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Abstract. Recently, there has been ample of research on indexing for structural
graph queries. However, as verified by our experiments with a large number
of random graphs and scale-free graphs, the performances of indexes of graph
queries may vary greatly. Unfortunately, the structures of graph indexes are too
often complex and ad-hoc; and deriving an accurate performance model appears
a daunting task. As a result, database practitioners may encounter difficulties
in choosing the optimal index for their data graphs. In this paper, we address
this problem by a spectral decomposition for predicting relative performances of
graph indexes. Specifically, given a graph, we compute its spectrum. We propose
a similarity function to compare the spectrums of graphs. We adopt a classifica-
tion algorithm to build a model and a voting algorithm for the prediction of the
optimal index. Our empirical studies on a large number of random graphs and
scale-free graphs and four structurally distinguishable indexes demonstrate that
our spectral decomposition is robust and almost always exhibits accuracies higher
than 70%.

1 Introduction
Due to the flexibility of graph model, it has a wide range of recent applications, such as
biological databases, social networks and XML. To optimizequery processing on graph
data, many indexing techniques for graph queries have been recently proposed. Unfor-
tunately, graph data are often heterogeneous and the structures of indexes are complex
and often ad-hoc. As revealed by our experiments, the performances of graph indexes
on graphs may vary greatly. This leads to a natural question for database practitioners:
What is the index that is the most efficient for a given graph?

When compared to the relational counterparts, the structures of many graph indexes
are far more complex. This causes a few unique problems. Firstly, the construction of
graph indexes is sometimes time-consuming. For example, wetested via experiments on
our commodity computer that given a random graph with a modest size (with∼3,000
vertices and a density 0.02), the construction time for a graph index, namely2-hop
labeling [14], is already 8.3 seconds. (The background details of theindexes dis-
cussed are presented in Appendix.) While some other graph indexes can be constructed
within a second, one may know the most time-efficient index only after all indexes
are constructed and benchmarked. Furthermore, the performances depend on not only
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Fig. 1.Overview of our spectral decomposition prediction framework

algorithms but also the implementation quality and details, as there has not been well-
received (commerical) implementation yet. Secondly, graph indexes are sometimes sev-
eral times larger than the graph itself. Following up the example, the size of2-hop
labeling is 19 times larger than the graph andInterval labeling [1] is almost
as large as the graph itself. Hence, it is not space-efficientto use and maintain multiple
indexes simultaneously on the entire graph. In all, it is desirable to predict the optimal
index and construct the optimal index alone for efficient query processing.

As a proof of concept, we focus onreachability queries— “given two vertices,
is one vertex reachable from another?” — which is a fundamental query of graphs.
However, our proposed technique is not dependent to any specific type of graph query.

In this paper, we apply data mining techniques to predict therelative performances
of graph indexes. One of the core problems is to extract important features (or charac-
teristics) from data graphs. While there have been a large variety of features from graph
theories [10], it has not been clear what are the features that are the most relevant to
index performances. Therefore, we propose to apply a general technique from spectral
graph theories [5], namely spectral decomposition, to solve our problem. To the best of
our knowledge, this is the first work that investigates the relationships between graph
spectrums and index performances. In general, graph spectrums have known to bechar-
acteristics of graphsand have known to be related to many important graph properties.
Another advantage of spectrums is that they have been supported by industrial-strength
softwares, not to mention the use of advanced optimizationson determining spectrums.

The second core problem is to represent the performance of a graph index. Our
preliminary experiments show that the runtimes of 1,000 random queries on an index,
even on a same graph, can often exhibit large variances. For example, we have tried
1,000 random queries on each of the 8,000 random graphs and each data graph has
been indexed by2-hop andPrime labeling [13]. The mean and standard deviation
of 2-hop are 14.1 seconds and 4.2, respectively. Those ofPrime labeling are 11.6
seconds and 59.7, respectively. Furthermore, the runtimesare sometimes skewed and
have a long tail at large runtimes. (In later section, we visualize some runtime distribu-
tions in Figure 2.) We observe a similar phenomenon from our collection of scale-free
graphs. A possible explanation is that a graph may contain many different sub-structures
and the indexes themselves are complex structures as well. These lead to a wide range
of runtimes. While average runtimes are often used to quantify index performances, it
is desirable to propose a flexible metric for the performances.

In this paper, we fit the runtimes of queries into a distribution. From our experiments
on estimating the parameters of distributions, the goodness of fit of Gamma distribu-
tion is always the best. By comparing distributions of runtimes, we can obtain a more
robust and flexible way to compare performances. While we may apply the research on
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the distribution for further analysis, in this paper, we apply inverse cumulative distri-
bution function to estimate the time wheny% of queries finish. Depending on users’
applications, they may specify a valuey% to express how reasonable are long query
runtimes. For instance, some Internet connection providers (e.g.hotels and cafe) charge
their users by connection times and long query runtimes can be undesirable. To cater
for the needs of those users, data practitioners may choose the index that is optimal at
98%, instead choosing the one that has the optimal average runtime.

Contributions. To our knowledge, this is the first investigation on the spectrums of
graphs in relation to index performances. We summarize the contributions of this work
below. The overview of our contributions is presented in Figure 1.

– Given a graphGi in a databaseD, we propose a spectral decomposer to deter-
mineGi’s Laplacian matrix and a set of eigenvaluesΛGi

and eigenvectorsUGi
.

The eigenvalues and eigenvectors are transformed into a unified representation for
comparisons.

– We propose a spectral similarity function between two graphs .
– We propose to fit the runtimes of an index on a given graph into Gamma distribution

using a distribution fitter. Users may then tune their desired notion of optimal index.
– We adopt thek-Means algorithm andk-nearest neighbor with a voting method to

predict the optimal indexIoptG′ of a given graphG′.
– We have conducted experiments with a large number of random graphs and scale-

free graphs. The results show that our proposed technique can achieve accuracies
almost always higher 70% and very often higher than 80%.

The rest of the paper is organized as follows. Section 2 presents the backgrounds of
graph spectral decomposition. We present our problem statement in Section 3. Section 4
presents the definition of optimal index. A uniform spectralrepresentation of graphs and
a similarity function between graphs are proposed in Section 5. Our prediction method
is detailed in Section 6. We report our experimental evaluation in Section 7. Section 8
discusses the related work and Section 9 concludes this paper. Background details of
the indexes discussed are presented in Appendix.

2 Backgrounds on Graph Spectral Decomposition
In this section, we provide the background of graph spectrums. Graph spectrums have
been widely used to study many interesting properties of graphs, such as spectral parti-
tioning and expansion [9], cut problem [8], graph drawing [15].

Graph spectrum is often defined with Laplacian matrix. Laplacian matrixL of a
directed or undirected graphG = (V,E) is defined asL = D − A, whereD is the
degree matrix ofG andA is the adjacency matrix ofG. More specifically,Ai,j = 1 if
(vi, vj) ∈ E; andAi,j = 0 otherwise, wherei andi are theID’s of the verticesvi and
vj . The degree matrix is a diagonal matrix andDi,i is the outdegree ofvi

The Laplacian matrixL of G can be eigendecomposed asL = UΛU−1, whereΛ
is a diagonal matrix of eigenvalues ofL, andU is a matrix of the corresponding eigen-
vectors. Specifically, letλ1 ≤ λ2 ≤ ... ≤ λn, wheren = |V |, denote the eigenvalues;
X1, X2, ..., Xn denote the corresponding eigenvectors, whereΛi,i = λi; and thei-th
column ofU isXi. We may callU eigenvector matrixand useΛ to refer to eigenvalues.
We may use a subscript inUG andΛG to denote theU andΛ of graphG when needed.
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EigenvaluesΛ are calledspectrumsin spectral graph theories. Since eigenvectorsU
are also known to be closely related to characteristics of vertices, we include eigenvec-
tors in our algorithm. We useΛ andU of the underlying undirected graphs of the data
graphs, as they capture the graphs’ structures and their properties are well-studied [5].

3 Problem Formulation
In this section, we formulate the optimal graph index prediction problem based on graph
eigenvalues and eigenvectors.

We assume a graph databaseD containing a large number of directed graphs{G1,
G2, ...,Gm}. The reachability query on the graphs is formally defined as follows.

Definition 3.1. Given a directed graphG = (V,E), u, v ∈ G, v is reachable fromu,
denoted asu v = true, if and only if there is a path fromu to v in G.

As discussed, various types of indexes are available to support reachability query
on graphs inD. However, it is desirable to predict the optimal one withoutbuilding and
benchmarking all indexes available. This problem can be described as follows.

Problem statement.Given a set of indexesI = {I1, I2, ..., In} and a graph database
D, we want to build a predictive modelM using the eigenvalues and eigenvectors of
graphs inD, in order to efficiently determine the optimal indexIoptG for a graphG 6∈ D.

There are two main sub-problems in the problem statement.

(P1) How to represent the performance of an index on a graph?

As motivated in Section 1, the query runtimes of a particularindex on a particular graph
may deviate from the average runtime. Therefore, in Section4, we investigate a flexible
notion ofoptimal indexin expressing the desirable runtimes.

(P2) How to compare spectrums of graphs?

As motivated in Section 1, we propose to represent a graphG with eigenvaluesΛG and
eigenvectorsUG. A similarity function between the spectral graph representation is
needed. In addition, the number of eigenvalues and the dimension of the eigenvectors
of a graphG is the number of vertices ofG, which are not uniform in a graph database.
They are transformed into a uniform representation for comparisons. Finally, while the
eigenvaluesΛG are invariants ofG, the row vectors of the eigenvector matrixUG are
dependent to the permutation of vertex IDs ofG. Therefore, there is a row permutation
problem in comparingU ’s of graphs.

4 Performance Metric
We define the performance of an index using the query times of 1,000 random queries,
as the query workloads are often not known when an index is chosen. To study the
query performances, we plot the query time distribution, where x-axis is the query
time; y-axis is the number of queries finished atx. For example, Figure 2(a) and Fig-
ure 2(b) show the query runtime distributions of two indexeson a random data graph.
We demonstrate that average runtime alone may lack the flexibility to describe a de-
sired notion of performances. For example, Figure 2(a) shows Grail(1) [20] has the
smallest average time but it has a long tail. In comparison, the rutntimes ofInterval
exhibit a relatively small variance, whileInterval has a relatively large average time.
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(b) Distribution of runtimes ofInterval
Fig. 2.Some distributions of the runtimes of 1000 random queries on a random graph

Therefore,Interval could be a better choice in applications where long query times
are not acceptable or commercially unfavorable.

Once the query runtimes are presented as a distribution, we fit the distribution
with some well-studied distributions,e.g., Normal distribution, Poisson distribution and
Gamma distribution. To measure the goodness of fit, we adopt theL2-norm to the es-
timated distribution and the real distribution. From our experiments on a large number
of random and scale-free graphs, we observe that Gamma distribution almost always
yields the best fitting. A possible reason is that Gamma distribution is often used to
model the waiting time and query runtime may be considered asthe waiting time until
queries finish. (The detailed experiment on the fitting is presented in Section 7.) More-
over, the parameters of Gamma distribution can be efficiently estimated. Therefore, we
use Gamma distribution to represent the query runtime.

While the optimal index is intuitively the most efficient on 1,000 random queries,
we define the optimal index to be the one with the smallest estimated runtime w. r. t. the
user-dened parametery% (e.g., 98%). Once the parameters of Gamma distribution are
estimated, the notion of optimal index can be tuned and determined mathematically by
adjustingy.

Definition 4.2. Given a set of indexesI = {I1, I2,..., In}, a graphG, and a set of
random queriesQ, theoptimal indexin I of G is the index that finishesy% of queries
of Q in the shortest time.

An application of Definition 4.2 is that database practitioners may check the ro-
bustness of an index. For instance, given a graph database, we may use the estimated
Gamma parameters to construct prediction models for a fewy values,e.g., 75%, 85%
and 95%, respectively,without rerunning the benchmarking queries. An index can be
considered robust if it is optimal for all thosey values, instead of a specificy value.

5 Spectral Similarity of Graphs
This section presents a similarity measure of the eigenvalues and eigenvectors of graphs.
In particular, we first transform the eigenvalues and eigenvectors into a uniform repre-
sentation. Secondly, we permutate the rows of the eigenvector matrix for similarity
comparison. Finally, we propose a spectral similarity function of graphs.

5.1 Unifying the Dimensionalities of Graphs

The first issue on usingΛ andU for representing and comparing graphs is that the
dimensions ofΛ andU of different graphs are different. That is, they cannot be directly
compared. Therefore, we unify the dimensions ofΛ andU as follows.



6 Liyan Song1, Yun Peng1, Byron Choi1, Jianliang Xu1, and Bingsheng He2

(i) We use the tail-k non-zero eigenvalues ofΛG and the corresponding eigenvectors of
UG to represent a graphG. According to [16], the eigenvectors of the tail-k non-zero
eigenvalues provide the best approximation of theUG. This unifies not only the number
of eigenvaluesΛG but also the column dimension ofUG.

(ii) Each row ofUG corresponds to a vertex inG. The row dimension ofUG of the
graphs can be unified by adding rows of zeros, until the dimension of UG matches the
largest graph in the database. By simple matrix theories, wehave that adding zero rows
to a matrix does not affect both its eigenvalues and the directions of its eigenvectors. In
our context, a zero row vector corresponds to an isolated (virtual) vertex of a graph and
does not affect the relative performance of indexes.

We remark that the computation of the similarity between theeigenvector matrices
involves determining the cosine similarity betweeneach pair of the eigenvectors(to
be detailed in Formula 1). The computation complexity is quadratic to the number of
eigenvectors in the matrices. Due to this performance issue, we opt not to introduce
eigenvectors to unify the column dimension ofUG. In contrast, the computation time of
similarity betweenUG is linear to the size of the row dimension. Thus, our dimension
unification does not lead to a significant increase in computation time while keeping the
characteristics of vertices.

5.2 Permutation of Vertex ID
While the eigenvalues ofG are graph invariants [3], the eigenvectors (columns) inUG

are not. Since a row inUG represents the characteristics of a vertex inG and the IDs
of rows are directly related to the IDs of vertices, graphs with similar structures may
have very different eigenvector matrices. This can be illustrated with a simple example
shown in Figure 3. In Figure 3, graphsG1 andG2 are isomorphic and they are expected
to have the sameΛ’s andU ’s. However,UG1

andUG2
are different, and a direct simi-

larity computation (to be defined in Section 5.3) yields a lowsimilarity score 0.57. We
reorder the rows in the eigenvector matrices ofUG1

andUG2
to obtainU ′

G1
andU ′

G2
,

respectively, as shown in Figure 3. UsingU ′
G1

andU ′
G2

for similarity computation, we
obtain a similarity score 1.0.
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Fig. 3. Eigenvalues and eigenvectors of two isomorphic graphs

Unfortunately, the number of possible permutations aren!, wheren is the number
of rows. Therefore, we propose three practical heuristic functions to reorder the rows.
The aim is that vertices with similar spectral characteristics are compared.

(i) V P rad: for each row inUG, we compute itsL2-norm. We order the rows by their
L2-norms in descending order. Intuitively, theL2-norm of a row vector denotes its
distance (radius) from the original point in a vector space.Therefore, the row vectors
that are far (respectively, close) to the original point arecompared.
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(ii) V P coor: According to D. Spielman [15], each row ofUG can be considered as
the coordinates of a vertex ofG in a vector space. The rows can then be ordered in
a descending lexicographic order. It may be worth-remarking that such an ordering of
rows is biased towards the first few dimensions of rows. As thefirst few dimensions
correspond to smaller eigenvalues and hence, they are considered more important than
the latter dimensions.

(iii) V P W rad: Since the eigenvalues indicate the importance of a dimension, we may
integrate the heuristic function with eigenvalues. Specifically, for each row vector, we
compute its weightedL2-norm, where the weight of thei-th entry of a row is1/λi, and
we order the rows by their weightedL2-norms in descending order.

In summary, the processing presented above are applied to both rows and columns of
all graphs to obtain a unified representation, for similarity computation. In subsequent
discussions, we simply useΛ andU to refer to the matrices whose the dimensions have
been unified and ordered.

5.3 Spectral Similarity Between Graphs

The central part of the prediction framework is the spectralsimilarity between graphs.
The spectral similarity between two graphs has two major components.

Firstly, we determine the most comparable eigenvectors between two graphsG1 and
G2. Specifically, for each eigenvectorXi in UG1

, we pairXi with an eigenvectorYj of
UG2

whose direction is the most similar toXi, defined as follows:
p[i] = argmaxj=1,...,n(cos sim(Xi, Yj)), (1)

whereXi in UG1
,Yj in UG2

andcos sim denotes the cosine similarity between vectors.
Secondly, thespectral similarity between two graphsG1 andG2 is defined as a

weighted sum of cosine similarity between paired eigenvectors, where the weights are
proportional to the difference between the corresponding eigenvalues:

sim(G1, G2) =

∑
(λi,Xi)∈G1,

(λp[i],Yp[i])∈G2

(cos sim(Xi, Yp[i])× e
−

(λi−λp[i])
2

2σ2 ))

∑
λi∈G1,λp[i]∈G2

e
−

(λi−λp[i])
2

2σ2

, (2)

whereσ is a parameter that controls the importance between eigenvalues and eigen-
vectors. In particular, the larger theσ, the larger influence of the eigenvalues to the
sim function. To compare two spectrums, (i) we compute the weight determined by a

Gaussian function on the difference between the eigenvalues,e−
(λi−λp[i])

2

2σ2 . We assume
the differences of eigenvalues follow a normal distribution. (ii) The cosine similarity be-
tween the corresponding eigenvectors is multiplied by the weight. (iii) The denominator
normalizes the similarity function.

6 Prediction Algorithm
With the uniform representation of graphs inD and the spectral similarity function,
we are ready to present our prediction algorithm. In this paper, thelabel of a graph
G is its optimal index among a given set of indexesI = {I1, I2, ..., In}. We use the
eigenvalues and eigenvectors of graphs inD and their labels to train a prediction model.
Classicalk-Means clustering is adopted to cluster the graphs inD. As we shall see from
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ProcedurekMeans
Input : labels,Λ’s andU ’s of graphs inD, cluster numberk,

and termination parameterδ
Ouput: thek clustersC and their centers

01 randomly choosek centers fork clustersC
02 for eachG in D
03 imax = argmaxi=1,...,k(sim(G, C[i].ctr)) //C[i] is ith cluster
04 assignG to the clusterC[imax]
05while the clustersC have changed
06 for eachC[i], whereC[i] ∈ C, δ% of graphs inC[i] changed
07 // recalculate the center ofC[i]
08 for eachG ∈ C[i] G.sim =

∑
G′∈C[i](cos sim(G, G′)

09 C[i].ctr = argmaxG∈C[i](G.sim) // C[i].ctr is center ofC[i]
10 for eachG in D
11 imax = argmaxi=1,...,k(sim(G, C[i].ctr))
12 assignG to C[imax]

Fig. 4.ProcedurekMeans

experiments, prediction with eigenvaluesΛ alone is not as accurate as that with bothΛ
andU . However, some other classical methods, such as neural networks or decision
trees, require to castU into some numerical values for training, while preserving their
semantics. This does not appear trivial and those methods are not adopted.

A trained model is then used to predict the label of a graphG′, whereG′ 6∈ D.
Specifically, given a graphG′, we determine itsk-nearest cluster centers and apply a
voting method to obtain the weighted majority of the label ofthose centers. Such label
is returned as the optimal index ofG′.

6.1 Clustering Algorithm

In this subsection, we highlight the adoption ofk-Means clustering for training a predic-
tion model. The overall algorithm (ProcedurekMeans) for the construction is summa-
rized in Figure 4. The label (i.e., the optimal index) of each graphG ∈ D is determined
by the definition presented in Section 4. Then, similar graphs in D are clustered by
ProcedurekMeans. The label of a cluster center represents the label of the cluster.

While ProcedurekMeans follows the general framework of classicalk-Means al-
gorithm, we highlight the adoption,i.e., Lines 06-09. Most importantly, the major mod-
ification is on the recalculations of the new cluster centersin Lines 08-09. Classical
k-Means algorithms often use averaging of a distance function between data objects in
a cluster to obtain a new cluster center. However, the averages of eigenvectors or eigen-
values do not correspond to any clear semantics. Therefore,in Line 08, we determine
the sum of the spectral similarity between each graph and allother graphs in a cluster.
The new cluster center is the graph with the highest similarity sum (Line 09).

Optimization. The clustering algorithm recalculates cluster centers in each iteration.
However, in later iterations of ProcedurekMeans, the changes of clusters are often
small. In other words, the algorithm may then recompute the spectral similarity of the
same graphs many times. To optimize this, we store the spectral similarities between
graphs, where they are computed once and retrieved in later iterations.
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6.2 Prediction Algorithm

To predict the optimal index of a graphG′ 6∈ D, one may be tempted to use the label of
the cluster center that is the most similar toG′. However, as presented before, the cluster
centers are data graphs themselves and sometimes they may not be the optimum centers
and the prediction using one cluster center may be overly sensitive to the quality of the
clusters. To enhance the robustness of the prediction, we opt to adopt a simplek-nearest
neighbor algorithm, wherek is a user-defined parameter. Specifically, given a graphG′,
we decompose it intoΛ′

G andU ′
G. We determine thek clustersC[i1], C[i2],..., C[ik]

from C, whose centers are the most similar toG′. Suppose the label ofC[i]’s center is
L. The vote ofC[i] to L is defined as the spectral similarity betweenC[i]’s center and
G′. The optimal index ofG′ is the label with the largest sum of votes.

7 Experimental Evaluation
In this section, we conducted an experiment to verify the accuracies and efficiencies of
the spectral decomposition approach to predict the optimalgraph index.

7.1 Experimental Setup

Implementation: We ran our implementation on a commodity PC with a Quad-core
2.4GHz CPU with 4G memory running Windows 7. We implemented our proposed
technique on MATLAB R2011a. We used the functions provided by MATLAB as far
as possible, such as the functions to determine the eigenvalues and eigenvectors, and
statistical distribution fittings.

Table. 1Meanings & default values of parameters Table. 2Fitting error (L2-norm)
parameter meaning default
k knn k in KNN 7

k kmeans k in KMeans 64

kmeans whether KMeans is used in prediction yes

|T | no. of the samples used for testing 28

|D| no. of samples used for both training and testing 256

k tail tail k eigenvalues and their corresponding eigenvectors
used in graphs’ similarity

32

σ parameter insim to balance the effection of eignvalues
and eigenvectors

0.1

fitting error PoissonNormal Gamma
R (Interval) 0.16 0.09 0.06

R (2-hop) 0.17 0.16 0.14

R (Grail(1)) 0.50 0.43 0.27

R (Prime) 0.43 0.49 0.26

S (Interval) 0.18 0.07 0.04

S (2-hop) 0.25 0.23 0.20

S (Grail(1)) 0.52 0.42 0.29

S (Prime) 0.77 0.70 0.51

Graph collections: We used both random graphs and scale-free graphs for our exper-
iments, as they are popular classes of graphs used in analysis of graphs. Moreover, we
had controlled over the sizes and densities of the generatedgraphs. The generators used
were provided by Zhuet al. [21]. We generated 1,024 graphs for each kind of graphs.
For random graphs, the average number of vertices and fanoutwere 3.4k and 6.8, re-
spectively. For scale-free graphs, we setα = 0.27 andβ = 10 and obtained 1,024
graphs with an average number of vertices 3k and average fanout 7.2. We used “R” and
“S” to denote experiments with random graphs and scale-free graphs, respectively.

Reachability query time collections:We ran the implementations ofInterval [21],
Grail [20], 2-hop [2] andPrime labeling [13] on our graph collections. We ran
1,000 random reachability queries on each graph in our graphcollections. The runtimes
of 1,000 queries on each index were then stored and fitted intoGamma distributions.
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The runtimes were obtained from warm runs. The estimatedα andβ of Gamma distri-
butions were stored for determining the optimal index.

We observe that there were cases that the prediction problemwas trivial,e.g., one
index was almost always more efficient than the others. Thesecases were omitted as
our prediction model was very accurate. In other words, neither of the indexes chosen
in our experiments dominated each other.

Default parameter settings:We conducted a set of experiments to show the effect of
each parameter in our technique. Unless specified otherwise, we used the default set-
tings shown in Table 1. We used theV P rad utility function for the vertex permutation
in sim computation by default. For ease of exposition, we predict the optimal index
from two graph indexes. That is, the prediction label of the experiments was binary.

Performance metric: Unless otherwise specified, we ran each experiment 100 times
and reported the average accuracies.

7.2 Experiments on Distribution Fittings

To verify that the distributions of the reachability query times on each index can be fit
into some well-known distributions, we tested fitting functions of various distributions.
We generated the runtime distributions of all of our random and scale-free graphs and
all of our index implementations. We usedy%=98% in our experiments. In Table 2, we
showed theL2-norm between the actual distribution and the estimated distribution of
Poisson, Normal and Gamma distributions. We note that Gammadistributions almost
always clearly offered more accurate fittings and the fittingerrors were often small.
Therefore, in this work, we adopted Gamma distribution.

Table. 3Effects of training dataset size onR Table. 4Effects ofk in kMeans onR andS
average accuracy

|D| 2-hop vs
Grail(1)

Interval

vsPrime
64 84.18% 79.18%

128 87.57% 83.14%

256 87.11% 82.68%

512 85.18% 82.54%

1024 81.79% 81.07%

average accuracy (R) average accuracy (S)
k kmeans 2-hop vs

Grail(1)

Interval

vsPrime
2-hop vs
Grail(3)

2-hop vs
Grail(5)

8 71.21% 70.43% 63.64% 65.11%

16 79.61% 77.29% 76.75% 79.68%

32 85.25% 80.50% 79.79% 81.18%

64 89.46% 83.75% 78.71% 80.00%

128 90.54% 84.21% 76.00% 76.89%

Table. 5Effects ofk in knn onR andS Table. 6Effects ofk in k tail onR andS
average accuracy (R) average accuracy (S)

k knn 2-hop vs
Grail(1)

Interval

vsPrime
2-hop vs
Grail(3)

2-hop vs
Grail(5)

1 83.57% 79.61% 67.86% 67.46%

3 86.79% 81.43% 73.68% 74.86%

5 88.82% 82.61% 77.36% 77.50%

7 89.79% 83.00% 79.86% 80.57%

9 89.29% 82.82% 81.07% 80.75%

average accuracy (R) average accuracy (S) time
k tail 2-hop vs

Grail(1)

Interval

vsPrime
2-hop vs
Grail(3)

2-hop vs
Grail(5)

(s)

8 81.68% 79.54% 69.43% 68.93% 3.65

16 84.00% 81.11% 73.75% 74.57% 10.00

32 88.29% 83.75% 77.79% 80.04% 30.10

64 88.43% 83.43% 80.25% 82.89% 105.88

128 88.82% 84.39% 81.71% 83.04% 413.09

7.3 Prediction Accuracies

In this experiment, we tuned the parameters of our prediction model and studied their
effects on prediction accuracies. Due to space limitations, we present the results on
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some pairs of indexes for each dataset:2-hop vsGrail(1) andInterval vsPrime
for random graphs, and2-hop vs Grail(3) and2-hop vs Grail(5) for scale-free
graphs.

Effects of the size of training dataset.We studied the effects of the training dataset
size to the prediction accuracies on random graphs as shown in Table 3.kmeans was set
to no in this experiment. From Table 3, we observe that our prediction accuracies were
almost above 80% on training sets of different sizes. We alsonote that the prediction
accuracy first increased and then slightly reduced with the growth of training dataset
size. It was possibly because our model was overfitted by large training sets.

Effects ofk kmeans. We studied the effects ofk kmeans on our prediction accuracies
as shown in Table 4. From Table 4, we observe that our prediction accuracies increased
as the growth ofk kmeans on random graphs. It was because that the clusters would
be more refined with a largerk kmeans. Thus, we had a higher probability to choose
similar cluster centers for prediction. However, the prediction accuracy may reduce
slightly if each cluster is too fine, as shown in the results onscale-free graphs.

Effects of k knn. Table 5 presents the effects ofk knn on our prediction accuracies.
From Table 5, we observe that our prediction accuracy increases with the growth of
k knn. It is because that we have more votings with largerk, which reduces the effects
of outliers in prediction. Our prediction accuracy was over80% on both random graphs
and scale-free graphs whenk ≥ 7. The prediction accuracy was stable whenk ≥ 9.

Effects of the number of tail-k eigens.We used different number of eignvalues and
eigenvectors in prediction and studied the prediction accuracies as shown in Table 6.
From Table 6, we observe that the prediction accuracy increased with more eignvalues
and engnvectors, while the prediction time increased roughly linearly. We exclude the
time for determining the spectrum of a graph as it mainly depends on the algorithm we
used. From our data collections, the MATLAB function ran from 2.6s to 173s and 39s
on average. However, this is often more efficient than choosing the optimal index by
constructing all candidate indexes and running a large number of benchmark queries.

Effects of vertex permutation andσ. In this experiment, we studied the effects of ver-
tex permutation andσ on our prediction accuracies. Table. 7 presents the results. From
Table. 7, we observe that whileV P coor, V P W rad andV P none could sometimes
be accurate, they could be sensitive to the choice ofσ, in the similarity function. In com-
parison,V P rad is both robust and accurate. Moreover, whenσ increased, the relative
importance of eigenvectors lowered and the accuracies decreased.

Table. 7Effects of vertex permutation andσ onR
Vertex σ (2-hop vsGrail(1)) σ (Interval vsPrime)
Permutation0.01 0.1 1 10 100 0.01 0.1 1 10 100
V P rad 89.43%89.71%82.25%83.25%71.21%82.93%83.21%78.64%74.14%73.64%

V P coor 91.00%90.21%69.25%69.11%68.93%82.71%85.96%73.00%73.00%72.43%

V P W rad 89.39%90.68%70.61%72.21%71.14%82.71%84.89%72.86%74.36%75.25%

V P none 87.36%80.86%82.25%69.50%70.00%81.89%82.82%78.61%72.86%72.14%
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8 Related Work
To the best of our knowledge, there have been only few preliminary studies that use
graph features to predict the relative query performances of graph indexes. Denget
al. [7]. extract features from data graphs and use neural networks for prediction. How-
ever, there have been many features in graph theories and it is unclear which of these
are the principal ones. In contrast, we use the tail-k eigenvalues and eigenvectors for
prediction. Moreover, the optimal index of [7] is defined by the best average runtimes.
In comparison, we also allow users to fine-tune their notion of the optimal index. An-
other work by Zhuet al. [21] applies multiple graph indexes to partitioned subgraphs
of a data graph. An analytical cost model is proposed and illustrated with2-hop and
Interval. Our approach has been applied to various indexes. Spectralmethods have
been applied to producek partitions of graphse.g., [12]. Our aim is not to produce
exactlyk partitions but to predict to the optimal index.

Finally, there is a large body of work on determining graph features,e.g., [18], for
query processing,e.g., [19, 4]. Due to space limitations, we cannot include a detailed
survey on this area. However, in these studies, features aregraphs (structures). It re-
mains unclear how to exploit them to build a predictive model.

9 Conclusions
In this paper, we propose spectral decomposition for predicting optimal graph index
of a given graph. Specifically, we have proposed a uniform representation of a graph,
spectral similarity function and a prediction algorithm. We obtained the implementation
of four structurally different graph indexes. One observation is that the runtime distri-
butions of the indexes fit accurately into Gamma distribution. This allows us to refine
the notion of the optimal index, with the inverse cumulativedistribution function. We
conducted detailed experiments on the parameters in our techniques on both random
graphs and scale-free graphs. We noted that our technique isrobust and can achieve
approximately higher than 70% accuracies in most cases. As for future works, we are
investigating on the support of other graph queries, such assubgraph queries.
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Appendix: Background on Graph Indexes

For self-containedness, we include a brief discussion on the index benchmarked in this
section. There have been many graph indexes proposed recently to support reachability
queries, not to mention other graph queries. This section only reviews the four indexes
adopted in this paper. Interested readers may refer to tutorials by Cheng et al. [11] for a
comprehensive survey on graph indexes.

We remark that since indexes often associate labels to nodes, we may use the terms
indexesandlabelsinterchangeably.

(1) Interval labeling is a popular indexing technique for trees, in particularXML.
It exhibits good query performances and has simple implementation.Interval labeling

associates each vertex with an interval(i, j), wherei is the vertex’s preorder traversal
number andj is its postorder traversal number. Vertexw can be reached from vertexv
iff the interval ofw is contained in that ofv. Interval labeling is then extended to
supportDAGs [1]. In particular, each vertex may be associated with multiple intervals,
as there may be multiple paths between any two nodes. To evaluation a query correctly,
the extended interval labeling requires comparisons on allpairs of intervals of vertices.

(2) Grail [20] is a recent index derived from interval labeling. Usersmay specify a
parameterk. Grail determinesk random spanning trees from a graph and applies the
interval indexes on thek spanning trees. The remaining non-tree edges are considered
as exceptions and handled specially. The query performanceof the interval indexes is
more superior to that of the handling of exceptions. In otherwords, the performance of
Grail of a given query depends on what parts ofGrail indexes the query requires.
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(3)2-hop labeling [6] is another popular index for reachability queries. Eachvertex
v is associated with two labelsLin(v) andLout(v), whereLin(v) storessomevertices
that can reachv whereasLout(v) contains some vertices thatv can reach. Then,w is
reachable fromv iff Lout(v)∩Lin(w) 6= ∅. There are many possible2-hop labeling

for a graph. To determine the2-hop labelingwith the minimum size, various heuris-
tics, optimization and partitioning algorithms have been proposed. It has been to com-
plex to mathematically model the performance of the resulting2-hop labeling.

(4) Prime labeling [17] uses products of prime numbers to encode reachability in-
formation of trees. A follow-up work [13] extendsPrime labeling to support reach-
ability queries onDAGs. Specifically, each vertex is associated with a product of prime
numbers and vertexv can reach vertexw iff v’s label is divisible byw’s label. An im-
plementation concern ofPrime labeling is that for graphs with large depths,Prime
labeling may result in large products, which require the support of very large inte-
gers.

It is evident that the indexes discussed above are structurally complex and there are little
relationships between their structures. Deriving an accurate analytical model to dictate
their relative performances is known to be a daunting task. In this paper, we apply data
mining techniques and spectral decomposition to build a model to predict the relative
performances. In addition, the implementations of these indexes are available for our
experiments. Hence, we include these four indexes in this paper.


