
Copyright is held by the author/owner(s).
PPoPP’09, February 14-18, 2009, Raleigh, North Carolina, USA.
ACM 978-1-60558-397-6/09/02.

Figure 1. GPU thread organization.

GPU threads

block warp thread

Stack-Based Parallel Recursion on Graphics Processors

Ke Yang
Zhejiang Univ.

kyang@cad.zju.edu.cn

Bingsheng He
HKUST

saven@cse.ust.hk

Qiong Luo
HKUST

luo@cse.ust.hk

Pedro V. Sander
HKUST

psander@cse.ust.hk

Jiaoying Shi
Zhejiang Univ.

jyshi@cad.zju.edu.cn

Abstract
Recent research has shown promising results on using graphics
processing units (GPUs) to accelerate general-purpose computa-
tion. However, today's GPUs do not support recursive functions.
As a result, for inherently recursive algorithms such as tree tra-
versal, GPU programmers need to explicitly use stacks to emulate
the recursion. Parallelizing such stack-based implementation on
the GPU increases the programming difficulty; moreover, it is
unclear how to improve the efficiency of such parallel implemen-
tations. As a first step to address both ease of programming and
efficiency issues, we propose three parallel stack implementation
alternatives that differ in the granularity of stack sharing. Taking
tree traversals as an example, we study the performance tradeoffs
between these alternatives and analyze their behaviors in various
situations. Our results could be useful to both GPU programmers
and GPU compiler writers.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming -- Parallel programming
Language

General Terms Algorithms, Languages

Keywords Stack, Parallel Recursion, Graphics Processors

1. Introduction
Recursion is a fundamental programming construct. A recursive
function consists of a base case, which can be solved directly, and
a recursive case, which calls the function itself and reduces the
problem domain towards the base case. At each recursion level, if
the current function call becomes a base case, it will be solved and
will return to the caller. Otherwise, it will partition the problem
into sub-cases and go down to the next recursion level for each
sub-case. Such execution forms a recursion tree, and can be con-
verted into an iterative process using auxiliary data structures, in
particular, a stack.

In this paper, we study parallel implementation alternatives for
stack-based recursion on GPUs. The GPU can be viewed as a kind
of massively threaded parallel hardware. Figure 1 shows a typical
organization of GPU threads. Multiple SIMD (Single-Instruction-

Multiple-Data) GPU threads are grouped into a warp, and a batch
of thread warps form a block. Thread blocks are the synchroniza-
tion unit for GPU execution, and threads within a block share a
small piece of on-chip local memory. Due to the massive thread-
ing parallelism and the SIMD nature of the GPU, GPU programs
must exploit SIMD coherence, minimize thread communication
and utilize on-chip local memory for efficiency. It is therefore
challenging to use GPUs for parallel recursions [4], because (1)
recursions are not directly data parallel since there are communi-
cations between each pair of recursion caller and callee, (2) the
recursion tree may be irregular, and (3) data sizes of base cases
may vary.

Considering these challenges, we propose three GPU-based
stack implementation alternatives, namely per-thread stack, per-
warp stack and per-block stack, and study their performance. We
have implemented these alternatives in a GPU-based tree traversal
application. Our preliminary results show that stack-based recur-
sion can be done on the GPU efficiently and that the relative per-
formance of each alternative depends on the fanout of the
recursion tree.

2. GPU-Based Parallel Stacks
We design three kinds of parallel stacks that differ in the granular-
ity of stack sharing. We avoid write conflicts in sharing through
software mechanisms [5]. It can also be done through hardware;
either option can be expensive, and the cost generally increases
with the number of conflicting threads.

2.1 t_stack

A per-thread stack (t_stack) is a local array owned by each thread;
individual threads do not share stacks at all. Each thread inde-
pendently handles a recursive task using stack operations similar
to those on the CPU, and all these tasks can be executed in paral-
lel [6]. However, if there are branches in a recursion case, the
execution of individual threads will be divergent, and the SIMD
hardware will be underutilized. Moreover, since concurrent writes
occur among all threads, there will be intensive communication
between threads. As a result, this t_stack is suitable for recursions
with fine-grained parallelism.

2.2 b_stack

A per-block stack (b_stack) is a local array owned by a thread
block. Each block of threads handles a recursive case, and multi-
ple recursive cases are executed simultaneously among blocks.

In each recursive case, we first partition the input and generate
related bookkeeping information in parallel. Then we perform a
block-level synchronization operation, after which a single thread
of each block uses the bookkeeping information to locate all the
sub-cases and pushes them to the stack. Additionally, all base
cases are parallelized among blocks.

299

Thread communications in b_stacks occur at two levels, name-
ly intra-block and inter-block. Intra-block communication is effi-
cient using the intrinsic barrier mechanism, and it is possible to
cache block-level bookkeeping information on-chip. Furthermore,
due to the limited number of blocks, we can pre-allocate a write
buffer to each block, and the overhead of inter-block communica-
tion is much smaller than that of inter-thread one in t_stacks.

2.3 w_stack

A per-warp stack (w_stack) is a local array owned by a SIMD
warp; each warp handles a task in parallel. The granularity of
sharing a w_stack lies between that of t_stack and b_stack. This
stack minimizes thread divergence within one warp. Compared
with b_stacks, the warp-scope stacks and their bookkeeping struc-
tures are smaller and more likely to fit in on-chip stores. More
importantly, the overhead of serializing stack updates by a single
thread is confined by the warp width. Therefore, the communica-
tion overhead is generally less than that of b_stack.

2.4 Discussion

Stack depth. All three kinds of stacks can be efficiently im-
plemented in CUDA [1] by allocating a sufficiently large, fixed-
sized array. In the uncommon cases of stack overflow, the thread
dumps the stack to the GPU memory and resumes the execution in
a second kernel.

Hybrid alternatives. Since the granularity of parallelism may
vary in a recursion tree, it might be better to switch among differ-
ent stack models during execution. For example, we may use
b_stacks for a small number of sub-tasks at the beginning, and
then use w_stacks or t_stacks for a large number of sub-tasks
approaching the base cases. The challenge of developing an effi-
cient hybrid scheme on the GPU is to reduce the switching over-
head, especially the book-keeping.

Applications versus compilers. Given the strengths and
weaknesses of the three kinds of parallel stacks, GPU developers
have the flexibility to choose individual or hybrid alternatives
suitable for their own algorithms, presumably having a better
knowledge of their algorithms than the compiler. On the other
hand, if the compiler natively supports recursion, it will signifi-
cantly ease programming and possibly improves the efficiency.

3. Preliminary Results
We have applied our GPU-based parallel stacks to a representa-
tive recursive problem, tree traversal [3]. The tree index is a two-
dimensional R-tree [2] on 4M records amount to 64MB, and the
workloads are 100K two-dimensional range queries. We use CU-
DA to implement the programs on a GeForce 8800GTX GPU. For
comparison, we have also implemented a CPU-based parallel
traversal routine using OpenMP with two threads running on an
Athlon Dual Core CPU. This routine uses native recursion.

We study the query performance at various degrees of parallel-
ism, specifically, the number of input partitions of each recursive
case, or the fanout of the recursion tree. For tree traversal, this
corresponds to the node size in number of entries (denoted as N).
With N varied under the same workload, we measure the execu-
tion time using the three types of stacks on the GPU, in compari-
son with the CPU time.

Figure 2 shows the time in log scale with node size varied. The
highest speedup of GPU over CPU using t_stack, b_stack and
w_stack is 5X, 5.9X and 6.3X, respectively. When N is smaller
than four, parallelism among nodes is limited, especially near the
root of the recursion tree. As a result, most threads in b_stack and
w_stack are underutilized, and t_stack becomes the fastest. As the

node size grows, the divergence in t_stack becomes significant.
When N is larger than 1024, t_stack becomes even slower than
the CPU routine. For N less than the warp size (32), b_stack per-
forms similarly to w_stack. When the node size is larger than 256,
b_stack’s communication overhead becomes more significant, and
w_stack performs faster. Therefore, t_stack is the first choice for
small nodes (e.g., N < 4), and w_stack is the best alternative for
large nodes. Since our preliminary results are limited to tree tra-
versals, we speculate b_stack might be more apt at more coarse-
grained tasks such as sorting, and might outperform w_stack in
such cases. Such further comparison is in our ongoing work.

4. Conclusions
Graphics processors have become an attractive alternative for
general-purpose high performance computing on commodity
hardware. In this study, we have designed three stack implementa-
tion alternatives for emulating recursions on GPUs. These parallel
stacks differ in the granularity of stack sharing and are suitable for
different situations. We have implemented these alternatives for
tree traversal on the GPU and have compared the performance
with the node size varied. Our results could be useful to both
GPU programmers and GPU compiler writers.

As ongoing work, we are applying our techniques to other re-
cursive algorithms, such as quick sort, on the GPU, are investigat-
ing the relative performance of these alternatives, and are
exploring a hybrid approach that utilizes multiple kinds of stacks.

Acknowledgments
The authors thank the anonymous reviewers for their insightful
suggestions. This work was supported by grant 616808 from the
Hong Kong Research Grants Council. Ke Yang and Bingsheng
He are currently with Microsoft Corp.

References
[1] CUDA, http://developer.nvidia.com/object/cuda.html.
[2] A. Guttman, R-trees: A dynamic index structure for spatial search-

ing. In Proc. ACM SIGMOD, pp. 47-54. 1984.
[3] S. Popov, J. Günther, S. Hans-Peter et al, Stackless KD-Tree Tra-

versal for High Performance GPU Ray Tracing In: Computer Graph-
ics Forum 26(3), pp. 415–424, 2007.

[4] L. Prechelt, S. U. Hänßgen, Efficient Parallel Execution of Irregular
Recursive Programs, IEEE Transactions on Parallel Distributed Sys-
tems 2002, 13(2):167 - 178.

[5] B. He, K. Yang, R. Fang et al, Relational Joins on Graphics Proces-
sors, SIGMOD 2008.

[6] K. Zhou, Q. Hou, R. Wang, B. Guo, Real-Time KD-Tree Construc-
tion on Graphics Hardware, SIGGRAPH Asia 2008.

10

100

1000

10000

2 4 8 16 32 64 128 256 512 1024
Node size

Ti
m

e
(m

s)

CPU
t_stack
b_stack
w_stack

Figure 2. Traversal performance with node size varied.

300

