
On Performance Debugging of Unnecessary Lock Contentions
on Multicore Processors: A Replay-based Approach

Long Zheng Xiaofei Liao ∗

Services Computing Technology and
System Lab, Cluster and Grid

Computing Lab, Huazhong
University of Science and

Technology, China
{longzh, xfliao}@hust.edu.cn

Bingsheng He
School of Computer Engineering

Nanyang Technological University
Singapore

bshe@ntu.edu.sg

Song Wu Hai Jin
Services Computing Technology and

System Lab, Cluster and Grid
Computing Lab, Huazhong
University of Science and

Technology, China
{wusong, hjin}@hust.edu.cn

Abstract
Locks have been widely used as an effective synchroniza-
tion mechanism among processes and threads. However,
we observe that a large number of false inter-thread depen-
dencies (i.e., unnecessary lock contentions) exist during the
program execution on multicore processors, thereby incur-
ring significant performance overhead. This paper presents
a performance debugging framework, PERFPLAY, to facil-
itate a comprehensive and in-depth understanding of the
performance impact of unnecessary lock contentions. The
core technique of our debugging framework is trace re-
play. Specifically, PERFPLAY records the program execution
trace, on the basis of which the unnecessary lock contentions
can be identified through trace analysis. We then propose a
novel technique of trace transformation to transform these
identified unnecessary lock contentions in the original trace
into the correct pattern as a new trace free of unnecessary
lock contentions. Through replaying both traces, PERFPLAY
can quantify the performance impact of unnecessary lock
contentions. To demonstrate the effectiveness of our de-
bugging framework, we study five real-world programs and
PARSEC benchmarks. Our experimental results demonstrate
the significant performance overhead of unnecessary lock
contentions, and the effectiveness of PERFPLAY in identify-
ing the performance critical unnecessary lock contentions in
real applications.

1. Introduction
In the era of multi-core processors, parallel programming is
prevalent. The efficiency of process/thread communication
is very important for the overall performance of parallel ex-
ecutions. In multi-threaded applications, locks are widely-
used to ensure mutual accesses to shared data within critical
sections. A thread has to acquire a lock until the lock release
if this lock is held by another thread. However, multiple crit-
ical sections protected by the same lock do not necessarily
conflict at runtime. Therefore, a program may produce false

∗ Corresponding Author

Thread 1:
void fil flush file spaces(...){
5609: mutex enter(&fil_system->mutex);
5611: n_space_ids=UT LIST GET LEN(

fil->system->unflushed spaces);

5614: mutex exit(&fil_system->mutex);
}

Thread 2: 4! Conflict
void fil flush(...){
5473: mutex enter(&fil_system->mutex);

/*search hash table by a given id*/
5475: space=fil space get by id(space_id);
5483: if (fil buffering disabled(space)){

/*checking some data and states*/
5501: mutex exit(&fil_system->mutex);
5503: return;}

...
5573: UT LIST REMOVE(unflushed_spaces,

fil->system->unflushed spaces,space);

5592: mutex exit(&fil_system->mutex);
} storage/innobase/fil/fil0fil.cc

Figure 1. An example of the potential parallelism serialized
by the unnecessary lock contention from mysql in the dy-
namic execution

inter-thread dependency (i.e., unnecessary lock contention).
Such unnecessary lock contentions serialize the access, lead-
ing to the severe performance loss of programs [22, 23]. In
this paper, we study whether and how we can help the pro-
grammer identify the unnecessary lock contention and fur-
ther understand their performance impact.

Figure 1 is a real example from mysql−5.6.11 [11].
We depict how the unnecessary lock contention occurs in
the dynamic execution. Both threads use the same shared
lock fil system->mutex to coordinate the shared ac-
cess to fil->system->unflushed->spaces. However,
in the dynamic execution, the thread always does not up-
date it, if the buffer is explicitly disabled by the user (i.e.,
fil buffering disabled(space)=TRUE). In this case,
two threads do not conflict, and the lock unnecessarily se-
rializes the function UT LIST GET LEN and the function
fil space get by id, thereby leading to the performance
degradation. In practice, we need to identify and generalize
Unnecessary Lock Contention Pair (ULCP). A ULCP con-
sists of two critical sections which are protected by the same
lock and access the parallelizable code regions.

2015 IEEE/ACM International Symposium on Code Generation and Optimization
978-1-4799-8161-8/15/$31.00 c©2015 IEEE

561-4799-8161-8/15/$31.00 ©2015 IEEE

Due to the significant overhead of ULCPs at runtime, a
volume of runtime research [22–24] attempts to eliminate
the performance impact of ULCPs by speculatively exe-
cuting critical sections without actually acquiring the lock.
The lock is taken only when a data conflict needs to be re-
solved. The major advantage of those approaches is that they
are transparent to programmers. However, they incur many
problems in practice [1, 28] and there is still a long way be-
fore their practical and wide adoptions. First, they are prone
to trigger false aborts due to the hardware limitations [28].
Second, a few transaction aborts (including false aborts) may
lead to a large number of rollbacks [1].

Instead of relying on complicated dynamic approaches,
this paper argues that the programmer should play a proac-
tive role in eliminating the overhead of ULCPs. If the pro-
grammer can fix the performance problem caused by UL-
CPs, the side-effect problems of existing ULCP tools [3, 10,
22–24] can be avoided. We perform five real-world programs
and PARSEC benchmarks to study the explicit characteris-
tics of ULCPs. Based on our observations, we get an im-
portant finding: the root cause of many ULCPs lies in the
problematic synchronization implementation. Thus, ULCPs
can be fixed by programmers. It is necessary to detect them
and further assist the programmers to understand and correct
them, rather than take tolerant attitudes in the previous work.
However, it is a nontrivial task to identify the source of UL-
CPs as well as figure out their performance impact. In fact,
in a multi-threaded program, there may be so many ULCPs
that it is difficult, or even impossible, to check all the ULCPs
manually. Even worse, they are interwined with each other
in the source code.

To help the programmer address the ULCP problems, this
paper presents a performance debugging framework (namely
PERFPLAY) to understand the performance impact of UL-
CPs in the lock-based programs. The core idea of PERFPLAY
is based on record/replay. Under this framework, the ULCP
analysis is performed as the following steps. PERFPLAY first
records the program execution into a trace. Through analyz-
ing the original trace, PERFPLAY can identify all ULCPs in
the original execution. Then we propose a novel technique
of trace transformation formalized by four rules to trans-
form these ULCPs in the original trace into the correct pat-
tern as a new trace free from ULCPs. We ensure that the
new ULCP-free trace can be executed with the correct pro-
gram semantics. By replaying both the original trace and
ULCP-free one, PERFPLAY gets the performance impact of
each ULCP. Finally we group the ULCPs generated by the
same code regions and summarize the overall performance
per code-site. We can recommend the programmer to fix the
identified code region with the highest performance impact.

Our experimental results demonstrate the performance
fidelity (including performance stability and precision) and
the efficiency (< 4.3% lockset overhead) of PERFPLAY.
With the most beneficial code regions recommended by

Applications LOC Size # Locks # ULCPs
NL. RR. DW. Bengin

openldap 392K 6M 1,851 75 1,414 473 15
mysql 1,132K 22M 2,109 125 9,822 2,924 194
pbzip2 5K 1M 1,281 2 1047 838 51

transmissionBT 79K 4M 352 15 111 123 29
handbrake 1,070K 3M 18,316 10 1,536 1,143 189

blackscholes 812 204K 0 0 0 0 0
bodytrack 10K 9.0M 32,642 0 1,322 321 43

canneal 4K 628K 34 0 0 0 0
dedup 3.6K 156K 19,352 231 2,421 1,952 164

facesim 29K 4.8K 14,541 102 871 819 12
ferret 9.7K 316K 6,231 11 101 231 343

fluidanimate 1.4K 72K 82,142 2 10,501 6,694 197
streamcluster 1.3K 44K 191 0 0 0 0

swaptions 1.5K 152K 23 0 0 0 0
vips 3.2K 17M 33,586 142 4,512 1,142 26
x264 40.3K 2.4M 16,767 941 3,841 412 84

Table 1. Breakdown of ULCPs in real-world programs and
PARSEC benchmarks. Size is denoted to the code size of
programs, #Locks the number of lock protections generated
in dynamic execution. NL. refers to the null-locks, RR. the
read-read pattern, DW. the pattern of disjoint-write.

PERFPLAY, our case studies verify the effectiveness of
PERFPLAY in identifying the performance critical ULCPs.

The rest of this paper proceeds as follows. We provide
the introduction on ULCP, the motivation and overview of
our work in Section 2. Section 3 elaborates how to trans-
form a recorded program execution trace into a new ULCP-
free trace. Section 4 describes how to assess the ULCP per-
formance impact from two replayed results. Section 5 fur-
ther presents the implementation details. Section 6 presents
the experimental results. We review the related work in Sec-
tion 7 and Section 8 concludes the work.

2. ULCP: The Classification, A Brief Study,
and Motivation

We start with a motivation study on ULCPs. We have ob-
served that ULCPs are a very common problem in many
multi-threaded programs. Next, we give another concrete ex-
ample to show the performance impact of ULCPs. Motivated
by the study and examples, we develop a debugging frame-
work to address the ULCP problem.

2.1 A Motivation Study
We have surveyed the number of each category of ULCPs in
five real-world programs (including two server applications–
openldap [16], mysql [11]; three desktop applications–
pbzip2 [19], transmissionBT [26] and handBrake [8]) and
PARSEC benchmarks [17]. The detailed experimental setup
can be found in Section 6.

Table 1 lists the quantitative distribution of ULCPs of all
applications with two threads. In our study, we consider the
ULCP in the format of pairs, because pairs are the most basic
representation and can be used to represent other complex
combinations beyond pairs. For instance, three sequential
critical sections can be encoded as two pairs. Our study has
observed the following four major kinds of ULCPs.

57

(1) Null-Lock refers to the synchronization pair where
there exists no shared-memory access in the critical sections.
ULCP problems of this type are usually relatively easy to
understand and identify. Null-locks usually come from if-
branch of the program [21].

(2) Read-Read pattern indicates that only read operations
on shared data exist between two critical sections protected
by the same lock. The performance problem of this type
mainly stems from the serial access to the shared data, espe-
cially for memory-intensive applications. Figure 2 demon-
strates such a ULCP problem from OpenLDAP [16].

(3) Disjoint-Write pattern occurs in the scenario where
two critical sections protected by the same lock update dif-
ferent shared addresses, and at least one of them is the write
operation. One common example of disjoint-write is that
program uses the uniform reference (e.g., pointer alias) pro-
tected by the same lock to update different shared objects.

(4) Benign pattern represents the benign feature of some
false conflicting ULCPs. Specifically, two critical sections
indeed access the same shared data concurrently but they do
not constitute a conflicting pair, such as redundant writes,
disjoint bit operation, and ad-hoc synchronization [4, 13].

According to Table 1, we find that ULCPs are perva-
sive. Meanwhile, different applications generally show dif-
ferent characteristics of ULCPs. Moreover, if we increase
the number of threads in the application, the number of UL-
CPs increases dramatically. This phenomenon emerges due
to the reason that the occurrence of ULCPs, in most cases,
is interconnected rather than isolated. The ULCP intercon-
nection can be embodied in the fact that they are produced
by some common codes that will be repeatedly executed in
most threads.

The four classified categories of ULCPs facilitate the
achievement of two goals: 1) ULCP identification: different
patterns may involve different detection techniques; and 2)
ULCP transformation (i.e., trace-level ULCP elimination):
after ULCP identification, we need to transform the trace
into a ULCP-free execution, but different patterns may re-
quire different transformation strategies.

2.2 Another Motivating Example
Figure 2 depicts a source code snippet protected by the
lock dbmp->mutex from OpenLDAP, a lightweight direc-
tory access protocol server [16]. This piece of code may
affect the CPU utilization of system when a large number
of threads call this code simultaneously. That is because it
produces a large number of lock/unlock pairs (i.e., critical
sections, CSs) where no effective execution statement ex-
ists if dbmfp->ref is always FALSE. In fact, these shared
reads can be operated simultaneously unless dbmfp->ref
is set to TRUE. Figure 2(a) illustrates many ULCPs (i.e.,
a two-tuple consisting of two critical sections 〈CS,CS〉),
such as 〈CS1, CS2〉 and 〈CS2, CS3〉. Each ULCP intro-
duces subtle performance impact due to the lock protection
serializing two critical sections. We can further group UL-

 for (deleted=0; ;) {
 THREAD_LOCK(…, dbmp->mutex);
 /* wait for other threads to release their

 references to dbmfp */

 if (dbmfp->ref == 1) {

 deleted = 1;
 }
 THREAD_UNLOCK(…, dbmp->mutex);
 if (deleted) break;

 }

rd:dbmfp->ref

rd:dbmfp->ref

rd:dbmfp->ref

CS1

CS2

CS3

dbmfp->ref=1

T1 T2 T3 Tn

denotes a critical section CS protected with the lock/unlock pair

Dynamic Execution SequencesA Code Snapshot

CSn

denotes the critical path of program

(a)

dbmfp->ref=1

deleted=1
deleted=1

deleted=1

(b)

Figure 2. A code snippet with problematic synchronization
implementation from OpenLDAP and its possible dynamic
execution sequences when many threads call this code si-
multaneously. (a) A great deal of CPU time is wasted due
to the spin-waits of threads T0, · · · , Tn−1 for the release of
dbmfp->ref if the critical thread Tn runs slowly. (b) Little
CPU time is wasted if Tn is finished fast.

Program
Binary Replayer

Original
trace

selective
recording Original

results

ULCP
Transformation

ULCP
free results

?
1

2
3

Performance
Debugging

List: ULCP
optimization

benefits
4

Modified
trace

Figure 3. Overview of PERFPLAY

CPs based on their code-site, which introduces a profitable
accumulated performance gain. For instance, 〈CS1, CS2〉
and 〈CS2, CS3〉 are both generated by the pair of above-
depicted source code, therefore their performance benefits
should be accumulated up when we evaluate the ULCP per-
formance impact per code-site.

Lock Elision (LE) [22] is a technique that dynamically
eliminates the inter-thread ULCP dependencies. Previous
studies based on LE [1, 22–24] resolve ULCPs at runtime,
which do not offer debugging information to programmers.
For the example in Figure 2, they remove the lock acqui-
sition and release operations of the critical sections (i.e.,
CS1, · · · , CSn−1) completely before CSn is executed. As a
result, CS1, · · · , CSn−1 are performed in parallel. LE can-
not precisely track the impact of system resource waste for
ULCPs. In fact, the programmer is able to fix them. The
root cause of the problem in this example can be attributed
to the imperfect synchronization implementation (according
to our categorization in Section 2.1). To understand and fix
this problem, it is necessary to detect the code regions pro-
ducing ULCPs for the programmers and help them further
understand and correct them. In fact, this source snapshot
performs the same function as pthread mutex barrier
primitive. Programmers can use barrier primitive to fix the
problem and obtain better CPU utilization.

2.3 Overview of Our Approach
From the aforementioned study and real-world example, we
can at least get two important implications:

58

ULCP
trace

traditional
lock

semantics ULCP
topology

ULCP
Identification

RULE 1/2

ULCP-free
topology

synchronization
reconstruction

mutex
refinement

RULE 3

RULE 4

ULCP
free
trace

Figure 4. The process of ULCP transformation

• ULCP is a diverse program behavior. It is ubiquitous in
the multi-threaded program and scattered in the program
execution;

• It is difficult, or even impossible, to manually figure out
which code-site incurs the highest performance impact
due to ULCPs.

Therefore, a performance debugging tool is needed to as-
sist the programmer in addressing the problem of ULCPs
in their code. Particularly, we propose PERFPLAY, a replay
framework to help programmers understand ULCPs in two
aspects. First, the replay system records the program execu-
tion into a trace, based on which we therefore can know the
explicit characteristic of each ULCP and further group them
according to their code-site. Second, the replay system pro-
vides the possibility of reproducing the program execution,
so that we can assess the performance impact of ULCPs for
the performance comparison before and after optimization
to further determine the most beneficial ULCP to fix.

Figure 3 depicts the overview of PERFPLAY. PERFPLAY
operates on application binaries, and reports a list of the po-
tential optimization benefits. This list is used to assist pro-
grammers to understand the ULCP performance problems.
The first step of PERFPLAY is to record the intervals of a
program execution trace. After the generation of original
recording trace, the second step of PERFPLAY is to trans-
form the original trace with ULCPs into a new trace with-
out ULCPs. Next, PERFPLAY replays the original trace and
the modified one. By comparing these two replayed results,
PERFPLAY finally evaluates the potential performance im-
pact of the aggregated ULCPs per code-site.

Using record/reply as the key technique, we have ad-
dressed the following two major challenges. First, the ULCP
transformation may change the synchronization structure of
program, thus possibly incurring the incorrect program se-
mantics. There lacks a mechanisms in record/replay to en-
sure program correctness. PERFPLAY develops novel rule-
based trace transformation techniques to preserve program
semantics (Section 3). Second, we assess the performance
of a ULCP, and further determine the code-site which pro-
duces the highest performance impact due to ULCPs. A new
performance model is further proposed to tackle this prob-
lem (Section 4).

3. ULCP Transformation
This section presents the detailed procedure of transforming
the original trace with ULCPs into a new trace without UL-
CPs. The ULCP transformation may involve a change of the

Algorithm 1: ULCP Identification
Input : 〈C1, C2〉, two critical sections in the sequential order;
Output: A type, indicating the ULCP type between C1 and C2

1 if C1.Srd = ∅ and C1.Swr = ∅ or C2.Srd = ∅ and C2.Swr = ∅ then
2 return NULL LOCK;
3 else if C1.Swr = ∅ and C2.Swr = ∅ then
4 return READ READ;
5 else if C1.Srd ∩ C2.Swr = ∅ and C1.Swr ∩ C2.Srd = ∅ and

C1.Swr ∩ C2.Swr = ∅ then
6 return DISJOINT WRITE;
7 else
8 return FALSE;

synchronization structure, thus making it a major threat to
the program semantics. To cope with this problem, we pro-
pose a novel technique of trace transformation. We model
the trace transformation problem into the graph analysis by
means of topological graph theory [5]. Since topological
graph theory has been studied for decades, the ULCP prob-
lem can be solved easily by analyzing the graph.

The basic idea is as follows. We first build a topological
graph which contains the original ULCP problems. Through
some technical graph analyses, we then can easily identify
the ULCPs and further eliminate them based on this graph as
a new topological graph exclusive of ULCPs. As the topo-
logical graph can not be recognized to perform a program
execution by computers, it is necessary to re-construct the
ULCP-free program structure the new topological graph rep-
resents so that the computer can perform the new ULCP-free
program execution. Figure 4 depicts the detailed process of
our trace transformation. It is a rule-based approach. Based
on the four rules proposed, the new ULCP-free trace is per-
formed with the correct program semantics in most cases. If
not, it would report the data races. Next, we present the de-
tails of each step in the trace transformation. To facilitate the
description, we make the definitions:

• Causal-order topology: a topological graph of the cause
and effect of an execution trace. If there is no special
instruction, the causal-order topology can be also referred
to as topology for short.

• Node: a critical section in the topology.
• Causal-edge: a specific causality between two nodes.

3.1 Building ULCP-free Topology
Following the traditional lock dependencies, we first build
the causal-order topology of original execution (abbr. origi-
nal topology). The original topology involves many causal-
edges caused by ULCPs. Thus we then transform original
ULCP topology into a new topology which does not contain
causal-edges caused by ULCPs (abbr. ULCP-free topology).

Prior to building ULCP-free topology, we need to identify
ULCPs. We use shadow memory [14] to store the state
information about critical section. Shadow memory state
refers to the information about each critical section C of the
running program, which mainly consists of two sets:

59

R1L

R2 L

w1 L

w1

R2L

L

T1 T2 T3

R1L

R2 L

w1 L

w1

R2L

L

T1 T2 T3

w1 w1

(a) (b)

R1

R2
w1

w1

R2

T1 T2 T3

w1

L

L

(c)

Figure 5. The causal dependencies for an example.© rep-
resents the critical section, while L attached to©means this
critical section is protected by lock L. R1 indicates a read on
shared data 1 and the dotted arrow shows a ULCP.

• C.Srd. a set of all shared reads in the critical section C.
• C.Swr. a set of all shared writes in the critical section C.

We identify ULCPs in different categories. As shown
in Algorithm 1, null-lock, read-read, and disjoint-write can
be easily identified by intersecting the read-write sets of
critical sections as line 1, 3, 5 indicate. But both benign
ULCPs and true lock contention pairs (TLCPs) involve the
conflicting access. In this case, Algorithm 1 does not work.
To further distinguish the false conflict of benign ULCPs
from the real conflict of TLCPs, we extend the reversed
replay execution [13] for the distinction between benign
ULCPs and TLCPs by additionally replaying the execution
trace with a reversed order of two critical section for a given
ULCP. If the two replays produce the same result, then this
ULCP can be classified as a benign pattern.

In the original topology, we know the timing relationship
with respect to all critical sections in the original execution.
For a certain critical section CS, in order to search another
CS′ in other threads, which comprises the TLCP with CS,
we define the operations:

• Sequential searching refers to searching such CS′ in a
given thread in the order from the timing index of CS to
largest timing index of that thread.

• If we find such a CS′ in a given thread, it is called
matched.

Afterwards, we define the first rule to facilitate the build-
ing of ULCP-free topology from an original ULCP topology.

RULE 1. A causal edge is established only when the cur-
rent critical section and its first matched critical section in
every other thread constitute a TLCP during the sequential
searching.

Figure 5(a) depicts an example of the building process
of the ULCP free causal-order topology. To begin with, we
denote the critical section R1 in thread T1 as the current
critical section. Then it is matched with R2 in T2. R1 and
R2 consist of a Read-Read ULCP. We use the dotted arrow
to denote the non-causal edge relation between them. R1

in T1 is successively matched with W1 in T2, in which
case there establishes a causal edge between them due to
the TLCP relation, denoted as the solid arrow. When the
first causal edge with W1 in T2 for T2 is established, R1

in T1 starts to do the similar traverse in T2, establishing
another causal edge with the first W1 in T3. After the first
round of causal edge building, R2 in T2, subsequent to R1

in T1, becomes new current critical section, and repeats the
previous procedure.

Figure 5(b) illustrates the ULCP-free topology built ac-
cording to Rule 1. Following the program semantics of
ULCP-free topology in Figure 5(b), we may get the pro-
gram execution as shown in Figure 5(c) which affects the
performance fidelity for the multiple replays (detailed dis-
cussion about this will be presented in Section 5). In order to
observe the stable performance impact of ULCPs, we then
put forward Rule 2.

RULE 2. All causal-edge nodes protected by the same lock
in the ULCP free topology are guaranteed with the same
partial order as the original topology.

In the original topology, the partial order of the nodes
R1 in T1, W1 in T2 and two W1 in T3 in Figure 5(a) is
{R1(T1) ≺W 1st

1 (T3)≺ W1(T2) ≺W 2nd
1 (T3)}. According

to Rule 2, the nodes R1 in T1, W1 in T2 and two W1

in T3 of ULCP-free topology in Figure 5(b) should be re-
stricted to the same partial order with the original topology
as {R1(T1) ≺W 1st

1 (T3)≺W1(T2) ≺W 2nd
1 (T3)}.

In summary, we apply RULE 1 and 2 to build the ULCP-
free topology, which will be refined by RULE 3 and 4.

3.2 Re-establishing the Program Structure of the
ULCP-free Topology

We eliminate the false inter-thread dependencies caused by
different categories of ULCPs. First, in absence of conflict
with any critical section, PERFPLAY removes lock/unlock
events of all null-locks and all standalone nodes in the topol-
ogy, such as R2 in T1 and R2 in T2 as shown in Figure 6(a).
Second, to ensure true inter-thread dependencies between
two critical sections, we use lockset [25] to protect the crit-
ical sections in the topology. Lockset is a software compo-
nent comprising multiple locks, which is generally used as
a fine-grained lock synchronization. Consequently, PERF-
PLAY uses many distinct auxiliary synchronization locks
instead of the original locks to reconstruct the ULCP-free
causal dependencies. It should be noted that all these auxil-
iary synchronization locks provided by PERFPLAY are writ-
ten with a prefix @L for the sake of the discrimination from
the original one.

Now, the question is how to assign these ad-hoc locks
onto each node in the ULCP-free topology while ensuring
the program correctness. We perform the re-synchronization
procedure as RULE 3 describes.

60

R1
@L11

R2

w1

w1

R2 @L21

T1 T2 T3

@L11
@L31

@
L 1
1

@
L 3
1

@
L 2
1

w1

Figure 6. The re-synchronization of the ULCP free causal
dependencies. @L indicates auxiliary locks.

RULE 3. Each node with the outdegree in the topology
will be given a new auxiliary lock. While each node with
the indegree should be synchronized by the given lock of its
source node.

Figure 6 shows the outcome of the example in Figure 5
according to RULE 3. According to RULE 3, the nodes
with outdegrees, namely R1 in T1, W1 in T2 and W1 in
T3, are given with new auxiliary @L11, @L21 and @L31,
respectively. While the node with the example of W1 in T3

has the indegree from the given source node R1 in T1, thus
it needs to be synchronized with the additional lock of the
source node R1 in T1, i.e., @L11. Ultimately, W1 in thread
T3 has the lock-set LS={@L11,@L31}. Each critical section
will maintain a lock-set. We further refine the mutex relation
for the ULCP-free trace execution. Therefore a new mutex
relationship can be described as follow:

RULE 4. Two critical sections are mutually-exclusive if the
intersection of their lockset LS is empty-set.

Theorem 1 gives the correctness of our transformation.
The detailed proof can be found in our technical report [29].

Theorem 1 (Correctness). The transformed ULCP free
trace is performed with a guarantee of either the program
correctness or reporting the data races.

One implementation detail is worthy of being further dis-
cussed. After applying RULE 3, a node in the topology may
suffer from the overhead of maintaining the large-scale lock-
sets. For instance, the lockset of the critical section C in
Figure 7(a) is

⋃N
i=0 L1i. To reduce runtime overhead of the

large lock-sets, we propose a dynamic locking strategy, as
shown in Figure 7, the main idea of which is that the syn-
chronization of the targeted node C depends on the runtime
state (i.e., END) of each source node C1, · · · , CN . For in-
stance, if C1.END=TRUE, it means that the critical section
C1 has been already finished. If the node C1 is finished be-
fore the execution of the node C at runtime, the lockset LS
of the node C can exclude the lock of one of its source nodes
C1, i.e., L11. Based on the dynamic locking strategy, PERF-
PLAY saves much runtime overhead for the maintenance of
the locksets and is able to deal with any thread interleaving
as shown in Figure 7(b).

C1

T1 T2

C2

CN C

C1

T1 T2

C2

CN

C

LS

LS

Dynamic locking strategy

// Init ialization for END of
 C1~CN before executed
For i = 0 To N
 Ci.END = FALSE;

// initialization of lock set at
 runtime for node C
For i = 0 To N
 If !Ci.END
 C.LS += Ci.lock
 ELSE
 CONTINUE;
 Endif
Endfor

/* each node with outdegree in
Figure (a) is given a boolean flag,
END, which indicates whether the
node was finished at runtime */

(a) (b)

Figure 7. Dynamic locking strategy

T1 T2 T1 T2

(a)

B

(b)

AA idleness B

Time1

Time2

T1 T2

(c)

A

Time3

Time1

Time2 Time3

Time2
Time3

B

Figure 8. Two different performance measurements

4. ULCP Performance Debugging
After the phase of ULCP transformation, we obtain a set
of ULCPs. For an effective debugging framework, we still
face one major problem. There may be many ULCPs, and
some of them are even from the same code-site. An effective
debugging tool should point out the succinct code-site for
distinctive ULCPs, and also locate the most performance
critical ULCP for programmers. Thus, we propose ULCP
fusion and performance accumulation based on their code
regions in the source code level (Section 4.1), and point
out the most performance critical ULCP to programmers
(Section 4.2).

4.1 ULCP Fusions
We model the potential runtime overhead of a ULCP. Fig-
ure 8 illustrates a detailed diagrammatic representation of
the performance metrics, where A and B constitute a ULCP.
We label the start point of precursor segment of the first crit-
ical section A using Time1; the end point of successor seg-
ment of A using Time2; the end point of successor segment
of the second critical section B using Time3. When the
ULCP free trace is executed, the replayed program may per-
form the traces in two possible ways, as shown in Figure 8(b)
and Figure 8(c). We consider both cases: for case (b), the
improved performance of ULCP is ∆Time3−∆Time1;
for case (c), the result will be ∆Time2−∆Time1. Con-
sequently, we define the performance improvement of each
ULCP as follows:

∆TULCP = ∆MAX{Time2, T ime3} −∆Time1 (1)

61

Algorithm 2: ULCP Fusion and Performance Accumu-
lation

Input : 〈ULCP1, ULCP2〉, two standalone ULCPs;
Output: ULCPnew , a new synthetic ULCP;

NULL, two standalone ULCPs that can not be merged
/* Handle the same code regions or nested locks */

1 if ULCP1.CR1 u ULCP2.CR1 6= ∅ and ULCP1.CR2 u ULCP2.CR2 6= ∅
then

2 ULCPnew.CR1 ← ULCP1.CR1 t ULCP2.CR1;
3 ULCPnew.CR2 ← ULCP1.CR2 t ULCP2.CR2;
4 ∆TULCPnew ← ∆TULCP1

+∆TULCP2
;

5 else if ULCP1.CR1 u ULCP2.CR2 6= ∅ and ULCP1.CR2 u ULCP2.CR1

6= ∅ then
6 ULCPnew.CR1 ← ULCP1.CR1 t ULCP2.CR2;
7 ULCPnew.CR2 ← ULCP1.CR2 t ULCP2.CR1;
8 ∆TULCPnew ← ∆TULCP1

+∆TULCP2
;

9 else
10 ULCPnew ← NULL;

where Timelabel indicates the current timestamp of applica-
tion when the program is executed at the location of label,
and MAX is denoted as the maximum value. ∆ is denoted
as an operation that calculates D-value (difference value) be-
fore and after the optimization.

After the process of Algorithm 1, PERFPLAY collects a
large number of ULCPs, denoted as {ULCP1, ULCP2, · · · ,
ULCPn}, each consisting of two critical sections 〈C1, C2〉.
To facilitate the description, we define the operator · to
obtain the attribute or component of a ULCP, such as
ULCP1.C1. However, some ULCPs are possibly caused
by the same code region (CR). Thus, we propose ULCP fu-
sion to merge two ULCPs into the unique ULCP per code
region in the source code level. Then, we can report the ac-
cumulated performance impact of ULCPs at the CR level
to the programmers. Particularly, we accumulate up the per-
formance improvement of ULCPs generated by the same
code regions according to Algorithm 2. In Algorithm 2,
〈CR1, CR2〉 is denoted as the code regions incurring two
critical sections 〈C1, C2〉 of a ULCP. The binary operator
t means whether two CRs involve the shared region of the
code; while u indicates the conflated code region of two
CRs. Through Algorithm 2, the final state of ULCP group
is that any two ULCPs can not be fused further.

4.2 ULCP Recommendations
After ULCP fusion and performance accumulation by Al-
gorithm 2, we obtain a group of unique ULCPs, denoted
as {ULCP1, ULCP2, · · · , ULCPm}, and its correspond-
ing performance improvement {∆TULCP1

, ∆TULCP2
, · · · ,

∆TULCPm
}. For the effectiveness of a debugging tool, it

is desirable to prioritize the most beneficial ULCPs to pro-
grammers, since there may be many ULCPs in the program.
We denote P as the relatively optimizable value of a ULCP
among the total ULCP group:

P =
∆TULCP∑m

j=1 ∆TULCPj

(2)

which refers to the relative optimization opportunity of a cor-
responding ULCP. Each ULCP in {ULCP1, ULCP2, · · · ,
ULCPm} has its own P , and

∑m
i=1 ULCPi.P = 1. To

further ascertain the most beneficial ULCPs, we resort
{ULCP1, ULCP2, · · · , ULCPm} by P in a descending
order, i.e., ∀i > j, ULCPi.P < ULCPj .P . Then we can
pinpoint the most performance critical code regions from
that order list. Thus, our tool can recommend the most per-
formance critical ULCP as ULCP1.

5. Implementation Issues
We implement PERFPLAY for the parallel replay based on
Pin [20], an underlying framework that enables program-
mers to perform the program analysis at runtime without
source codes. Particularly, we remove and insert the auxil-
iary locks in the trace level, instead of modifying the com-
piler or binary. Modifying trace with the lock mechanisms
can provide an easy implementation for that objective, which
has the same effect to provide useful debugging hints for
ULCPs as modifying the binary or compiler.

In the following, we briefly discuss two implementation
details: i) what information should be recorded for the per-
formance analysis using replay technique in the recording
phase; ii) how to perform the faithful replay for each run
upon the given trace so that the performance impact of ex-
amined problems can be evaluated precisely in the replay
phase. Due to the space limitation, we refer the readers for
more implementation details in our technical report [29].

What and How to Record: To evaluate the performance
impact of ULCP, we should record all information of ULCP
to perform its performance. Consequently, it is necessary
to record all instructions and memory accesses between the
lock and unlock operations. Moreover, if a certain critical
section is invoked N times, each critical region execution in
the trace is recorded N times and then will be executed N
times when the trace is replayed.

For other events, the recording strategy of PERFPLAY
is quite flexible, ranging from complete recording to selec-
tive recording. Thus, PERFPLAY chooses selective record-
ing whenever appropriate. Specifically, for the non-mutual
exclusive semaphore, PERFPLAY only ensures the correct-
ness of the partial order in the sense that it is the same as the
original ordering.

Performance Fidelity: There has been significant amount
of work on building record/replay systems [12, 13, 18, 27]
for understanding the correctness of bugs in programs, but
not much effort has gone into leveraging them to study per-
formance issues. Based upon a given trace, the determined
information contains: the path branches each thread per-
forms, synchronization operations, and the instructions or
events performed by each thread. Therefore, suppose we
perform the same trace twice, performance fluctuation of
the program largely depends on the lock synchronization
interleaving. As shown in Figure 9, if two critical sections

62

A

B A

B3s

4s

2s

3s

3s

4s

2s

3s

T1 T2 T1 T2

(a) (b)

Figure 9. An example of the lock mutual exclusion for the
performance fluctuation with different sequences, where the
digits indicate the time cost of the program segment. (a) If
A precedes B, the program costs 8s; (b) If B precedes A, the
program costs 9s.

coequally contend for the lock resource, the program may
perform different performance due to the potential different
time cost of subsequent program segments.

To enable performance analysis using replay technique
(abbr. performance replay) for the parallel execution, we
propose an enforced locking serialization constraint (ELSC)
which enforces the total order of the dynamic lock synchro-
nizations for the replayed trace according to the schedule
order of these locks at runtime. That is, ELSC schedules
the same lock order as the scheduled order of these locks
when the program runs at runtime. As shown in Figure 9,
if the program runs as Figure 9(a) shows when the trace is
being recorded, ELSC sets down this order of A→ B in the
recording phase and then enforces ALL subsequent replays
for this trace with hard ordering of A happening before B
in the replay phase. ELSC ensures the performance fidelity
of replay execution for the multiple replays based upon the
same given trace. We have formally proved the property of
performance fidelity, and further compared the differences
between PERFPLAY and some other previous work [15, 18]
in our technical report [29].

6. Evaluation
6.1 Experimental Setup
System configuration: All experiments are performed on
a machine with two Intel quadcore Xeon E5310 1.60Ghz
processors, 8GB memory, one 250GB SATA hard disk, and
1Gbit Ethernet interface. The running operating system is
CentOS 5.6 (X86 64) with Linux kernel 3.0.0-12.

Benchmark test configuration: We evaluate PERFPLAY
with five real-world applications and PARSEC benchmarks
(used in Section 2.1). The detailed setup of individual appli-
cations are presented as follows.

1) openldap: a lightweight directory access protocol
server. In our test, we use the default thread pool mode
for openldap server, and use the professional tool Direc-
toryMark by MindCraft1 to benchmark it with the option of
searching 2000 entries.

1 http://www.mindcraft.com/directorymark/

2) mysql: an open source database system which is
widely-used in the world. We use the test tool mysqlslap
released in mysql software package to test mysql with 1000
queries, and 2 iterations.

3) pbzip2: a parallel implementation of the bzip2 com-
pressor. We test the benchmark by compressing a 256M file
with the option of two processors.

4) transmissionBT: a BitTorrent client. We only perform
its download function by downloading a local 300M file.

5) handBrake: a video transcoder. We test the benchmark
by conversing a 256M DVD format file into MP4 format
with the options of H.264 codec and 30 FPS.

6) PARSEC Benchmarks: a benchmark suite with 12
multi-threaded programs. We test all PARSEC benchmarks
(except freqmine) with simlarge input. PERFPLAY is im-
plemented currently based on pthread library. As freqmine
benchmark is an openMP program, PERFPLAY can not iden-
tify its synchronization.

Methodology: To demonstrate the performance fidelity
of PERFPLAY, we perform the replay execution with the
following four schemes:

1. Memory-based schedule (MEM-S) [18], which en-
forces a deterministic execution sequence of all shared mem-
ory accesses.

2. Synchronization-based schedule (SYNC-S) [15], which
enforces the total order of the lock synchronizations for the
same input.

3. ELSC-based schedule (ELSC-S), which enforces the
total order of the lock synchronization for the same schedule.

4. Parallel replay for the original execution without any
enforcement strategy for the events (ORIG-S).

We focus on the key part of dynamic executions in the
trace replay. In our implementation, we have decoupled the
replayed execution time of program from the other time-
consuming manipulations, such as the loading of trace from
disk into memory, and the format transformation of trace
from the string-style into the instruction-style.

6.2 Performance Fidelity of PERFPLAY

To evaluate performance fidelity, two aspects require to be
assessed, including performance stability and performance
precision. Stability represents whether PERFPLAY shows the
same performance across the multiple replays with the same
trace. The precision means whether PERFPLAY strictly ad-
heres to the original execution. If our debugging framework
has a high precision, we can determine that the performance
improvement of ULCP-free replayed execution comes en-
tirely from the optimization of ULCPs.

We record all PARSEC benchmarks with simlarge input,
and we replay the trace of each application ten times using
different replay schemes (i.e., MEM-S, SYNC-S, ELSC-S,
and ORIG-S). Figure 10 shows the final replayed execu-
tion time using these schemes. From the small error bars,
we can see that MEM-S, SYNC-S, and ELSC-S all en-
force the deterministic program execution for the multiple

63

blacksholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

stream
cluster

sw
aptions

vips
x264

0

1

2

3

4

5

20

30

40

P
e
rf

o
rm

a
n
c
e

fi
d
e
lit

y
(m

in
)

MEM-S SYNC-S

ELSC-S ORIG-S

6~13

Figure 10. Performance fidelity comparison between differ-
ent execution schemes for the replay

O
penLD

AP

M
ySQ

L

pbzip2

Transm
issionBT

H
andBrake

blacksholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

stream
cluster

sw
aptions

vips
x264

average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d

e
x
e
c
u
ti
o
n

ti
m

e

perfermance loss CPU wasting per thread real execution

Figure 11. The normalized execution time through replay-
ing the traces with and without ULCPs

times, thus providing the stable performance analysis. Nev-
ertheless, ORIG-S shows the indeterminate (i.e., large er-
ror bars) program execution due to the inter-thread lock in-
terleaving. Except the nature of enforcement scheme itself,
both MEM-S and SYNC-S manifest themselves with the ad-
ditional performance introduction compared with ORIG-S.
While ELSC-S eliminates the waiting time of SYNC-S for
lock acquisition by only enforcing the synchronization or-
der based on the scheduled synchronization order for the
same schedule. As a result, we can see that ELSC-S al-
most produces the same program performance with ORIG-
S. This yields the conclusion that PERFPLAY with ELSC
scheme strictly schedules the replay execution as the original
scheduled execution without introducing any additional per-
formance overhead, thus providing the precise performance
analysis. From the above-discussed results, it is revealed
that only ELSC-S provides both the performance stability
and performance precision, thus ensuring the performance
fidelity of replay execution.

6.3 Performance Impact Evaluation of ULCPs
Performance impact of ULCPs in this work includes:

• Performance degradation (Tpd): The performance im-
provement of program before and after the optimization;

• Resource wasting (Trw): In our test, resource wasting
mainly refers to the wasting of CPU resource, which
makes the useless ULCP computation (e.g., spin-lock) on
the non-critical path.

where Tpd can be directly quantified by replaying ULCP
trace (Tut) and ULCP-free trace (Tuft), i.e., Tpd = Tut −
Tuft. With Equation 1, Trw can be indirectly calculated as∑

∆ULCP−Tpd. To quantify them in the following exper-
iments, we evaluate them with the metric of the normalized
performance impact (i.e., Tpd/Treal) and CPU-time wasting
per thread on average (Trw/Nthread), respectively. All tests
are executed with two threads.

Performance impact of ULCPs: Figure 11 illustrates the
normalized performance impact and normalized CPU-time
wasting of ULCPs from 5 real world programs and PARSEC
benchmarks. In our tests, PERFPLAY produces different op-
portunities of performance impact for different applications.
For example, blacksholes, canneal, streamcluster, and swap-
tions hardly obtain any performance impact due to the cor-
rect use of lock or exclusive use of lock. While for other
applications, such as openldqp, mysql, pbzip2, the program
has a significant percent for the improvement of performance
(1.6%–11%) and CPU time per thread (1.1%–16.7%) due to
the ULCPs. On average, the performance of these applica-
tions can be improved by 5.1% and the resource utilization
per thread by 7.85%. Usually, a program with more UL-
CPs has larger performance improvement, which indicates
the benefits of removing ULCPs by our performance debug-
ging framework. One exception is that, fluidanimate has a
larger number of ULCPs than facesim, but produces a lower
speedup. That is because ULCPs in facesim have the larger-
scale critical sections.

Performance gain from the most beneficial ULCPs:
Table 2 reports the number of the exploited ULCP code re-
gions and corresponding performance gain of the most ben-
eficial one. Column grouped ULCPs counts total number of
the unique ULCPs after the fusion and performance accu-
mulation of ULCPs. Column ULCP1.P (discussed in Sec-
tion 4.2) shows the relative optimization portion of the most
beneficial ULCP code regions among the total ULCP group
set. From Table 2, we find that different applications show
different optimization opportunities. For instance, openldap
has 18 grouped ULCP code regions while its most benefi-
cial one takes up 30.1% of optimization gain among the to-
tal ULCP set. mysql produces a larger number (57), but the
most beneficial one exhibits only 12.5% of performance ben-
efit. The performance gain of the beneficial ULCPs for other
applications is in Table 2.

64

Applications Grouped
ULCPs ULCP1.P

openldap 18 30.1%
mysql 57 12.5%
pbzip2 4 59.4%

transmissionBT 2 53.5%
handbrake 29 15.4%

blackscholes 0 0
bodytrack 5 20.9%

facesim 11 31.2%
fluidanimate 3 26.5%

swaptions 0 0

Table 2. # Grouped ULCP
code regions and opportunity
of the most beneficial one

Applications w/o DSL w/ DSL
blackscholes 0 0
bodytrack 5.3% 0.5%

canneal 0.2% 0.2%
dedup 4.6% 0.7%

facesim 7.8% 1.2%
ferret 10.7% 3.6%

fluidanimate 14.1% 4.3%
streamcluster 2.9% 0.6%

swaptions 0.4% 0.4%
vips 7.6% 2.4%
x264 5.0% 1.9%

Table 3. Runtime overhead
of locksets with/without dy-
namic locking strategy

6.4 Overhead Reduction via Dynamic Locking
Strategy

Lockset is introduced to transform ULCPs into the paral-
lel pattern. However, it also introduces the significant over-
head for the determination of mutex relationship by inter-
secting two locksets in RULE 4, especially for the lock in-
tensive programs. To quantify lockset (LS) overhead, we re-
play PARSEC benchmarks with and without dynamic lock-
ing strategy (DLS), respectively. Table 3 compares runtime
overhead of locksets with and without DLS. When not using
DSL, lockset maintenance incurs significant (0.2%−14.1%)
amount of runtime overhead. In contrast, lockset with DLS
further reduces performance impact of lockset into a negligi-
ble level, only incurring 4.3% overhead even for the lock in-
tensive application fluidanimate which makes extensive use
of locks.

2 4 6 8
0%

2%

4%

6%

8%

10%

12%

14%

16%

N
o
rm
a
li
z
e
d
E
x
e
c
u
ti
o
n
T
im
e

Number of threads

canneal

bodytrack

fluidanimate

(a) The performance loss with the
increasing number of threads

2 4 6 8
0%

2%

4%

6%

8%

10%

12%

14%

16%

N
o
rm
a
li
z
e
d
C
P
U
T
im
e
p
e
r
th
re
a
d

Number of threads

canneal

bodytrack

fluidanimate

(b) The CPU wasting with the in-
creasing number of threads

Figure 12. Impact with the increasing number of threads

simsmall simmedium simlarge
0%

2%

4%

6%

N
o
rm
a
li
z
e
d
E
x
e
c
u
ti
o
n
T
im
e canneal

bodytrack

fluidanimate

(a) The performance loss with the
varying input size

simsmall simmedium simlarge
0%

2%

4%

6%

8%

10%

12%

14%

N
o
rm
a
li
z
e
d
C
P
U
T
im
e
p
e
r
th
re
a
d

canneal

bodytrack

fluidanimate

(b) The CPU wasting with the vary-
ing input size

Figure 13. ULCP impact with the varying input size

int Query_cache::try lock(bool){
mysql mutex lock(&structure_guard_mutex);
while(1){

set timespec nsec(waittime,(ulong)5000000L);
int res=mysql cond timedwait(

&COND_cache_status_changed,
&structure_gurad_mutex,&waittime);

if(res==EITMEOUT){
...
break;

}
}
mysql mutex unlock(&structure_guard_mutex);

}

Figure 14. A verified ULCP problem from mysql-5.6.11

void *consumer(void *q){
2109: pthread mutex lock(&mu);
2122: if(fifo->empty&&syncGetProducerDone()==1)
2124: pthread mutex unlock(&mu);

}
int syncGetProducerDone(){
533: int ret;
534: pthread mutex lock(&muDone);
535: ret=producerDone;
536: pthread mutex unlock(&muDone);
537: return ret;
538: }

Figure 15. A ULCP problem from pbzip2

6.5 Sensitivity Study of ULCPs
To evaluate the evolution of ULCP impact, we study the
ULCP sensitivity to the varying thread number and in-
put size. We select canneal, bodytrack, fluidanimate from
PARSEC benchmarks with different numbers (i.e., a few,
medium, large) of ULCPs.

Figure 12 depicts the sensitivity of ULCPs to the thread
number. We can find that ULCPs lead to the increasing
performance loss as the number of threads increases while
the resource wasting per thread stays the same. Figure 13
depicts the sensitivity of ULCPs to the input size. It can be
observed that both performance loss and resource wasting
increase as the input size increases. The explanation for both
figures is: in those applications 1) all threads reuse the same
code (e.g., functions) to perform the program execution; 2)
more input sizes merely mean the number of executions on
some code segments is increasing.

It should be noted that canneal still does not show any po-
tential opportunity for both the increasing thread number and
input size. Combining the results from bodytrack with flu-
idanimate, we seems to reveal that in most cases the ULCP
code-sites are not affected by the thread numbers and input
sizes of these applications. ULCPs can manifest themselves
in two threads, and more thread numbers may only change
their performance impact.

6.6 Case Study
To evaluate the effectiveness of PERFPLAY, we have checked
some ULCP bugs that have already been verified by official
bug system under PERFPLAY framework.

MySQL #68573. Figure 14 depicts the code snippet of
this case from mysql version-5.6.11. The real designed in-
tention of the programmers is that ”a 50ms timeout for
a SELECT statement waiting for the query cache lock is

65

2 4 6 8
2%

3%

4%

5%

6%

7%

N
o
rm
a
li
z
e
d
T
im
e

Input size: (1000 entries/64M file)

BUG1

BUG2

(a) Case study with the varying
number of threads

500/32 1000/64 1500/128 2000/256
2%

4%

6%

8%

10%

12%

N
o
rm
a
li
z
e
d
T
im
e

#entries/file size(M)

BUG1

BUG2

(b) Case study with the varying in-
put size

Figure 16. Sensitivity study of #BUG 1 and #BUG 2

set. If the timeout expires, the statement executes without
using the query cache”—mysql official documents. How-
ever, the ULCP performance problem ”increases” this time-
out threshold unwittingly when multiple threads invoke this
code, thus severely degrading the efficiency of SELECT
statement. Other examples in mysql include #37844, #60951
and #69276.

We also re-implement a few easy-to-understand ULCP
cases found by PERFPLAY in a ULCP-free fashion, and
further re-quantify its performance impact.

Resource wasting from openldap (#BUG 1). We re-
implement the code snippet from OpenLDAP in Figure 2
with pthread mutex barrier, and re-quantify the CPU
utilization of this ULCP problem by testing the program
compared with the original code.

Performance degradation from pbzip2 (#BUG 2).
Figure 15 depicts the simplified code of ULCP problem
from the parallel compression utility pbzip2. It employs the
producer-consumer idiom for the parallel compression: the
producer produces the blocks by reading file and the multi-
ple consumers consume (compress) these blocks in parallel.
When the last file block is dequeued (i.e., fifo->empty=1
and producerDone=1), the program starts the end stage of
thread join. In this case, the example above will incur many
read-read ULCPs as follows:
lock(mu);
load(fifo->empty);
lock(muDone);load(producerDone);unlock(muDone);
unlock(mu);

The joins of all threads are serialized and extra nested lock
overhead is added by this read-read ULCP, which causes
the performance loss. We fix it via the signal/wait model:
we take the producer, rather than the consumer, with the
responsibility of checking the state of fifo->empty and
producerDone. If both of them are TRUE, the producer
will give a signal to inform all consumers of their safe exit
without any check when their work is completed.

Results. Figure 16 depicts the sensitivity of two exploited
ULCP bugs (i.e., #BUG 1 and #BUG 2). As the number
of threads increases, #BUG 1 causes the stable resource
wasting per thread while #BUG 2 has an increasing perfor-
mance loss of program. Whereas, different from the illus-

tration shown in Figure 13(b), the performance impact of
both #BUG 1 and #BUG 2 presents a downward trend as
the input sizes increases. That is because for a given thread
number both #BUG 1 and #BUG 2 have the fixed execution
frequency, which increases superior to the input size. More-
over, the increasing input size aggravates the workload of
application, thus increasing the program execution time. As
a result, the performance impact of both #BUG 1 and #BUG
2 is declining. Both above-depicted results verify that the
real ULCPs can be exploited by PERFPLAY.

7. Related Work
Unnecessary Lock Contention. There has been significant
amount of work on dynamically eliminating the performance
impact of ULCPs. Lock Elision (LE) [22, 24] leverages
the hardware assistance and the underlying cache coherence
protocol to enable highly concurrent multi-threaded execu-
tion by dynamically removing unnecessary lock-induced se-
rialization. The lock is acquired only when a data conflict
occurs. However, LE-based work is still challenging in prac-
tice. For instance, a few transaction aborts may cause exces-
sive rollbacks and serializations, which severely limits the
exposed concurrency of ULCPs [1]. Meanwhile, it is prone
to trigger false aborts due to the hardware limitations [28].
We believe that the most effective and efficient manner for
ULCPs is that programmers can fix the problem in their
code, rather than relying on dynamic tools which may lead to
severe runtime overhead. Consequently, we propose a novel
framework, PERFPLAY, to evaluate the performance impact
of ULCPs and further assist the programmers to identify the
most performance critical ULCP.
Performance Tools. It is hard for static exploration tools [2]
to obtain the characteristics of ULCPs (e.g., their amounts,
categories and the time they cost). Due to the dynamic na-
ture of ULCPs, the major obstacle is that they may produce
abundant false ULCPs due to the runtime behaviors of UL-
CPs. Another obstacle is that the code snippet with a lock-
/unlock pair running simultaneously by multiple threads may
unroll into two execution cases as ULCPs and TLCPs. Un-
der different runtime (e.g., thread scheduling and input set),
both ULCPs and TLCPs manifest themselves in different
amounts and performance impact. As for the existing dy-
namic tools [6, 7], they also bear some limitations in the
impact analysis of ULCPs. Still, the majority of them are
devoted to performance measurement, but they are not ap-
plicable to the performance transformation and further per-
formance comparison before and after optimization. As a
result, they cannot be used directly for performance debug-
ging, e.g., how much performance would be improved if the
ULCPs were removed. PERFPLAY is the very performance
tool to make an attempt to solve this problem.
Record/Replay System. Plentiful replay systems are pro-
posed in the past several decades. For instance, determinis-
tic replay systems [12, 18] reproduce the bug debugging by

66

enforcing the order of the execution events. Modified replay
debugging [13, 27] distinguishes different categories of bugs
by comparing the results of the original trace with the modi-
fied one. Overall, almost all of them are built for identifying
and understanding the correctness of bugs in programs. but
not much effort has gone into the study of performance is-
sues. PERFPLAY first (to our best knowledge) has put effort
into studying the performance bugs using replay technique.

8. Conclusion and Future Work
We propose a performance debugging framework, PERF-
PLAY, to evaluate the performance impact of unnecessary
lock contention pairs (ULCPs) of multi-threaded appli-
cations using reply technique. We first record the multi-
threaded program execution trace, based on which we can
identify all ULCPs. Then PERFPLAY transforms the orig-
inal ULCP trace into the new ULCP free one while ascer-
taining the correctness of program via novel transformation
rules. Finally, PERFPLAY replays two traces. Based on two
replayed results, we evaluate the potential performance im-
provement of each ULCP and then group all ULCPs into the
unique ULCPs according to their code-site. Our experimen-
tal results on five real-world programs and PARSEC bench-
marks demonstrate the performance fidelity and efficiency
(< 4.3% lockset overhead) of PERFPLAY. With case studies,
we demonstrate its effectiveness to identify the performance
critical ULCP. It also shows that the majority of ULCPs can
be resolved by taking the most critical code regions. As for
future work, we are interested in making PERFPLAY as a
pintool in the PIN framework, investigating input sensitivity
to our debugging tool and also the applicability of our tool to
many-core programs (such as GPU-based applications [9]).

Acknowledgments
This paper is supported by National Natural Science Foun-
dation of China under grant No. 61272408, 61322210, Na-
tional 973 Fundamental Basic Research Program under grant
No. 2014CB340600, Doctoral Fund of Ministry of Educa-
tion of China under grant No. 20130142110048 and Hubei
Funds for Distinguished Young Scientists under grant No.
2012FFA007. Bingsheng’s work is partly supported by a
MoE AcRF Tier 2 grant (MOE2012-T2-1-126) in Singapore.

References
[1] Y. Afek, A. Levy, and A. Morrison. Software-improved hard-

ware lock elision. In PODC’14.

[2] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen,
N. Tillmann, and W. Visser. Symbolic execution for software
testing in practice: Preliminary assessment. In ICSE’11.

[3] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and
H. Le. Robust architectural support for transactional memory
in the power architecture. In ISCA’13.

[4] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective data-race detection for the kernel. In OSDI’10.

[5] J. L. Gross and T. W. Tucker. Topological Graph Theory.
Wiley-Interscience, New York, NY, USA, 1987.

[6] R. J. Hall. Call path profiling. In ICSE’92.

[7] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance
debugging in the large via mining millions of stack traces. In
ICSE’12.

[8] Handbrake. http://handbrake.fr/.

[9] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang.
Mars: A mapreduce framework on graphics processors. In
PACT’08.

[10] Intel Corporation. Intel architecture instruction set extensions
programming reference. 2013.

[11] MySQL. http://www.mysql.com/.

[12] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Contin-
uously recording program execution for deterministic replay
debugging. In ISCA’05.

[13] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder. Automatically classifying benign and harmful data
races using replay analysis. In PLDI’07.

[14] N. Nethercote and J. Seward. How to shadow every byte of
memory used by a program. In VEE’07.

[15] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient
deterministic multithreading in software. In ASPLOS’09.

[16] OpenLDAP. http://www.openldap.org/.

[17] PARSEC. http://parsec.cs.princeton.edu/.

[18] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie.
Pinplay: a framework for deterministic replay and repro-
ducible analysis of parallel programs. In CGO’10.

[19] pbzip2. http://compression.ca/pbzip2/.

[20] Pin Tool. http://www.pintool.org/.

[21] H. Qi, A. A. Muzahid, W. Ahn, and J. Torrellas. Dynamically
detecting and tolerating if-condition data races. In HPCA’14.

[22] R. Rajwar and J. R. Goodman. Speculative lock elision:
Enabling highly concurrent multithreaded execution. In
MIRCO’01.

[23] R. Rajwar and J. R. Goodman. Transactional lock-free execu-
tion of lock-based programs. In ASPLOS’02.

[24] A. Roy, S. Hand, and T. Harris. A runtime system for software
lock elision. In EuroSys’09.

[25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: a dynamic data race detector for multithreaded
programs. ACM Trans. Comput. Syst., 15(4):391–411, 1997.

[26] TransmissionBT. http://www.transmissionbt.com/.

[27] N. Viennot, S. Nair, and J. Nieh. Transparent mutable replay
for multicore debugging and patch validation. In ASPLOS’13.

[28] T. N. Viktor Leis, Alfons Kemper. Exploiting hardware trans-
actional memory in main-memory databases. In ICDE’14.

[29] L. Zheng, X. Liao, B. He, S. Wu, and H. Jin. Debugging
performance impact of unnecessary lock contentions via re-
play technique. Technical report, Huazhong University of Sci-
ence and Technology, http://grid.hust.edu.cn/xfliao/CGCL-
SYS-TR-2014-05.pdf, 2014.

67

