Spectral Decomposition for Optimal Graph Index
Prediction

Liyan Sond, Yun Pend, Byron Chot, Jianliang Xd, and Bingsheng He

! Department of Computer Science, Hong Kong Baptist University, Hamp
{lysong,ypeng,bchoi,xuji@comp.hkbu.edu.hk
2School of Computer Engineering, Nanyang Technological UniveiSihgapore
{bshg @ntu.edu.sg

Abstract. Recently, there has been ample of research on indexing for structural
graph queries. However, as verified by our experiments with a largebeu

of random graphs and scale-free graphs, the performances efesdf graph
queries may vary greatly. Unfortunately, the structures of graph eslare too
often complex and ad-hoc; and deriving an accurate performandelrappears

a daunting task. As a result, database practitioners may encounterliifficu
in choosing the optimal index for their data graphs. In this paper, weeaddr
this problem by a spectral decomposition for predicting relative pedones of
graph indexes. Specifically, given a graph, we compute its spectrenprdpose

a similarity function to compare the spectrums of graphs. We adopt dfidass
tion algorithm to build a model and a voting algorithm for the prediction of the
optimal index. Our empirical studies on a large number of random grapd
scale-free graphs and four structurally distinguishable indexes deratethat
our spectral decomposition is robust and almost always exhibitsageshigher
than 70%.

1 Introduction

Due to the flexibility of graph model, it has a wide range ofargicapplications, such as
biological databases, social networks and XML. To optingjaery processing on graph
data, many indexing techniques for graph queries have ememtly proposed. Unfor-
tunately, graph data are often heterogeneous and thewstadcif indexes are complex
and often ad-hoc. As revealed by our experiments, the pedoces of graph indexes
on graphs may vary greatly. This leads to a natural questioddtabase practitioners:
What is the index that is the most efficient for a given graph?

When compared to the relational counterparts, the structfremany graph indexes
are far more complex. This causes a few unique problemslyitse construction of
graph indexes is sometimes time-consuming. For examplested via experiments on
our commodity computer that given a random graph with a mogles (with~3,000
vertices and a density 0.02), the construction time for @lyiadex, namely2- hop
| abel i ng [14], is already 8.3 seconds. (The background details ofirtlexes dis-
cussed are presented in Appendix.) While some other grahtésdccan be constructed
within a second, one may know the most time-efficient indely after all indexes
are constructed and benchmarked. Furthermore, the pexfmes depend on not only

2 Liyan Song, Yun Pend, Byron Chot, Jianliang Xd, and Bingsheng He

I
t
spectral Aewr. Urnr e 1P
decomposition SRS predictor 4A_G>
I
TOoW |
tail-k | [perm. AGI,‘UGI knn| |
eigens Ao, U i
4 n? Tn |
t t |
oz
I
. . . Gamma > L
bm{clrlmkmg runtimes of | jigtribution : online prediction
dexes Gi...G, fitting L=

offline model const.

Fig. 1. Overview of our spectral decomposition prediction framework

algorithms but also the implementation quality and detaisthere has not been well-
received (commerical) implementation yet. Secondly, jiagdexes are sometimes sev-
eral times larger than the graph itself. Following up thenepke, the size of- hop

| abel i ng is 19 times larger than the graph anelt er val | abel i ng [1] is almost
as large as the graph itself. Hence, it is not space-effitdem$e and maintain multiple
indexes simultaneously on the entire graph. In all, it iSrdéde to predict the optimal
index and construct the optimal index alone for efficientrgyerocessing.

As a proof of concept, we focus aeachability queries— “given two vertices,
is one vertex reachable from another?” — which is a fundaaieqiery of graphs.
However, our proposed technique is not dependent to anyfispgpe of graph query.

In this paper, we apply data mining techniques to predictéfeive performances
of graph indexes. One of the core problems is to extract itapbfeatures (or charac-
teristics) from data graphs. While there have been a largetyaf features from graph
theories [10], it has not been clear what are the featurdsatieathe most relevant to
index performances. Therefore, we propose to apply a geteermique from spectral
graph theories [5], namely spectral decomposition, toesolw problem. To the best of
our knowledge, this is the first work that investigates tHatienships between graph
spectrums and index performances. In general, graph spestrave known to behar-
acteristics of graphand have known to be related to many important graph pregserti
Another advantage of spectrums is that they have been sepldny industrial-strength
softwares, not to mention the use of advanced optimizatardetermining spectrums.

The second core problem is to represent the performance odph gndex. Our
preliminary experiments show that the runtimes of 1,00@oam queries on an index,
even on a same graph, can often exhibit large variances.Xaonme, we have tried
1,000 random queries on each of the 8,000 random graphs a&hddeta graph has
been indexed bg- hop andPri nme | abel i ng [13]. The mean and standard deviation
of 2- hop are 14.1 seconds and 4.2, respectively. Thoge ofre | abel i ng are 11.6
seconds and 59.7, respectively. Furthermore, the runtaresometimes skewed and
have a long tail at large runtimes. (In later section, we alige some runtime distribu-
tions in Figure 2.) We observe a similar phenomenon from ollection of scale-free
graphs. A possible explanation is that a graph may contanymidferent sub-structures
and the indexes themselves are complex structures as wekeTllead to a wide range
of runtimes. While average runtimes are often used to quaintifex performances, it
is desirable to propose a flexible metric for the performance

In this paper, we fit the runtimes of queries into a distribatiFrom our experiments
on estimating the parameters of distributions, the goaloésit of Gamma distribu-
tion is always the best. By comparing distributions of romés, we can obtain a more
robust and flexible way to compare performances. While we mpalyahe research on

Spectral Decomposition for Optimal Graph Index Prediction 3

the distribution for further analysis, in this paper, we lggpverse cumulative distri-
bution function to estimate the time whegfo of queries finish. Depending on users’
applications, they may specify a valy@o to express how reasonable are long query
runtimes. For instance, some Internet connection prosi@eg.hotels and cafe) charge
their users by connection times and long query runtimes eannblesirable. To cater
for the needs of those users, data practitioners may chbhesedex that is optimal at
98%, instead choosing the one that has the optimal averagjenau

Contributions. To our knowledge, this is the first investigation on the speuos of
graphs in relation to index performances. We summarizedhéibutions of this work
below. The overview of our contributions is presented iruFégl.

— Given a graphG; in a databasé&®, we propose a spectral decomposer to deter-
mine G;’s Laplacian matrix and a set of eigenvalués, and eigenvector&, .
The eigenvalues and eigenvectors are transformed intdfiedinépresentation for
comparisons.

— We propose a spectral similarity function between two gsaph

— We propose to fit the runtimes of an index on a given graph isimf@a distribution
using a distribution fitter. Users may then tune their delsiretion of optimal index.

— We adopt thék-Means algorithm ané&-nearest neighbor with a voting method to
predict the optimal index?." of a given graphG'.

— We have conducted experiments with a large number of randaphg and scale-
free graphs. The results show that our proposed techniquadl@eve accuracies
almost always higher 70% and very often higher than 80%.

The rest of the paper is organized as follows. Section 2 pteskee backgrounds of
graph spectral decomposition. We present our problenmstatein Section 3. Section 4
presents the definition of optimal index. A uniform speategresentation of graphs and
a similarity function between graphs are proposed in Se&idur prediction method
is detailed in Section 6. We report our experimental evauaah Section 7. Section 8
discusses the related work and Section 9 concludes this.@Bg@ekground details of
the indexes discussed are presented in Appendix.

2 Backgrounds on Graph Spectral Decomposition

In this section, we provide the background of graph spedruBnaph spectrums have
been widely used to study many interesting properties gfltggasuch as spectral parti-
tioning and expansion [9], cut problem [8], graph drawing][1

Graph spectrum is often defined with Laplacian matrix. Lejala matrix L of a
directed or undirected grapfi = (V, E) is defined ad. = D — A, whereD is the
degree matrix o and A is the adjacency matrix af. More specificallyA; ; = 1 if
(vi,v;) € E; andA4,; ; = 0 otherwise, whereé and: are thelD’s of the verticesy; and
vj. The degree matrix is a diagonal matrix ald; is the outdegree af;

The Laplacian matrix. of G can be eigendecomposedas= UAU !, whereA
is a diagonal matrix of eigenvalues bf andU is a matrix of the corresponding eigen-
vectors. Specifically, lek; < Ay < ... < A,, wheren = |V, denote the eigenvalues;
X1, X, ..., X, denote the corresponding eigenvectors, where = \;; and thei-th
column ofU is X;. We may callU eigenvector matriand usel to refer to eigenvalues.
We may use a subscript iz and A to denote thé/ and A of graphG when needed.

4 Liyan Song, Yun Pend, Byron Chot, Jianliang Xd, and Bingsheng He

Eigenvalues! are calledspectrumsn spectral graph theories. Since eigenvectors
are also known to be closely related to characteristics iifoes, we include eigenvec-
tors in our algorithm. We usd andU of the underlying undirected graphs of the data
graphs, as they capture the graphs’ structures and thegiepres are well-studied [5].

3 Problem Formulation

In this section, we formulate the optimal graph index pradicproblem based on graph
eigenvalues and eigenvectors.

We assume a graph datab&®eontaining a large number of directed graglds,
Go, ...,Gp,}. The reachability query on the graphs is formally definedbdlewiss.

Definition 3.1. Given a directed grapli = (V, E), u, v € G, v is reachable fromu,
denoted as ~~ v = true, if and only if there is a path from to v in G.

As discussed, various types of indexes are available tostippachability query
on graphs irD. However, it is desirable to predict the optimal one withlouitding and
benchmarking all indexes available. This problem can berde=d as follows.

Problem statement.Given a set of indexes = {Iy, I, ..., I,} and a graph database
D, we want to build a predictive mod@ll using the eigenvalues and eigenvectors of
graphs inD, in order to efficiently determine the optimal indlékt foragraphG ¢ D.

There are two main sub-problems in the problem statement.
(P1) How to represent the performance of an index on a graph?

As motivated in Section 1, the query runtimes of a particindex on a particular graph
may deviate from the average runtime. Therefore, in Sedtjove investigate a flexible
notion ofoptimal indexn expressing the desirable runtimes.

(P2) How to compare spectrums of graphs?

As motivated in Section 1, we propose to represent a gfaplith eigenvaluesl; and
eigenvectord/s. A similarity function between the spectral graph représtéon is
needed. In addition, the number of eigenvalues and the diimermnf the eigenvectors
of a graphG is the number of vertices @¥, which are not uniform in a graph database.
They are transformed into a uniform representation for canispns. Finally, while the
eigenvaluesi are invariants ofx, the row vectors of the eigenvector mattix, are
dependent to the permutation of vertex IDS&fTherefore, there is a row permutation
problem in comparing’’s of graphs.

4 Performance Metric

We define the performance of an index using the query times080lrandom queries,
as the query workloads are often not known when an index isesho To study the
query performances, we plot the query time distributiongkehe-axis is the query
time; y-axis is the number of queries finishedratFor example, Figure 2(a) and Fig-
ure 2(b) show the query runtime distributions of two inde@asa random data graph.
We demonstrate that average runtime alone may lack the ifiexito describe a de-
sired notion of performances. For example, Figure 2(a) st@wi | (1) [20] has the
smallest average time but it has a long tail. In comparidoaytitntimes of nt er val
exhibit a relatively small variance, whilent er val has a relatively large average time.

Spectral Decomposition for Optimal Graph Index Prediction 5

120

frequency
n
o
o
frequency
(=2}
o

average
H avexage

j 698 40 13.80
100
20
% 50 100 150 200 % 10 20 30 40 50
o Query runtime ('TIS) . o . query runtime (ms)
(a) Distribution of runtimes ofr ai | (1) (b) Distribution of runtimes of nt er val

Fig. 2. Some distributions of the runtimes of 1000 random queries on a randaph gr

Therefore| nt erval could be a better choice in applications where long quergdim
are not acceptable or commercially unfavorable.

Once the query runtimes are presented as a distribution, tikefidistribution
with some well-studied distributions,g, Normal distribution, Poisson distribution and
Gamma distribution. To measure the goodness of fit, we athept4-norm to the es-
timated distribution and the real distribution. From oupesiments on a large number
of random and scale-free graphs, we observe that Gammibdi&in almost always
yields the best fitting. A possible reason is that Gammaibigion is often used to
model the waiting time and query runtime may be considerdgteasvaiting time until
queries finish. (The detailed experiment on the fitting ispnted in Section 7.) More-
over, the parameters of Gamma distribution can be effigiersimated. Therefore, we
use Gamma distribution to represent the query runtime.

While the optimal index is intuitively the most efficient or0Q0 random queries,
we define the optimal index to be the one with the smallesthedéd runtime w. r. t. the
user-dened parametg? (e.g, 98%). Once the parameters of Gamma distribution are
estimated, the notion of optimal index can be tuned and chitvexd mathematically by
adjustingy.

Definition 4.2. Given a set of indexes = {I, I,...,, I}, a graphG, and a set of
random querie%), theoptimal indexin Z of G is the index that finisheg% of queries
of Q in the shortest time.

An application of Definition 4.2 is that database practidmmay check the ro-
bustness of an index. For instance, given a graph databasmay use the estimated
Gamma parameters to construct prediction models for ayfealues.e.g, 75%, 85%
and 95%, respectivelyyithout rerunning the benchmarking queriésn index can be
considered robust if it is optimal for all thogevalues, instead of a specificvalue.

5 Spectral Similarity of Graphs

This section presents a similarity measure of the eigergand eigenvectors of graphs.
In particular, we first transform the eigenvalues and eigetors into a uniform repre-
sentation. Secondly, we permutate the rows of the eigeowacatrix for similarity
comparison. Finally, we propose a spectral similarity fiorcof graphs.

5.1 Unifying the Dimensionalities of Graphs

The first issue on usingl and U for representing and comparing graphs is that the
dimensions ofl andU of different graphs are different. That is, they cannot beatly
compared. Therefore, we unify the dimensionsiadndU as follows.

6 Liyan Song, Yun Pend, Byron Chot, Jianliang Xd, and Bingsheng He

(i) We use the taik non-zero eigenvalues df; and the corresponding eigenvectors of
Ug¢ to represent a grapfi. According to [16], the eigenvectors of the t&ilron-zero
eigenvalues provide the best approximation ofttlie This unifies not only the number
of eigenvaluesi but also the column dimension bf;.

(i) Each row ofUs corresponds to a vertex i@. The row dimension ot/ of the
graphs can be unified by adding rows of zeros, until the diioansf Us matches the
largest graph in the database. By simple matrix theoriehave that adding zero rows
to a matrix does not affect both its eigenvalues and the tilirex of its eigenvectors. In
our context, a zero row vector corresponds to an isolatetlifl) vertex of a graph and
does not affect the relative performance of indexes.

We remark that the computation of the similarity betweeneigenvector matrices
involves determining the cosine similarity betweesich pair of the eigenvectofso
be detailed in Formula 1). The computation complexity isdyatic to the number of
eigenvectors in the matrices. Due to this performance jssaeopt not to introduce
eigenvectors to unify the column dimensionlgf. In contrast, the computation time of
similarity betweerl¢ is linear to the size of the row dimension. Thus, our dimemsio
unification does not lead to a significant increase in contjmutéime while keeping the
characteristics of vertices.

5.2 Permutation of Vertex ID

While the eigenvalues df are graph invariants [3], the eigenvectors (columndyin
are not. Since a row ib/g represents the characteristics of a vertexsiand the IDs
of rows are directly related to the IDs of vertices, graphghwimilar structures may
have very different eigenvector matrices. This can betiliied with a simple example
shown in Figure 3. In Figure 3, grapbis andG, are isomorphic and they are expected
to have the samd’s andU’s. However,Uq, andUg, are different, and a direct simi-
larity computation (to be defined in Section 5.3) yields a &milarity score 0.57. We
reorder the rows in the eigenvector matriced/ef, andUg, to obtainU;, andUyg,,
respectively, as shown in Figure 3. Usitig, andUg,, for similarity computation, we
obtain a similarity score 1.0.

0 05 027 05 065 0.5 027 05 065
0 0.5 -027 05 -0.65 unchanged 0 0.27 0 0.65
0 Ui =| 05 o065 -05 -027 | 05 065 -05 -027
414 0.5 -0.65 -05 027

. . 0 0
4 0 0.586) - B 5 5
2 S 55 Sy Aa 00 Ja, = 05 - — U, R
@ @ @ 0o 0 341 - -
. 0 0 0 05 065 -05 -027 05 027 05 065
or @3 o 0.58 0 0 U —| 05 -027 05 -065] vow g | 05 021 05 065
2 G2 05 085 05 027 |9 permuty, “G2 | 05 065 -05 -027
0

0.5 -0.65 -0.5 0.27
0
feh [eX Ac, 0o 0
0 0

o ocwoo

0.5 0.27 0.5 0.65 05 -0.65 -0.5 0.27
sim(Ag,,Ac,, Ug,,Ug,) = 0.57 (0 = 0.1) sim(Aa,, Aa,, UG, , Ug,) = 1.0 (0 = 0.1)

Fig. 3. Eigenvalues and eigenvectors of two isomorphic graphs

Unfortunately, the number of possible permutationsrdrevheren is the number
of rows. Therefore, we propose three practical heuristictions to reorder the rows.
The aim is that vertices with similar spectral charactessare compared.

(i) V P_rad: for each row inlUg, we compute itd.o-norm. We order the rows by their
Lo-norms in descending order. Intuitively, tHe-norm of a row vector denotes its
distance (radius) from the original point in a vector spadeerefore, the row vectors
that are far (respectively, close) to the original point@mpared.

Spectral Decomposition for Optimal Graph Index Prediction 7

(ii) V P_coor: According to D. Spielman [15], each row 6f; can be considered as
the coordinates of a vertex @f in a vector space. The rows can then be ordered in
a descending lexicographic order. It may be worth-remaykiivat such an ordering of
rows is biased towards the first few dimensions of rows. Asfitlsé few dimensions
correspond to smaller eigenvalues and hence, they aredesedimore important than
the latter dimensions.

(i) V P_W _rad: Since the eigenvalues indicate the importance of a dimangie may
integrate the heuristic function with eigenvalues. Spealify, for each row vector, we
compute its weighted.,-norm, where the weight of thieth entry of a row isl/\;, and
we order the rows by their weightdd,-norms in descending order.

In summary, the processing presented above are appliedhadwes and columns of
all graphs to obtain a unified representation, for simiyacidmputation. In subsequent
discussions, we simply useandU to refer to the matrices whose the dimensions have
been unified and ordered.

5.3 Spectral Similarity Between Graphs

The central part of the prediction framework is the spedimilarity between graphs.
The spectral similarity between two graphs has two majorpgmmants.

Firstly, we determine the most comparable eigenvectorgd®mt two graphé&/; and
G+. Specifically, for each eigenvectdf; in Ug, , we pairX; with an eigenvectol’; of
U, whose direction is the most similar £6;, defined as follows:

,,,,, n (COS*Sim(Xiv ij))7 (l)
whereX; in Ug,,Y; in Ug, andcos_sim denotes the cosine similarity between vectors.

Secondly, thespectral similarity between two grapl{s; and G is defined as a
weighted sum of cosine similarity between paired eigerrscivhere the weights are
proportional to the difference between the correspondiggrealues:

i =2pap?

Z((X, X;)EGT, (cos_sim (X, Yp[i]) xXe 202
A

pli] = argmazj=1

pli] Ypli)) €G2
Qi = Appi)? ’ @
202

sim(Gl, Gz) =

inecl,)\p[i]e@ €

whereo is a parameter that controls the importance between eiges/and eigen-
vectors. In particular, the larger the the larger influence of the eigenvalues to the

sim function. To compare two spectrums, (i) we compute the wedgbtermined by a
. . . . (i =Appsp)?

Gaussian function on the difference between the elgerwadUe*Wp . We assume

the differences of eigenvalues follow a normal distribnti@i) The cosine similarity be-

tween the corresponding eigenvectors is multiplied by thigtt. (i) The denominator

normalizes the similarity function.

6 Prediction Algorithm

With the uniform representation of graphsZihand the spectral similarity function,
we are ready to present our prediction algorithm. In thisepathelabel of a graph
G is its optimal index among a given set of indexes {I1, I, ..., I,}. We use the
eigenvalues and eigenvectors of graph®iand their labels to train a prediction model.
Classicak-Means clustering is adopted to cluster the grapli3.iAs we shall see from

8 Liyan Song, Yun Pend, Byron Chot, Jianliang Xd, and Bingsheng He

ProcedurekMeans

Input: labels,A’s andU’s of graphs inD, cluster numbek,
and termination parametér

Ouput: thek clustersC and their centers

01 randomly choosg centers fork clustersC

02for eachG in D

03 imaz = argmax;=1,... k(sim(G, C[i].ctr)) [IC[i] is ith cluster
04 assign’ to the clusteClimax]

05 while the cluster€ have changed

06 for eachC[3], whereC[i] € C, 6% of graphs irC[4] changed

07 [/l recalculate the center 6f:]

08 foreachG eC[i] G.sim =3 grecpijlcos-sim(G, G')

09 Clil.ctr = argmazgecri)(G.sim) Il C[i].ctr is center ofC[1]
10 foreachGin D

11 imaz = ATGMAT;=1
12 assign= to Climas]

& (sim(G, C[i].ctr))

,,,,,

Fig. 4. Procedur&kMeans

experiments, prediction with eigenvaluéslone is not as accurate as that with bdth
and U. However, some other classical methods, such as neurabretwer decision
trees, require to casf into some numerical values for training, while preservinegit
semantics. This does not appear trivial and those methedsohiadopted.

A trained model is then used to predict the label of a gréphwhereG’ ¢ D.
Specifically, given a graph”’, we determine itg-nearest cluster centers and apply a
voting method to obtain the weighted majority of the labetlafse centers. Such label
is returned as the optimal index 6¥.

6.1 Clustering Algorithm

In this subsection, we highlight the adoptionkeMeans clustering for training a predic-
tion model. The overall algorithm (Procedwkkans) for the construction is summa-
rized in Figure 4. The label.€., the optimal index) of each gragh € D is determined
by the definition presented in Section 4. Then, similar gsaiphD are clustered by
Procedur&Means. The label of a cluster center represents the label of thetariu

While Procedur&Means follows the general framework of classidalMeans al-
gorithm, we highlight the adoptiomng., Lines 06-09. Most importantly, the major mod-
ification is on the recalculations of the new cluster centersines 08-09. Classical
k-Means algorithms often use averaging of a distance fumttgween data objects in
a cluster to obtain a new cluster center. However, the aesrafeigenvectors or eigen-
values do not correspond to any clear semantics. Therefoténe 08, we determine
the sum of the spectral similarity between each graph anotladlr graphs in a cluster.
The new cluster center is the graph with the highest simyjlatim (Line 09).

Optimization. The clustering algorithm recalculates cluster centersarheteration.
However, in later iterations of Proceduk&kans, the changes of clusters are often
small. In other words, the algorithm may then recompute feeal similarity of the
same graphs many times. To optimize this, we store the speitnilarities between
graphs, where they are computed once and retrieved in tatations.

Spectral Decomposition for Optimal Graph Index Prediction

6.2 Prediction Algorithm

To predict the optimal index of a graghf ¢ D, one may be tempted to use the label of
the cluster center that is the most similatio However, as presented before, the cluster
centers are data graphs themselves and sometimes they timythe optimum centers
and the prediction using one cluster center may be overlyithemto the quality of the
clusters. To enhance the robustness of the prediction, e agopt a simplé-nearest
neighbor algorithm, wherkis a user-defined parameter. Specifically, given a gtaph
we decompose it intely, andU(,. We determine thé clustersC[i1], C[i2],..., C[ik]
from C, whose centers are the most similatt Suppose the label @ff:]'s center is

L. The vote ofC[i] to L is defined as the spectral similarity betwe#i's center and
G’. The optimal index of%’ is the label with the largest sum of votes.

7 Experimental Evaluation

In this section, we conducted an experiment to verify theieaxies and efficiencies of
the spectral decomposition approach to predict the optiradh index.

7.1 Experimental Setup

9

Implementation: We ran our implementation on a commodity PC with a Quad-core
2.4GHz CPU with 4G memory running Windows 7. We implementead groposed
technigue on MATLAB R2011a. We used the functions providgdtATLAB as far

as possible, such as the functions to determine the eigewaind eigenvectors, and
statistical distribution fittings.

Table. 1 Meanings & default values of parameters

Table. 2Fitting error (L2-norm)

parameter meaning default [fitting error PoissofNormalGamm
k_knn K in KNN 7 R(nterval)| o0.16 0.09 0.06
k_kmeans |k in KMeans 64 R (2- hop) 0.17 0.16 0.14
kmeans |whether KMeans is used in prediction yes [|[R@Gail (1)) o050 0.43 0.27
|T| no. of the samples used for testing 28 R(Pri nme) 0.43 0.49 0.26
|D| no. of samples used for both training and testing 256 | [Sd nterval)| o018 0.07 0.04
k_tail tail & eigenvalues and their corresponding eigenvector82 s@- hOp) 0.25 0.23 0.20
used in graphs’ similarity s@Gail (1))l o052 0.42 0.29
o parameter irsim to balance the effection of eignvalyes0.1 sPrine) 0.77 0.70 0.51

and eigenvectors

Graph collections: We used both random graphs and scale-free graphs for our-expe
iments, as they are popular classes of graphs used in anafygiaphs. Moreover, we
had controlled over the sizes and densities of the genegasgths. The generators used
were provided by Zhet al. [21]. We generated 1,024 graphs for each kind of graphs.
For random graphs, the average number of vertices and faveret 3.4k and 6.8, re-
spectively. For scale-free graphs, we aet= 0.27 and 5 = 10 and obtained 1,024
graphs with an average number of vertices 3k and averagetfar We usedR’ and

“S" to denote experiments with random graphs and scale-fraghg; respectively.

Reachability query time collections:We ran the implementations ofit er val [21],
Grail [20], 2-hop [2] andPri me | abel i ng [13] on our graph collections. We ran
1,000 random reachability queries on each graph in our graliéctions. The runtimes
of 1,000 queries on each index were then stored and fitteddatama distributions.

Table. 3 Effects of training dataset size &h

10

Liyan Song, Yun Peng, Byron Chot, Jianliang Xd, and Bingsheng He

The runtimes were obtained from warm runs. The estimatadd 3 of Gamma distri-
butions were stored for determining the optimal index.
We observe that there were cases that the prediction probbsntrivial, e.g, one
index was almost always more efficient than the others. Thases were omitted as
our prediction model was very accurate. In other words heeibf the indexes chosen
in our experiments dominated each other.

Default parameter settings:We conducted a set of experiments to show the effect of
each parameter in our technique. Unless specified otherwiseised the default set-
tings shown in Table 1. We used the”_rad utility function for the vertex permutation

in sim computation by default. For ease of exposition, we predietdptimal index
from two graph indexes. That is, the prediction label of tkeezgiments was binary.

Performance metric: Unless otherwise specified, we ran each experiment 100 times
and reported the average accuracies.

7.2 Experiments on Distribution Fittings

To verify that the distributions of the reachability queipés on each index can be fit
into some well-known distributions, we tested fitting fupos of various distributions.
We generated the runtime distributions of all of our randard scale-free graphs and
all of our index implementations. We usg#=98% in our experiments. In Table 2, we
showed thelL,-norm between the actual distribution and the estimatetiitolision of
Poisson, Normal and Gamma distributions. We note that Gadigtdabutions almost
always clearly offered more accurate fittings and the fiténgprs were often small.
Therefore, in this work, we adopted Gamma distribution.

Table. 4 Effects ofk in kMeans orRandS

average accuracy average accuracy | average accuracyj

|D||2- hop vs|l nt erval k_kmeans|2- hop vs|l nterval [2- hop vs|2-hop vs

Gail (1) |vsPrime Gail(l)|vsPrine [Gail (3)|Gail(5)
64 (84.18% 79.18% 8 71.21% 70.43% 63.64% 65.11%
128 |87.57% 83.14% 16 79.61% 77.29% 76.75% 79.68%
256 |87.11% 82.68% 32 85.25% 80.50% 79.79% 81.18%
512 |85.18% 82.54% 64 89.46% 83.75% 78.71% 80.00%
1024(81.79% 81.07% 128 |90.54% 84.21% 76.00% 76.89%

Table. 5 Effects ofk in knn onRandS

Table. 6 Effects ofk in k_tail onRandS

average accuracy] | average accuracyj average accuracy| | average accuracys] |time
k_knn|2-hop vs|l nterval|2-hop vs2-hop vs| |k_tail[2-hop vs|l nterval|2-hop vs|2- hop vs|(S)
Gail(1)lvsPrine |Grail (3)|Grail (5) Gail(l)vsPrine |Grail (3)|Grail (5)

1 (83.57% 79.61% 67.86% 67.46% 8 [81.68% 79.54% 69.43% 68.93% 3.65
3 |86.79% 81.43% 73.68% 74.86% 16 |84.00% 81.11% 73.75% 74.57% 10.00
5 |88.82% 82.61% 77.36% 77.50% 32 (88.29% 83.75% 77.79% 80.04% 30.10
7 |89.79% 83.00% 79.86% 80.57% 64 |88.43% 83.43% 80.25% 82.89% 105.88
9 (89.29% 82.82% 81.07% 80.75% 128 (88.82% 84.39% 81.71% 83.04% 413.09

7.3 Prediction Accuracies

In this experiment, we tuned the parameters of our prediatiodel and studied their
effects on prediction accuracies. Due to space limitafiores present the results on

Spectral Decomposition for Optimal Graph Index Prediction 11

some pairs of indexes for each datagetiop vsGrai | (1) andl nterval vsPrime
for random graphs, ang hop vs Grai | (3) and2-hop vsGrail (5) for scale-free
graphs.

Effects of the size of training datasetWe studied the effects of the training dataset
size to the prediction accuracies on random graphs as simolatble 3kmeans was set

to no in this experiment. From Table 3, we observe that our prigicccuracies were
almost above 80% on training sets of different sizes. We ia¢ge that the prediction
accuracy first increased and then slightly reduced with tioevidy of training dataset
size. It was possibly because our model was overfitted by faagning sets.

Effects of k_kmeans. We studied the effects &f kmeans on our prediction accuracies

as shown in Table 4. From Table 4, we observe that our predieiicuracies increased
as the growth of:_kmeans on random graphs. It was because that the clusters would
be more refined with a largér kmeans. Thus, we had a higher probability to choose
similar cluster centers for prediction. However, the pcddn accuracy may reduce
slightly if each cluster is too fine, as shown in the resultscale-free graphs.

Effects of k_knn. Table 5 presents the effects bfknn on our prediction accuracies.
From Table 5, we observe that our prediction accuracy ise®avith the growth of
k_knn. It is because that we have more votings with largerhich reduces the effects
of outliers in prediction. Our prediction accuracy was o&@% on both random graphs
and scale-free graphs whér> 7. The prediction accuracy was stable whieh 9.

Effects of the number of tail-k eigens.We used different number of eignvalues and
eigenvectors in prediction and studied the prediction eias as shown in Table 6.
From Table 6, we observe that the prediction accuracy iseaith more eignvalues
and engnvectors, while the prediction time increased riydgtearly. We exclude the
time for determining the spectrum of a graph as it mainly dejgeon the algorithm we
used. From our data collections, the MATLAB function rannfr@.6s to 173s and 39s
on average. However, this is often more efficient than chmgptie optimal index by
constructing all candidate indexes and running a large mumbbenchmark queries.

Effects of vertex permutation ando. In this experiment, we studied the effects of ver-
tex permutation ane on our prediction accuracies. Table. 7 presents the resutim
Table. 7, we observe that whiléP _coor, V P_W _rad andV P_none could sometimes
be accurate, they could be sensitive to the choieg of the similarity function. In com-
parison,V P_rad is both robust and accurate. Moreover, wheincreased, the relative
importance of eigenvectors lowered and the accuraciesdsed.

Table. 7 Effects of vertex permutation anton R
Vertex o(2-hopvsGail (1)) o (I nterval vsPrime)

Permutation0.01| 0.1 | 1 10 | 100|{0.01| 01| 1 10 | 100

VP_rad 89.43%89.71%482.25%83.25%71.219482.93%83.21%78.64%474.14%73.64%
VP_coor |91.00%90.219469.25%69.11%468.93%482.71%85.96%473.00%73.00%72.43%
VP_W_rad |89.39%90.68%470.61%72.219%471.14%482.71%84.89%472.86%74.36%475.25%
VP.none |87.36%80.86%482.25%69.50%70.00%481.89%82.82%478.61%72.86%472.14%

12 Liyan Song, Yun Peng, Byron Chot, Jianliang Xd, and Bingsheng He

8 Related Work

To the best of our knowledge, there have been only few preéimyi studies that use
graph features to predict the relative query performandegaph indexes. Dengt
al. [7]. extract features from data graphs and use neural nksaor prediction. How-
ever, there have been many features in graph theories amdritciear which of these
are the principal ones. In contrast, we use thekaigenvalues and eigenvectors for
prediction. Moreover, the optimal index of [7] is defined bg tbest average runtimes.
In comparison, we also allow users to fine-tune their notibthe optimal index. An-
other work by Zhuet al. [21] applies multiple graph indexes to partitioned subbsap
of a data graph. An analytical cost model is proposed ansdtitited with2- hop and

I nt erval . Our approach has been applied to various indexes. Spewtthbds have
been applied to produck partitions of graph®.g, [12]. Our aim is not to produce
exactlyk partitions but to predict to the optimal index.

Finally, there is a large body of work on determining grapdtdees.e.g, [18], for
query processing.g, [19, 4]. Due to space limitations, we cannot include a dedai
survey on this area. However, in these studies, featuregraphs (structures). It re-
mains unclear how to exploit them to build a predictive model

9 Conclusions

In this paper, we propose spectral decomposition for ptiedioptimal graph index
of a given graph. Specifically, we have proposed a uniformesgntation of a graph,
spectral similarity function and a prediction algorithme\dbtained the implementation
of four structurally different graph indexes. One obseorats that the runtime distri-
butions of the indexes fit accurately into Gamma distributibhis allows us to refine
the notion of the optimal index, with the inverse cumulatistribution function. We
conducted detailed experiments on the parameters in olnitpees on both random
graphs and scale-free graphs. We noted that our techniqubust and can achieve
approximately higher than 70% accuracies in most casesoisiture works, we are
investigating on the support of other graph queries, sucubgraph queries.

References

1. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient managdm&mansitive relationships
in large data and knowledge basesSIGMOD, pages 253262, 1989.

2. R. Bramandia, B. Choi, and W. K. Ng. Incremental maintenancehaf2labeling of large
graphs.TKDE, 22:682—698, 2010.

3. A. E. Brouwer and W. H. HaemerSpectra of GraphsSpringer, 2012.

4. J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verificafi@® query processing on
graph databases. BIGMOD, pages 857-872, 2007.

5. F. Chung.Spectral Graph TheoryConference Board of the Mathematical Sciences, 1997.

6. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability andniigtgueries via 2-hop
labels. INSODA pages 937-946, 2002.

7. J. Deng, F. Liu, Y. Peng, B. Choi, and J. Xu. Predicting the optimdlaxindex for reach-
ability queries on graph databases AiKM, pages 2357-2360, 2011.

8. 1. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigetars: A multilevel
approachTPAMI, 29:1944-1957, 2007.

9. B. Hendrickson and R. Leland. An improved spectral graph patrititipalgorithm for map-
ping parallel computationsSIAM J. Sci. Comput16(2):452—-469, 1995.

Spectral Decomposition for Optimal Graph Index Prediction 13

10. J. Y. Jonathan L Grosslandbook of Graph TheoryCRC Press, 2004.

11. Y. Ke, J. Cheng, and J. X. Yu. Querying large graph datab&s&ASFAA pages 487-488,
2010.

12. A.Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:Ipsia and an algorithm. In
NIPS pages 849-856. MIT Press, 2001.

13. Y. Peng, B. Choi, and J. Xu. Selectivity estimation of twig queries aticcgraphs. In
ICDE, pages 960-971, 2011.

14. R. Schenkel, A. Theobald, and G. Weikum. Efficient creation acreémental maintenance
of the hopi index for complex xml document collections.I@GDE, pages 360-371, 2005.

15. D. A. Spielman. Spectral graph theory and its applicationEA€S pages 29-38, 2007.

16. D. A. Spielman. Spectral graph theory. Gombinatorial Scientific ComputingChapman
and Hall/CRC Press, pages 1-23, 2011.

17. X. Wu, M. L. Lee, and W. Hsu. A prime number labeling scheme faragnic ordered xml
trees. INICDE, pages 66—, 2004.

18. X. Yan and J. Han. gspan: Graph-based substructure pattemgmin ICDM, pages 721—
724, 2002.

19. X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent streiditased approach. In
SIGMOD, pages 335-346, 2004.

20. H. Yildirim, V. Chaoji, and M. J. Zaki. Grail: scalable reachability index farge graphs.
PVLDB, 3(1-2):276-284, 2010.

21. L. Zhu, B. Choi, B. He, J. X. Yu, and W. K. Ng. A uniform frameskdor ad-hoc indexes to
answer reachability queries on large graphsDASFAA pages 138-152, 2009.

Appendix: Background on Graph Indexes

For self-containedness, we include a brief discussion erirttlex benchmarked in this
section. There have been many graph indexes proposed Iyetwestipport reachability
queries, not to mention other graph queries. This sectibnremiews the four indexes
adopted in this paper. Interested readers may refer tdalgdny Cheng et al. [11] for a
comprehensive survey on graph indexes.

We remark that since indexes often associate labels to nagasmay use the terms
indexesandlabelsinterchangeably.

() I nterval |abelingisa popularindexing technique for trees, in partic{it..

It exhibits good query performances and has simple impléatien.| nt er val | abel i ng
associates each vertex with an interialj), wherei is the vertex's preorder traversal
number and is its postorder traversal number. Vertexcan be reached from vertex

iff the interval ofw is contained in that of. | nt er val | abel i ng is then extended to
supportDAGs [1]. In particular, each vertex may be associated with iplalintervals,
as there may be multiple paths between any two nodes. Toagi@ila query correctly,
the extended interval labeling requires comparisons opeds of intervals of vertices.

(2) Grail [20] is a recent index derived from interval labeling. Useray specify a
parametek. G- ai | determines random spanning trees from a graph and applies the
interval indexes on thé spanning trees. The remaining non-tree edges are condidere
as exceptions and handled specially. The query performainite interval indexes is
more superior to that of the handling of exceptions. In otherds, the performance of
Grai | of a given query depends on what partssoéi | indexes the query requires.

14 Liyan Song, Yun Peng, Byron Chot, Jianliang Xd, and Bingsheng He

(3)2- hop | abel i ng [6] is another popular index for reachability queries. Eagttex

v is associated with two labels;,, (v) and L, (v), whereL;,,(v) storessomevertices
that can reacly whereasl,,:(v) contains some vertices thatcan reach. Theny is
reachable from iff L,,;(v)N L, (w) # 0. There are many possit#e hop | abel i ng
for a graph. To determine tf2e hop | abel i ng with the minimum size, various heuris-
tics, optimization and partitioning algorithms have beeoppsed. It has been to com-
plex to mathematically model the performance of the resylti hop | abel i ng.

(4) Prime | abel i ng [17] uses products of prime numbers to encode reachabhility i
formation of trees. A follow-up work [13] extends i me | abel i ng to support reach-
ability queries orDAGs. Specifically, each vertex is associated with a productiofe
numbers and vertex can reach vertew iff v's label is divisible byw’s label. An im-
plementation concern &f i me | abel i ng is that for graphs with large deptta,i ne

| abel i ng may result in large products, which require the support of Varge inte-
gers.

Itis evident that the indexes discussed above are striigtacanplex and there are little

relationships between their structures. Deriving an ateusnalytical model to dictate
their relative performances is known to be a daunting taskhis paper, we apply data
mining techniques and spectral decomposition to build aghtmpredict the relative

performances. In addition, the implementations of thedexes are available for our
experiments. Hence, we include these four indexes in thisipa

