Tree by up to
3X under skewed write-intensive workloads; (2) NV-Store
by 30% under YCSB workloads.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for
their constructive comments. This work was supported by
Agency for Science, Technology and Research (A*STAR),
Singapore under Grant No. 112-172-0010. Bingsheng’s work
is in part supported by a MoE AcRF Tier 1 (2014-T1-001-145)
of Singapore.

REFERENCES

[1] S. Raoux, G. W. Burr et al., “Phase-change random access memory:
A scalable technology,” IBM JRD, vol. 52, pp. 465–479, 2008.

[2] T. Kawahara, “Scalable spin-transfer torque ram technology for
normally-off computing,” DTC, vol. 28, no. 1, pp. 0052–63, 2011.

[3] L. Chua, “Resistance switching memories are memristors,” Applied
Physics A, vol. 102, no. 4, pp. 765–783, 2011.

[4] R. F. Freitas and W. W. Wilcke, “Storage-class memory: The next
storage system technology,” IBM JRD, vol. 52, pp. 439–447, 2008.

[5] S. Venkataraman, N. Tolia et al., “Consistent and durable data
structures for non-volatile byte-addressable memory.” in FAST’11.

[6] S. Pelley, P. M. Chen et al., “Memory persistency,” in ISCA, 2014.
[7] B. Cully, J. Wires et al., “Strata: High-performance scalable storage

on virtualized non-volatile memory,” in FAST, 2014.
[8] H. Kim, S. Seshadri et al., “Evaluating phase change memory

for enterprise storage systems: A study of caching and tiering
approaches,” in FAST, 2014.

[9] D. Vučinić, Q. Wang et al., “Dc express: Shortest latency protocol
for reading phase change memory over pci express,” in FAST’14.

[10] A. M. Caulfield, T. I. Mollov et al., “Providing safe, user space
access to fast, solid state disks,” SIGPLAN, vol. 47, 2012.

[11] A. M. Caulfield, A. De et al., “Moneta: A high-performance storage
array architecture for next-generation, non-volatile memories,” in
MICRO, 2010.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2479621, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 14

[12] G. Dhiman, R. Ayoub et al., “Pdram: a hybrid pram and dram
main memory system,” in DAC, 2009.

[13] D. Fryer, K. Sun et al., “Recon: Verifying file system consistency at
runtime,” in FAST, 2012.

[14] T. S. Pillai, V. Chidambaram et al., “All File Systems Are Not
Created Equal: On the Complexity of Crafting Crash-Consistent
Applications,” in OSDI, 2014.

[15] V. Chidambaram, T. S. Pillai et al., “Optimistic Crash Consistency,”
in SOSP, 2013.

[16] W.-H. Kim, B. Nam et al., “Resolving journaling of journal anomaly
in android i/o: Multi-version b-tree with lazy split,” in FAST, 2014.

[17] J. DeBrabant, J. Arulraj et al., “A prolegomenon on oltp database
systems for non-volatile memory,” PVLDB, vol. 7, no. 14, 2014.

[18] K. Bhandari, D. R. Chakrabarti et al., “Implications of cpu caching
on byte-addressable non-volatile memory programming,” HP
Technical Report HPL-2012-236, Tech. Rep., 2012.

[19] J. Condit, E. B. Nightingale et al., “Better i/o through byte-
addressable, persistent memory,” in SIGOPS, 2009.

[20] D. Narayanan and O. Hodson, “Whole-system persistence,” in
ASPLOS, 2012.

[21] D. Comer, “Ubiquitous b-tree,” CSUR, vol. 11, pp. 121–137, 1979.
[22] J. Ahn, D. Kang et al., “µ*-tree: An ordered index structure for

NAND flash memory with adaptive page layout scheme,” IEEE
Trans. Computers, vol. 62, no. 4, pp. 784–797, 2013.

[23] H. Fang, M. Yeh et al., “An adaptive endurance-aware b+-tree for
flash memory storage systems,” IEEE Trans. Computers, vol. 63,
no. 11, pp. 2661–2673, 2014.

[24] VikingTechnology, “Arxcis-nv (tm) non-volatile dimm,”
http://www.vikingtechnology.com/arxcis-nv, 2014.

[25] S. Sanfilippo and P. Noordhuis, “Redis,” http://redis.io, 2009.
[26] H. Volos, A. J. Tack et al., “Mnemosyne: Lightweight persistent

memory,” in SIGARCH, vol. 39, 2011, pp. 91–104.
[27] C. Chang, C. Yang et al., “Booting time minimization for real-

time embedded systems with non-volatile memory,” IEEE Trans.
Computers, vol. 63, no. 4, pp. 847–859, 2014.

[28] C. Zhang, Y. Wang et al., “Deterministic crash recovery for NAND
flash based storage systems,” in DAC, 2014.

[29] Y. Li, B. He et al., “Tree indexing on solid state drives,” PVLDB,
vol. 3, no. 1-2, pp. 1195–1206, 2010.

[30] Y. Lv, B. Cui et al., “Operation-aware buffer management in flash-
based systems,” in SIGMOD, 2011.

[31] M. Jung, E. H. Wilson III et al., “Exploring the future of out-of-core
computing with compute-local non-volatile memory,” in SC, 2013.

[32] Q. Wu, F. Sun et al., “Using multilevel phase change memory
to build data storage: A time-aware system design perspective,”
IEEE Trans. Computers, vol. 62, no. 10, pp. 2083–2095, 2013.

[33] M. K. Qureshi, V. Srinivasan et al., “Scalable high performance
main memory system using phase-change memory technology,”
SIGARCH, vol. 37, no. 3, pp. 24–33, 2009.

[34] P. Zhou, B. Zhao et al., “A durable and energy efficient main
memory using phase change memory technology,” in SIGARCH,
vol. 37, 2009, pp. 14–23.

[35] Everspin, “Second generation mram: Spin torque technology,”
http://www.everspin.com/products/second-generation-st-mram.html.

[36] X. Wu and A. Reddy, “Scmfs: a file system for storage class
memory,” in SC, 2011.

[37] Intel, “Intel 64 and ia-32 architectures software developers man-
ual,” Volume 3A: System Programming Guide, Part, 2014.

[38] S. Chen, P. B. Gibbons et al., “Rethinking database algorithms for
phase change memory.” in CIDR, 2011.

[39] T. Wang and R. Johnson, “Scalable logging through emerging non-
volatile memory,” PVLDB, vol. 7, no. 10, pp. 865–876, 2014.

[40] J. Coburn, A. M. Caulfield et al., “Nv-heaps: Making persistent
objects fast and safe with next-generation, non-volatile memories,”
in ASPLOS, 2011.

[41] E. Lee, H. Bahn et al., “Unioning of the buffer cache and journaling
layers with non-volatile memory.” in FAST, 2013.

[42] R.-S. Liu, D.-Y. Shen et al., “Nvm duet: unified working memory
and persistent store architecture,” in ASPLOS, 2014.

[43] H. Volos, S. Nalli et al., “Aerie: flexible file-system interfaces to
storage-class memory,” in EuroSys, 2014.

[44] S. R. Dulloor, S. Kumar et al., “System software for persistent
memory,” in EuroSys, 2014.

[45] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main
memory,” PVLDB, vol. 8, no. 7, pp. 786–797, Feb. 2015.

[46] J. Yang, Q. Wei et al., “Nv-tree: Reducing consistency cost for nvm-
based single level systems,” in FAST, 2015.

[47] J. Rao and K. A. Ross, “Making b+-trees cache conscious in main
memory,” in ACM SIGMOD Record, vol. 29, 2000, pp. 475–486.

[48] B. F. Cooper, A. Silberstein et al., “Benchmarking cloud serving
systems with ycsb,” in SoCC, 2010.

[49] T. Bingmann, “Stx b+ tree c++ template classes,” 2008.
[50] D. Lomet and B. Salzberg, Access methods for multiversion data, 1989,

vol. 18.
[51] H. Berenson, P. Bernstein et al., “A critique of ansi sql isolation

levels,” in ACM SIGMOD Record, vol. 24, 1995, pp. 1–10.

Jun Yang received the bachelor degree in com-
puter science from Shanghai Jiaotong University
(2003-2007), and the PhD degree in computer
science and engineering in Hong Kong Univer-
sity of Science and Technology (2007-2013).
Currently he is a Scientist in the Data Storage
Institute, A*Star, Singapore. His research inter-
ests include database systems, file systems and
next-generation non-volatile memory.

Qingsong Wei received his Ph.D. in computer
science from University of Electronic Science
and Technologies of China in 2004. He was
with Tongji University as assistant professor from
2004 to 2005. He is currently with the Data Stor-
age Institute, Agency for Science, Technology
and Research (A*STAR), Singapore, as a Re-
search Scientist. His research interests include
Non-volatile Memory Technologies, Distributed
File and Storage System, Cloud Storage and
Operating System. Dr. Wei is a member of IEEE.

Chundong Wang received the bachelor degree
in computer science from Xi’an Jiaotong Univer-
sity (2004-2008), and the PhD degree in com-
puter science of National University of Singapore
(2008-2013). Currently he is a Scientist in the
Data Storage Institute, A*Star, Singapore. His
research interests include file system, data stor-
age and next-generation non-volatile memory.

Cheng Chen received the bachelor degree in
computer science from Chengdu University of
Information Technology (2004-2008), and the
Master degree in computer science in Univer-
sity of Electronic Science and Technology of
China (2009-2012). He is a research engineer in
Data Storage Institute, A*star, Singapore. His re-
search interests are Non-volatile Memory based
operating system, high performance computing,
distributed and parallel systems, and database
systems.
Khai Leong Yong currently works as a Divi-
sional Manager for Data Storage Institute (DSI),
a research institute under the Agency for Sci-
ence, Technology and Research (A*STAR), Sin-
gapore. In his role with DSI, Khai Leong leads a
team of research scientists and engineers in de-
veloping data systems and storage technologies
for next generation data centers. Khai Leong has
more than 10 years of research and industry ex-
perience in network storage systems, network-
ing and software designs with many of these

years in leading positions. Khai Leong received his Engineering degree
from the National University of Singapore and holds a postgraduate
degree in Communication Software and Networks.

Bingsheng He received the bachelor degree
in computer science from Shanghai Jiao Tong
University (1999-2003), and the PhD degree in
computer science in Hong Kong University of
Science and Technology (2003-2008). He is an
associate professor in the School of Computer
Engineering of Nanyang Technological Univer-
sity, Singapore. His research interests are high
performance computing, distributed and parallel
systems, and database systems.

