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Abstract. Graph-structured databases and related problems such as reachability
query processing have been increasingly relevant to many applications such as
XML databases, biological databases, social network analysis and the Seman-
tic Web. To efficiently evaluate reachability queries on large graph-structured
databases, there has been a host of recent research on graph indexing. To date,
reachability indexes are generally applied to the entire graph. This can often be
suboptimal if the graph is large or/and its subgraphs are diverse in structure. In
this paper, we propose a uniform framework to support existing reachability in-
dexing for subgraphs of a given graph. This in turn supports fast reachability
query processing in large graph-structured databases. The contributions of our
uniform framework are as follows: (1) We formally define a graph framework
that facilitates indexing subgraphs, as opposed to the entire graph. (2) We pro-
pose a heuristic algorithm to partition a given graph into subgraphs for indexing.
(3) We demonstrate how reachability queries are evaluated in the graph frame-
work. Our preliminary experimental results showed that the framework yields a
smaller total index size and is more efficient in processing reachability queries on
large graphs than a fixed index scheme on the entire graphs.

1 Introduction

Recent interests on XML, biological databases, social network analysis, the Semantic
Web, Web ontology and many other emerging applications have sparked renewed in-
terests on graph-structured databases (or simply graphs) and related problems (e.g.,
query processing and optimization). In this paper, we focus on querying large graphs.
In particular, we are interested in a kind of fundamental queries from classical graph-
structured databases – reachability query. Specifically, given two vertices u and v, a
reachability query returns true if and only if there is a directed path from u and v (de-
noted u � v); otherwise, the query returns false.

Reachability queries have many emerging applications in graph-structured databases.
For example, in XML, the ancestor and descendant axes of XPATH can be implemented
with reachability queries on the graph representation of XML. Reachability queries are
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Fig. 1. An example of a real graph

also useful for building a query language [1] for the Semantic Web. As required by
these applications, it is desirable to have efficient reachability query processing.

Example 1. Consider a directed graph that represents a social network of a set of re-
searchers, where the vertices correspond to researchers and the edges correspond to the
co-authorship relationship between two researchers, as shown in Figure 1. Social net-
work analysis may often require reachability queries. For example, we may ask whether
a researcher “Alice” has an Erdös number. A simple way to answer this query is to check
whether “Alice” is reachable from “Paul Erdös”.

To provide some background on reachability queries, we review existing naı̈ve evalu-
ation algorithms for reachability queries and the indexes for different kinds of graphs.
There are two naı̈ve alternatives for evaluating reachability queries on a graph: (1) A
reachability query can be evaluated using a traversal of the graph. The runtime is
O(|G|), where |G| denotes the size of the graph G. (2) A reachability query can also be
evaluated by precomputing the transitive closure of the graph, whose size is quadratic to
the graph size in the worst case. A reachability query can then be a simple selection on
the transitive closure. It is clear that these two approaches are not scalable. Much index-
ing technique has been proposed for optimizing reachability queries on trees [2,3], di-
rected acyclic graphs (DAGs) [4,5,6,7,8], and arbitrary graphs [9,10,11] (see Section 5).
These indexes have demonstrated some performance improvement on the graphs with
certain structural characteristics.

Unlike relational data, graph-structured data may vary greatly in its structure; e.g.,
trees, sparse/dense DAGs and sparse/dense cyclic graphs. It is evident that the structure
of the graphs has an impact on the performance of reachability indexes on graphs. For
instance, dual labeling [11] works best for sparse graphs but performs suboptimally on
dense graphs. Hence, a single reachability index is sometimes not ideal to graphs that
have different structures. Given these, we raise the following issues and propose some
solutions for these issues in this paper:

1. A notion of data granularity is missing in graph-structured databases. Let us con-
sider an example from relational databases. One may build a B+ tree on a subset of
the attributes of a relation for range queries and a hash index on some other sub-
sets of attributes for equi-joins. In comparison, to date, a graph index (such as dual
labeling [11]) is either applied to the entire graph, or not applied at all. Is there a
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Fig. 2. Overview of our uniform framework for querying large graphs

general approach to seamlessly support multiple indexes? For example, one may
apply dual labeling [11] to one subgraph and 2-hop [10] to another?

2. Structural differences between subgraphs have not been considered by state-of-
the-art reachability indexes. Many real graphs such as Web graphs, telephone call
graphs, and global social network graphs have different structures, both locally and
globally. Real graphs, as a whole, are typically sparse with a constant average de-
gree [12]. However, there may be local dense subgraphs. Hence, we need to address
structural differences and determine suitable indexing techniques for subgraphs. Is
it possible to detect different substructures from a graph and apply suitable indexes
to these substructures?

3. Different reachability indexing techniques require different query evaluation al-
gorithms. Is it possible to support multiple indexes and yet reuse existing query
evaluation algorithms without modifying the indexes?

To address the above issues, we propose a uniform framework for indexing graphs.
With the framework, we can flexibly use any existing index for reachability queries on
subgraphs of a graph. An overview of our framework is shown in Figure 2. Our frame-
work consists of two components: (1) Graph framework construction through graph
partitioning and (2) reachability query evaluation on the graph framework with differ-
ent indexes. As a proof of concept, our current prototype supports two state-of-the-art
indexes for reachability queries, namely Interval [7] and HOPI [13].

In summary, we define a graph framework to represent a graph as a set of parti-
tions and a graph skeleton. Each partition can use any existing reachability index. In
conjunction with the framework, we define a cost function and propose a heuristic al-
gorithm for graph partitioning. We illustrate how existing query evaluation techniques
can be extended to our graph framework. In particular, a reachability query is casted
into inter-partition and intra-partition reachability queries on indexes. We present our
experimental evaluation on our framework with both synthetic and real graphs.

The remainder of the paper is organized as follows: In Section 2, we define notations
used in this paper, our graph framework and the evaluation of reachability queries using
the graph framework. The graph framework construction is presented in Section 3. In
Section 4, we present an experimental study to evaluate the effectiveness and efficiency
of our approach. Related work is discussed in Section 5. We conclude this work and
present future work in Section 6.
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2 Labeling Graph Framework for Reachability Query

In this section, we define our graph framework to represent reachability information
of an arbitrary graph. In brief, the graph framework comprises information of strongly
connected components, partitions of a graph and connections between partitions. We
evaluate reachability queries efficiently by applying multiple indexing techniques to
the graph framework. We defer the details of the construction of the graph framework
to Section 3.

We describe the notations used in this work in Section 2.1. In Section 2.2, we present
the definition of our graph framework and its properties. In Section 2.3, we show how to
apply multiple indexes to the graph framework and how to process reachability queries
in the graph framework.

2.1 Preliminaries

We denote a directed graph to be G = (V, E), where V is a (finite) set of vertices, and
E is a (finite) set of directed edges representing the connection between two vertices.
We define an auxiliary function reach(v1, v2) that returns true iff v1 can reach v2.

Definition 1. The condensed graph of G is denoted as G∗ = (V ∗, E∗), where a ver-
tex v∗i ∈ V ∗ represents a strongly connected component Ci in G and each edge
(vi, vj) ∈ E∗ iff there is at least one edge (u, v) ∈ E such that u ∈ Ci and v ∈ Cj .

The condensed graph can be computed efficiently using Tarjan’s algorithm with time
complexity O(|V |+|E|) [19].

We use Gi to denote a subgraph of G and Vi to denote the set of vertices in Gi. We
define a (non-overlapping) partitioning of graph as follows:

Definition 2. A partitioning of graph G P (G) is {G1, G2, ..., Gk}, where ∀ i ∈ [1...k],
k ≤ |V |, ∪k

i=1Vi = V , Vi ∩ Vj = ∅, where i �= j.

Example 2. Consider the graph shown in Figure 3(a). We partition the graph on the
left into three partitions V1={0, 1, 2, 3, 4, 5}, V2={6, 7, 8, 9} and V3={10, 11, 12}. G1,
G2 and G3 is a dense subgraph, a subtree and a sparse subgraph, respectively.

Based on this partitioning, we define a partition-level graph as follows.

Definition 3. Given a partitioning P (G), the partition-level graph Gp(G) is (Vp, Ep),
where each vertex vi ∈ Vp represents a partition Gi in P (G) and an edge (vi, vj) ∈ Ep

if there is an edge (u, v) ∈ E such that u and v are vertices in Partitions Gi and Gj ,
respectively.

Example 3. Consider the graph G and its partitioning P (G) in Example 2. The partition-
level graph Gp(G) is shown in Figure 3(b). Vertices 1, 2 and 3 in Gp represent Partitions
G1, G2 and G3, respectively.

Next, let us consider the relationships between two partitions Gi and Gj that has not
been captured by the partition-level graph. We define a partition-level skeleton graph
Gps(G) to capture the connecting vertices of partitions of a graph G.
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Definition 4. Given a partition-level graph Gp(G), the partition-level skeleton graph
Gps(G) is (Vps, Eps), where Vps ⊆ V , v ∈ Vps is either a source or a target vertex of
an inter-partition edge and Eps is the set of inter-partition edges.

With the above, a graph skeleton is defined as follows:

Definition 5. Given a graph G and a partitioning of G, P (G), the graph skeleton
S(G) is a 3-ary tuple (Gp, Gps, M), where Gp=(Vp, Ep) is the partition-level graph,
Gps=(Vps, Eps) is the partition-skeleton graph and M : Vp → 2Vps is a mapping
function that takes a partition vi as input and gives a subset of Vps: {v | v ∈ Vps and
v ∈ Gi} as output.

To illustrate the mapping function M, we give an example in Figure 3.

2.2 Graph Framework

Given the previous preliminary definitions, we propose our graph framework.

Definition 6. A graph framework of a graph G, denoted as H(G), consists of a strongly
connected component index C(V ), a partitioning of the condensed graph P (G∗) and a
graph skeleton S(G∗): H(G)= (C(V ),P (G∗), S(G∗)).

We remark that the proposed graph framework has the following properties:

– The graph framework supports multiple reachability indexing techniques. Different
partitions may use different indexing techniques.

– The graph skeleton, which contains the inter-partition information, can be indexed
in order to facilitate query processing. For example, we could apply the hash index
to accelerate the search on the mapping M and any reachability indexes to the
graph Gp and Gps in S(G∗).

– The graph framework consists of indexed subgraphs. Hence, the query evaluation
on the graph framework can be transformed into the query evaluation on relevant
indexed subgraphs.
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2.3 Query Processing on Graph Framework with Reachability Indexing

In this subsection, we present an algorithm for evaluating a reachability query on our
graph framework with multiple reachability indexes, as shown in Algorithm 1.

Algorithm 1. A query evaluation algorithm on the graph framework
evaluate-query

Input: a graph framework H(G): (C(V), P (G∗), S(G∗)) with indexes, two input vertices x and y,
where x, y ∈ V

Output: true if x can reach y, false otherwise
1: if C(x)==C(y)
2: return true
3: denote Gi(Gj) to be the partition of x(y)
4: if Gi = Gj

5: return true if x � y in Gi, false otherwise
6: if Gi �� Gj with respect to Gp in S(G∗)
7: return false
8: else Vi=M(i), Vj=M(j)
9: for each vertex vi ∈ Vi

10: for each vertex vj ∈ Vj

11: if vi � vj with respect to Gs in S(G∗)
12: return true if x � vi in Gi and vj � y in Gj

13: return false

Algorithm evaluate-query returns true if vertex x is able to reach vertex y. It
returns false otherwise. The first step is to obtain the strongly connected component
for vertices x and y. If they are in the same strongly connected component, the query
returns true (Lines 1-2). Next, we compute the partitions where x and y reside, i.e., Gi

and Gj (Line 3). If the two input vertices are in the same partition, we use the index
of the partition to answer the reachability query (Lines 4-5). Next, if we find that Gi

cannot reach Gj by using the index of Gp in S(G∗), then u is not able to reach v and
the query returns false (Lines 6-7). Otherwise, we apply the mapping M to obtain the
set of vertices in Gs related to partitions Gi and Gj , i.e., Vi and Vj (Line 8). We test
whether there is a vertex vi ∈ Vi that is able to reach Vj . If so, we return true if x is
able to reach vi in Gi and vj reaches y in Gj (Lines 9-12). Otherwise, we return false
(Line 13). The correctness of this algorithm can be easily derived from the definition of
the graph framework.

Complexity. The time complexity of query processing on graph framework is index-
dependant, i.e., it is determined by the reachability indexes applied to the graph frame-
work. For example, assume that vertices x and y are not in the same partition and
partition i, containing x, is indexed with interval labeling [7] with query time com-
plexity O(|Vi|) and partition j, containing y, is indexed with HOPI labeling [20] with
query time complexity O(|Ej |1/2). The partition-level graph Gp and partition-level
graph Gs are indexed with dual labeling [11] with constant query time complexity.
Hence, in this particular example, the overall complexity of evaluate-query is
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O(|Eij |(|Vi|+|Ej |1/2)), where Eij denotes the set of inter-partition edges connecting
the partition i and partition j.

3 Graph Framework Construction

Given an input graph G, we construct a graph framework as follows: (1) compute con-
densed graph G∗; (2) compute a partitioning of G∗, P (G∗), using a heuristic algorithm
proposed in Section 3.1; (3) based on P (G∗), compute the graph skeleton S(G∗). The
key in graph framework construction is to compute P (G∗). Once P (G) is computed,
the graph skeleton S(G) can simply be constructed as follows:

1. compute the partition-level graph Gp;
2. compute the set of inter-partition edges EI ;
3. compute the subgraph Gs which is induced by the edge set EI ; and
4. compute the mapping M between a partition and a set of vertices in Gs.

Hence, in this section, we focus on the details of determining P (G∗) of a given graph
G. First, we propose the objective function of our graph partitioning problem and the
heuristic algorithmic strategy to solve the problem. Next, we present how to estimate
the query cost of a graph and a graph framework, which is used in the heuristic graph
partitioning.

3.1 Heuristics for Graph Partitioning

In this subsection, we present the objectivity of our graph partitioning problem. Next,
we present the overall procedure for constructing the graph framework.

The graph partitioning problem considered in this work can be formulated as follows:
Given a graph G=(V , E), determine k non-overlapping subsets of V1,..., Vk such that:

1. ∪k
i=1Vi = V , Vi ∩ Vj = ∅ where i �= j; and

2. the estimation of query time; i.e., the number of labels accessed during query pro-
cessing, is minimal,

where k is determined during partitioning.

Overall algorithm. Let E(G) and E(H(G)) denote the query costs on a graph G and a
graph framework H(G), respectively. Our heuristic graph partition algorithm works as
follows: Given a k-partitioning of a graph P (G) and its corresponding graph framework
H(G), we create a new (k+1)th partition for a set of vertices P ′(G) if the resulting new
graph framework H ′(G) reduces the query cost; i.e., E(H ′(G))≤ E(H(G)) (shown in
Algorithm 2). Hence, in Algorithm 2, the main strategy is to determine whether further
partitioning reduces the cost.

More specifically, we start with a partitioning of G that all the vertices are in the
same partition (Line 1). Consider the current k-partition P (G). We find the partition
Gmax whose cost is maximum among all other partitions in P (G) (Line 3). Next, we
assign a set of vertices in G′ to a new partition Gk+1: for every vertex v in Gmax, we
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Algorithm 2. The heuristic graph partition algorithm partition(G)

Input: a digraph G
Output: a partitioning of G, P (G)
1: let k=1, Cpre=E(G), Cdecre=0, P (G)={G}
2: do
3: Gmax=arg max

1≤i≤k
{E(Gi)}, Gi ∈ P (G)

4: Vk+1 = ∅
5: for each vertex v of Gmax

6: if E(Gmax \ v) < E(Gmax)
7: Vk+1 = Vk+1 ∪ v
8: k + 1-partitioning P ′(G)={P (G) \ Vk+1, Gk+1}

/∗ where Gk+1 is the subgraph induced by Vk+1 ∗/
9: call refinement procedure, P (G)=Refinement(G, P ′(G))
10: Cdecre=E(P (G))-Cpre, Cpre=E(P (G)), k = k + 1
11: while Cdecre <0
12: return P (G)

place it into the new partition if its removal from Gmax decreases its cost (Lines 5-7).
This results in a k + 1-partitioning P ′(G) (Line 8). In order to optimize the quality of
the k + 1 partitions, we invoke the partition refinement procedure Refinement(G,
P ′(G)) (Line 9) to obtain Pr(G). We proceed to the next partitioning iteration if the
cost has been reduced in the current iteration. Otherwise, Algorithm 2 terminates and
returns Pr(G) (Lines 10-12).

Partition refinement. Next, we present the details of the refinement procedure (Algo-
rithm 3) used in Algorithm 2. In the refinement procedure, we improve the quality of
a given k-partitioning. We apply a search technique to find a better k-partitioning with
a lower cost. Initially, Algorithm 3 starts with a partitioning of graph P (G) (Line 1).
Then, for each vertex, we search for a good assignment that minimizes the cost: We find
the best target partition pid for a vertex v such that the new k-partitioning produced by
assigning v to Partition pid has the minimal cost among all other k-partitionings pro-
duced by other assignments (Lines 3-6). The partitioning algorithm terminates if the
new partitioning found does not decrease the cost or the iteration number is up to a user
input value m; otherwise, Algorithm 2 search for other possible assignments (Lines
7-9).

Complexity. Let the number of iterations needed in the refinement procedure be m.
The complexity of the whole partition procedure is O(mk2(|V | + |E|)), where k is
the number of partitions. We remark that the values of m and k are often small in real
applications.

3.2 Query Cost Estimation

In this subsection, we discuss how to model the costs, E(G) and E(H(G)). One of
the important properties of our framework is that it is able to support multiple reach-
ability indexes, where any single specified reachability index is a special case of our
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Algorithm 3. Partition Refinement Refinement(G, P (G))

Input: a digraph G, initial k-partitioning P (G), iteration number m
Output: a new k-partitioning of G, Pr(G)
1: Cpre=E(P (G)), Cdecre=0, i=0
2: do
3: for each vertex v ∈ V of G
4: let Pj (G) denotes a new partitioning resulted by removing v into partition j in P (G)
5: pid(v)=arg min

1≤j≤k
{E(Pj(G)) − E(P (G))}

6: P (G)=Ppid(G)
7: Cdecre=E(P (G))-Cpre, Cpre=E(P (G)), i++
8: while Cdecre <0 and i < m
9: return P (G)

framework. However, the accuracy of E(G) or E(H(G)) is highly dependant on the
cost model of reachability indexes involved. Hence, to compute the value of E(G) and
E(H(G)), the pre-condition is that involved reachability indexes have a reasonable cost
model. As an illustration, we implement two state-of-the-art indexes, Interval [7] and
HOPI [13] in our prototype of the graph framework. It has been known that the time
complexity for a reachability query on the HOPI and Interval indexes are O(|E| 12 ) and
O(|V |), respectively. Therefore, the query time estimation for E(G) can be modeled by
Equation 1.

E(G) = min(C1|V |, C2|E| 12 ), (1)

where C1 and C2 are the unit cost in real measurements.
Based on E(G), the estimated query time on H(G), which consists of a k-partitioning

P (G) and a graph skeleton S(G), is defined as follows:

E(H(G)) =
k∑

i=1

E(Gi) + E(Gp) + E(Gs), (2)

where k is the number of partitions.

4 Experimental Evaluation

In this section, we perform an experimental study to evaluate the effectiveness and ef-
ficiency of our proposed techniques. All experiments were run on a machine with a
3.4GHZ CPU. The run-times reported are the CPU times. We implemented all the pro-
posed techniques in C++. Regarding graph indexes, we used the HOPI implementation
from [13] and we implemented the Interval scheme for DAGs [7]. We also used the
implementation of a recent path-tree approach from Jin et al. [8].

4.1 Index Size and Query Performance Evaluation on Real Data

We used a collection of real graphs in this experiment. We report the statistics of the real
graphs in Table 1. Among them, “days”, “hep-th-new” and “eatRS” are obtained from
a Web graph repository [21]; and the other real graphs are provided by Jin et al. [8].
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Table 1. Statistics of real graphs

Tree-like graphs |V | |E| |V |∗ |E|∗ Other graphs |V | |E| |V |∗ |E|∗
kegg 14271 35170 3617 3908 days 13332 243447 13332 148038
vchocyc 10694 14207 9491 10143 hep-th-new 27770 352807 20086 130469
mtbrv 10697 13922 9602 10245 eatRS 23219 325624 15466 19916
agrocyc 13969 17694 12684 13408 hpycyc 5565 8474 4771 5859
anthra 13736 17307 12499 13104 nasa 5704 7942 5605 6537
human 40051 43879 38811 39576 xmark 6483 7654 6080 7025

Table 2. Index size comparison on real graphs.

Tree-like graphs HOPI Interval Ptree Our Other graphs HOPI Interval Ptree Our

kegg 9488 10078 1703 2884 days 199788 227364 – 199826
vchocyc 33920 20196 830 1216 hep-th-new 268524 244748 – 204802
mtbrv 34312 20406 812 1204 eatRS 31032 67952 – 31034
agrocyc 43664 26728 962 1362 hpycyc 16576 11658 4224 2118
anthra 42888 26146 733 1160 nasa 49954 12852 5063 1644
human 84916 79058 965 1438 xmark 44112 14038 2356 1880

In the first set of experiments, we compared the index size of our graph framework
with two popular approaches – Interval [7] and HOPI [20] and a recent path-tree ap-
proach [8] (PTree). The results are shown in Table 2. The reported index size is the
number of integers in the indexes.

From the results presented in Table 2, we found that the index size of our approach
is clearly smaller than that of the HOPI and Interval approaches. The reason is simple:
for each subgraph in our framework, our approach chose a relatively better one between
the two approaches. In addition, our approach is comparable to the Ptree approach. For
graphs that are not “tree-like”, our approach achieved a much smaller index size than
the Ptree approach (the bold numbers in Table 2). Although our approach is sometimes
worse than the Ptree approach for “tree-like” graphs, our approach is more general than
the Ptree approach since the Ptree approach could be a special case of our approach
(where the Ptree approach is applied to all partitions). However, since an accurate cost
model for the Ptree approach has not been available, we did not apply the Ptree approach
to any partition (subgraph) in our framework.

Next, we investigate the time for index construction and query processing. Here we
only compared our methods with HOPI and the Interval approach. This is because the
CPU time measurer and the query evaluator of these three approaches are all imple-
mented by us while the Ptree approach is provided by its authors. All three approaches
run on MS Windows while the Ptree approach runs on Linux. Hence, a comparison of
indexing and query time between our approach and the Ptree approach may be affected
by many implementation issues. When comparing the index construction time and the
query time, we used two metrics, i.e., SL, and SH to evaluate our approach, where

SL=min (HOPI, Interval)
our , and SH=max (HOPI, Interval)

our . SL measures the performance
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Table 3. Construction time comparison on real graphs (ms)

Tree-like
graphs

HOPI Interval Our SL SH Other
graphs

HOPI Interval Our SL SH

kegg 473.694 3.92742 4.19078 0.94 113 days 9484.38 93.113 9096.3502 0.01 1.04
vchocyc 1125 7.22463 7.3448 0.98 153 hep-th-

new
56281.3 66.7182 71.7037 0.93 785

mtbrv 1140.63 5.47139 8.26619 0.66 138 eatRS 1718.75 33.1035 1728.2479 0.02 0.995
agrocyc 1500 7.18841 9.66451 0.74 155 hpycyc 609.375 4.52743 5.76455 0.79 106
anthra 1453.13 7.01311 9.72699 0.72 149 nasa 1203.13 3.46655 4.4054 0.79 273
human 4343.75 38.9534 59.8715 0.65 73 xmark 1000 3.80507 4.83549 0.79 207

Table 4. Total query time comparison on real graphs (ms)

Tree-like
graphs

HOPI Interval Our SL SH Other
graphs

HOPI Interval Our SL SH

kegg 1315.07 1107.55 1097.85 1.008 1.2 days 7854.39 6645.64 7929.75 0.84 0.99
vchocyc 4136.98 2667.57 2674.55 0.997 1.5 hep-th-

new
5576.43 7265.8 5641.19 0.99 1.3

mtbrv 4128.25 2672.27 2738.87 0.98 1.5 eatRS 3397.71 3514.07 3442.64 0.987 1.02
agrocyc 4286.65 2839.21 2797.93 1.015 1.5 hpycyc 3818.74 2599.91 2520.07 1.03 1.5
anthra 4254.57 2782.02 2767.95 1.005 1.5 nasa 5672.01 2739.5 2720.18 1.007 2.08
human 5003.2 3957.09 3901.01 1.014 1.28 xmark 5178.59 2677.69 2698.7 0.99 1.91

comparison between our method and the best of the two static methods. SH measures
the performance gain if an inefficient static method is chosen.

Table 3 illustrates that the Interval approach requires two traversals to construct the
index and therefore always has the smallest indexing construction time. As known from
previous work [9], the HOPI indexing time for large graphs can often be costly. Since
a combination of HOPI and Interval is applied to our prototype implementation, the
construction time of our approach is roughly between these two. In particular, the time
depends on the percentage of the partitions using each of these indexing approaches. If
most of the partitions are using HOPI, the construction time is closer to HOPI, such as
the graph “days” and “eatRS”, as shown in Table 3.

To study query performance, we issue one million random reachability queries on
the indexes constructed for the real graphs. We used an in-memory IO simulation to es-
timate the IO cost. The IO simulation performs the following: Reachability labels (i.e.,
indexes) are stored in pages with the size 4KB. During query processing, we maintain a
buffer with the size 4MB. When we check whether two vertices are reachable, we first
obtain the ID of pages where the labels of two vertices are kept. Then we access the
buffer to read the labels from required pages. If those pages are in buffer, we read the
labels from pages directly. Otherwise, before reading labels from those pages, we insert
each page into buffer or replace an old page in buffer using LRU replacement policy. Fi-
nally, we report the total query time and the number of labels accessed during query pro-
cessing in Table 4 and 5, respectively. The average values of SL in the total query time
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Table 5. Number of labels accessed during query processing on real graphs

Tree-like
graphs

HOPI Interval Our SL SH Other
graphs

HOPI Interval Our SL SH

kegg 663830 415144 407876 1.02 1.63 days 14986610 32996064 14957887 1.0 2.2
vchocyc 3251476 246004 242602 1.02 13.4 hep-th-

new
8869499 47682220 8749328 1.01 5.45

mtbrv 3285414 248322 245036 1.01 13.4 eatRS 1333936 3181514 1333963 1.0 2.39
agrocyc 3292830 241414 237890 1.01 13.8 hpycyc 3017708 787830 770372 1.02 3.92
anthra 3298963 205832 206216 0.99 16 nasa 8993648 655730 655716 1.0 13.72
human 2160820 78618 80188 0.98 27 xmark 6838694 583146 583262 1.0 11.72

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 100000  200000  300000  400000  500000

In
de

x 
si

ze
 (

nu
m

be
r 

of
 in

te
rg

er
s)

Number of edges

HOPI
Interval

Our

 0

 20000

 40000

 60000

 80000

 100000

 120000

 100000  200000  300000  400000  500000

In
de

x 
co

ns
tr

uc
tio

n 
tim

e 
(m

s)

Number of edges

HOPI
Interval

Our

Fig. 4. Index size and construction time comparison on synthetic data

and the number of labels accessed are 0.99 and 1.006, respectively. These indicate that
our approach is comparable to (or slightly better than) the best of Interval and HOPI
approaches in the total query time and the number of labels accessed. Moreover, the
average values of SH in the total query time and the number of labels accessed are 1.44
and 10.38, respectively. This supports that our approach avoids the cost of selecting an
inefficient static method. In all, our approach is both IO efficient and time efficient.

4.2 Index Size and Query Performance Evaluation on Synthetic Data

In Section 4.1, we compared our approach with Interval, HOPI and the Ptree approach
on real graphs. In order to have a full control over graph structures, we implemented our
own graph generator which controls the percentage of tree-like components and graph-
like components. The generator works as follows: First, we generate a set of tree-like
DAGs and a set of dense DAGs with the maximum fan-out of spanning tree F=6, the
branch depth of spanning tree D=6. Then, we generate a large graph with n vertices by
connecting p (×100%) dense graphs to 1-p (×100%) of tree-like graphs, where n and
p are the two input parameters.

We generate a set of random graphs with n around 30k, and varying p from 0 to 0.9.
The indexing size and index construction time comparison of Interval, HOPI, and our
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Fig. 5. Total query time and number of labels accessed comparison on synthetic data

approach is shown in Figure 41. Similar to the previous experiment, the index size of
our approach is significantly better than HOPI and Interval. Regarding the construction
time, we find that the construction time of our approach is comparable to the Interval
approach when the graph is sparse and slightly worse than the Interval approach when
the graph is dense. However, the construction time of our approach is much smaller
than that of the HOPI approach.

Figure 5 shows the total query time and the number of labels accessed of one million
random queries. It is clear that our approach has a better query performance and is more
IO efficient than the best of HOPI and Interval.

5 Related Work

There has been a large body of work on indexing for reachability queries on graphs.
Due to space constraints, we list a few (non-exhaustive) examples in this section.

Dietz [3] assigns an interval to each vertex in a tree. A vertex can reach another
vertex iff its interval is properly contained in the interval of the other vertex. There has
been a host of work that demonstrates good query performance of the interval approach.
Wu et al. [2] propose to use prime numbers to encode reachability information of a tree.
A vertex is labeled with a product of prime numbers. A vertex is reachable from another
vertex iff its label is divisible by the label of the other vertex. Wu and Zhang [5] extend
this work [2] to support DAGs. Wang et al. [11] combine the interval approach for trees
and a technique for indexing non-tree edges of a graph. The technique has a constant
query time and small index size. Schenkel [10] and Cheng [13] extend 2-hop labeling
scheme, originally proposed by Cohen et al. [9], to efficiently index a large collection of
XML documents. Trißl et al. [14] propose an efficient relational-based implementation
that bases on the interval and 2-hop labelings to index directed graphs.

All the aforementioned techniques index an entire graph. In contrast, our work fo-
cuses on a framework that supports applying different indexing techniques to different
subgraphs. Hence, this work is orthogonal to any specific indexes.

1 In this experiment, we did not compare the index size of our approach with Ptree [8], as our
files storing the random graphs cannot be recognized by the Ptree implementation in Linux.
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Perhaps [15,8] are the most relevant works. In [15], it proposes a hierarchical labeling
scheme that identifies spanning trees for the interval labelings [3] and dense subgraphs
in remainder graphs for 2-hop labeling [9]. While the problem being studied is similar
to ours, their approach is tightly coupled with interval labelings and compression of
the reachability matrix. Hence, it is not straightforward to incorporate arbitrary graph
indexes into their technique. In addition, our method for identifying substructures for
indexing is different. In [8], it applies a path-decomposition method to partition a DAG
into paths. Next, a path-path graph is proposed to capture the path relationship in a
DAG and is indexed with interval labelings. Each node u in a DAG is assigned with an
X label denoting the DFS order, a Y label denoting the path order and the interval labels
I of u’s corresponding path in the path-path graph. The reachability query between two
nodes u and v can be answered by comparing their X , Y , and I labels. Although we
are working on building graph framework through graph partitioning, our partitioning
method is to decompose the input graph into arbitrary subgraphs. That is, the structure
of each partition is more general than paths.

Graph partitioning has been one of the classical problems in combinatorial opti-
mization. The problem optimizes an input objective function. In general, this is an NP-
complete problem. Various heuristics, e.g., [16,17,18], have been proposed to find an
optimal partition, with respect to the objective function. In this paper, our objective
function is different from those solved by previous algorithms.

6 Conclusions and Future Work

In this paper, we proposed a uniform framework for efficiently processing reachability
query on large graphs. Specifically, a graph is represented by a set of partitions and inter-
partition connections. Subsequently, (possibly different) graph indexes can be applied
to each partition. This facilitates a seamless application of the state-of-the-art of graph
indexing on subgraphs represented in the graph framework. Our experimental study
verified the effectiveness and efficiency of our framework. In our experiment with a
large variety of synthetic graphs and real graphs, our framework consistently produced
relatively small indexes when compared to the best index of a non-partition approach.
In addition, our experiment showed that the framework improves the query processing
performance over the non-partitioning methods.

We would like to point out that our proposed method has some limitations. We plan
to extend our work in the future: First, our framework is proposed to enhance reach-
ability query performance. Yet, reachability queries can be a part of other query for-
malisms. We are studying the connection between reachability queries and other query
formalisms. Second, our query evaluation algorithm is proposed to evaluate one query
at a time on a single machine. We plan to study distributed reachability query evaluation
on a graph framework.
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