
A Racetrack Memory Based In-memory Booth Multiplier for Cryptography
Application

Tao Luo1, Wei Zhang2, Bingsheng He1 and Douglas Maskell1

1School of Computer Engineering, Nanyang Technological University, Singapore
2Department of Electronic & Computer Engineering, Hong Kong University of Science and Technology,

Hong Kong

Abstract— Security is an important concern in cloud comput-
ing nowadays. RSA is one of the most popular asymmetric en-
cryption algorithms that are widely used in internet based appli-
cations for its public key strategy advantage over symmetric en-
cryption algorithms. However, RSA encryption algorithm is very
compute intensive, which would affect the speed and power effi-
ciency of the encountered applications. Racetrack Memory (RM)
is a newly introduced promising technology in future storage and
memory system, which is perfect to be used in memory intensive
scenarios because of its high data density. However, novel designs
should be applied to exploit the advantages of RM while avoid-
ing the adverse impact of its sequential access mechanism. In this
paper, we present an in-memory Booth multiplier based on race-
track memory to alleviate this problem. As the building block
of our multiplier, a racetrack memory based adder is proposed,
which saves 56.3% power compared with the state-of-the-art mag-
netic adder. Integrated with the storage element, our proposed
multiplier shows great efficiency in area, power and scalability.

I. INTRODUCTION

With the development of information technology, we are en-

tering the big data era, where large amount of data need to be

created, processed and transferred in the cloud, which imposes

high requirement on the security. RSA is one of the most pop-

ular asymmetric encryption algorithms that are widely adopted

by internet based applications [1]. Asymmetric encryption is

more suitable and efficient than symmetric encryption because

that its public key strategy well solves the difficulty of key ex-

change existed in symmetric encryption systems. However, the

encryption and decryption operations in the RSA scheme in-

volve massive exponentiation, which makes the RSA encryp-

tion scheme time and resource consuming. Besides, the in-

creasing key length (more than 521 bits) required to ensure the

security level makes the problem more severe.

Racetrack memory is a newly introduced memory technol-

ogy that has the advantages of high density, non-volatility, low

power and high speed [2]. It is a promising technology that not

only can be used in all hierarchy of memory system from exter-

nal storage to main memory, but also has the capability as in-

memory computing for logic design. Since racetrack memory

has great potential to be used as data storage in data center, in

order to accelerate the encryption and decryption of the stored

data, in this work, we present the first design of a racetrack

memory based in-memory Booth multiplier for RSA cryptog-

raphy applications. With the in-memory encryption, firstly, it

avoids the efforts for shifting the target data to the access port

due to the sequential access mechanism of racetrack memory.

Secondly, the I/O requirement is significantly reduced because

there is no need to transfer the data between the memory and

processor just for encryption.

The basic operation of RSA is multiplication, which is also

the fundamental arithmetic operation in various kinds of data

intensive applications such as compression, image processing,

etc. Hence, our racetrack multiplier design could be general

and applicable to many in-memory computing applications.

We choose to implement a Booth multiplier since it is one of the

most efficient multiplication algorithms for binary digit multi-

plication. We first present a racetrack memory based adder as

the building block of the multiplier and then develop the multi-

plier through an efficient connection of the adders. Compared

with previous magnetic adder design, our adder saves 66% of

area and 56.3% of power [3]. The key contributions of this

work can be summarized as:

1. A compact racetrack memory based adder is proposed to

optimize the area and power of the basic addition opera-

tion.

2. The Booth decoder and encoder are designed for the pro-

posed Booth multiplier to exploit the inherent sequential

access mechanism of racetrack memory for generating the

partial products in parallel.

3. A compact pipelined structure is designed to further im-

prove the area and speed efficiency of the proposed multi-

plier.

The rest of the paper is organized as follows. In Section 2,

background and previous related works are discussed. Sec-

tion 3 presents our design of the racetrack memory based adder

and details the Booth multiplier built with the proposed adder.

In Section 4, experimental results are presented and analyzed.

Section 5 concludes the paper and highlights potential work in

the future.

II. BACKGROUND AND RELATED WORKS

A. Racetrack memory

Fig. 1 shows the basic structure of vertical magnetic tunnel

junction (MTJ) and the racetrack memory. As shown in Fig. 1,

978-1-4673-9569-4/16/$31.00 ©2016 IEEE

3C-3

286

I shift

Parallel
Direction: RL

Antiparallel
Direction: RH

I write I read

Domain Wall Shift Direction

W

Fixed Layer

Free Layer

Oxide
Barrier

MTJW MTJR

Fig. 1. Basic structure of vertical magnetic tunnel junction and the racetrack

memory

the MTJ consists of two ferromagnetic (FM) layers with an ox-

ide barrier between them. One of the FM layers has fixed mag-

netization direction while the other one has a free one. When

the magnetization direction of the two layers is the same, the

resistance of the MTJ is low, otherwise, the resistance is high.

Once we have the magnetization direction of the fixed FM layer

in the MTJ as a reference, we can use the magnetization direc-

tion in the free FM layer to denote two different states. Thus,

the “0”, “1” state in computer system can be perfectly repre-

sented and stored.

Fig. 1 also shows the structure of the racetrack memory

which stores data on a magnetic stripe. Along with the stripe,

each storage unit has a very short width (e.g., 50-100 nm) di-

vided by the magnetic domain wall (DW). With the shifting

current at the end of magnetic stripe, the domain wall between

each unit can be shifted along with the direction of the current.

Hence, the racetrack memory is also called DW shift regis-

ter [4]. The magnetic stripe can be very long, which can contain

256 bits demonstrated by the racetrack memory manufactured

so far [5]. Two MTJs are used for DW nucleation and detec-

tion as shown in Fig. 1. According to the figure, the MTJW is

used to write data into the racetrack memory, while the MTJR
is used to read the data out. Such a structure makes the race-

track memory extremely high data density and low read/write

energy. However, when the data need to be accessed, it has

to be shifted to the MTJR port, which will cause overhead in

terms of energy and access time. Therefore, a careful design

should be applied to avoid the adverse effect of the sequential

access mechanism of the racetrack.

There are many works proposed to utilize the advantages of

racetrack memory [6], [7]. Among these works, some use RM

as register files to break the limit of scaling of GPGPU [8], [9]

while some focus on the RM itself [10], [11]. In 2014, Yuhao

Wang et al. proposed an in-memory AES encryption design

based on RM [12]. However, their design is for AES, a sym-

metric encryption scheme which needs many unique logic op-

erations. Thus, the generality of the design is limited, which

lower the cost efficiency of the design.

B. Booth Multiplier and Adder

Multiplication is the fundamental arithmetic operation in

various kinds of data intensive applications such as asymmet-

ric encryption, image processing and so on. Multipliers can

be mainly classified into serial multipliers and parallel multi-

pliers. The serial multiplier uses “shift and add” algorithm to

realize multiplication with limited area and power while having

relatively large delay. The parallel multiplier computes the par-

tial products in parallel first, then sums them together to obtain

the final result. The parallel multiplier has shorter delay but

larger area and power overhead compared with the serial mul-

tiplier. There also exist many algorithms to optimize the multi-

plication such as Karatsuba’s algorithm [13], Toom-Cook algo-

rithm [14] and Booth algorithm [15]. Among various kinds of

optimization algorithms, Booth optimization algorithm is one

of the most efficient multiplication algorithms for binary digit

multiplication, while other optimization algorithms are more

efficient in scenario where operands are not binary digits [16].

Booth algorithm focuses on the optimization of generating par-

tial products. With different radix, the Booth algorithm is mod-

ified into radix-2 modified Booth algorithm, radix-4 modified

Booth algorithm and so on. Among these modified Booth algo-

rithms, modified Booth algorithm with radix-4 is the most suit-

able one for binary implementation. It also has a fixed number

of partial products and thus eases the implementation of related

Booth encoder and decoder.

The adder is the most basic building unit of any kind of

multiplier and other arithmetic units. In addition to conven-

tional CMOS adders, there are many magnetic full adders pro-

posed [17], [18]. Among these magnetic adders, some of them

are partially non-volatile due to use of the MTJ as only one

of their operands. Some of them use MTJs as both operands,

however, their designs require a large number of MTJs, result-

ing in large overhead in terms of area and power, especially the

writing power. For example, Hong-Phuc et al. proposed a mag-

netic adder based on racetrack memory in 2013 [3]. According

to their design, 1-bit magnetic full adder costs 14 transistors

and 16 MTJs, which means that 16 bits data need to be writ-

ten and shifted to the adder, consuming considerable amount of

power. The writing operation is the most power consuming op-

eration among the operations of racetrack memory, and hence

should be avoided whenever possible. As far as we know, our

proposed in-memory multiplier is the first magnetic multiplier

built in memory, which can be used to support in-memory ad-

dition and multiplication for many data intensive applications.

III. PROPOSED BOOTH MULTIPLIER

A. Racetrack Memory Based Adder

Before we present the Booth multiplier, we first illustrate

our adder design as the building block of the multiplier. The

logic functions of a full adder (FA) are given by the following

equations:

Sum = A⊕B ⊕ Ci (1)

Co = A ·B +A · Ci +B · Ci (2)

where A and B are two addends, Sum is the result bit while

Ci and Co are carry-in from previous stage and carry-out to the

next stage respectively.

3C-3

287

CLK CLK CLKMP1 MP3MP2 MP4 MP5 MP6 MP7 MP8

MN1 MN2 MN3 MN4

MN5 MN6

VDD

GND GND
CLK CLK

Co Co

2-2
MUX

Sum
Sum

A

B

Ci

A
B

Ci

Sumin Sumin

B R1 R2

Fig. 2. The schemetic of proposed magnetic adder

TABLE I

TRUTH TABLE OF THE CARRY FUNCTION

A B Ci Rleft Rright Co

0 0 0 3RL 2RH 0

0 0 1 2RL +RH 2RH 0

0 1 0 2RL +RH 2RH 0

0 1 1 RL + 2RH 2RH 1

1 0 0 2RL +RH 2RH 0

1 0 1 RL + 2RH 2RH 1

1 1 0 RL + 2RH 2RH 1

1 1 1 3RH 2RH 1

Fig. 2 shows the schematic of our proposed full adder. Ac-

cording to the figure, the FA mainly consists of two parts, one is

for Sum generation and the other one is for Co generation. As

shown in Fig. 2, we use pre-charge sense amplifier (PCSA) to

read the information stored in the racetrack memory according

to their resistance. We take Co generation part as an example to

show the mechanism of the PCSA. During the pre-charge phase

when CLK equals to “0”, MP5 and MP8 are turned on, and

both Co and Co are charged to “1” in this phase. When CLK
is changed to “1” in the evaluation phase, MP5 and MP8 are

turned off while MN6 is turned on. The two branches start to

discharge. The branch with lower resistance, taking Co branch

as an example, would reach the threshold voltage of PMOS

transistor in its opposite branch, namely MP7, faster than the

branch with higher resistance. Once the gate voltage of the

PMOS reaches the threshold, it would be turned on and force

the Co to “1”, which would in turn force the Co to “0”. Thus,

we get two complementary outputs based on the resistance in-

formation stored in the branches.

As shown in equation (2), the logic function of Co is in fact

a majority function. As long as there are more than one “1” in

the three input data, the output of the function is “1”. Hence,

we use serial connection of 3 MTJs to form the left branch and

a resistor to form the right branch. The resistance of the resistor

is 2RH . With RH equals to 2.5RL in our model, we can get

the truth table of the carry function, as shown in Table I.

Sum logic part is the critical part of our design, which leads

TABLE II

TRUTH TABLE OF THE SUM FUNCTION

A B Ci Rleft Rright Co Sumin Sum

0 0 0 2RL RH 0 0 0

0 0 1 RL +RH RH 0 1 1

0 1 0 2RH RH 0 1 1

0 1 1 RL +RH RH 1 1 0

1 0 0 RL +RH RH 0 1 1

1 0 1 2RH RH 1 1 0

1 1 0 RL +RH RH 1 1 0

1 1 1 2RL RH 1 0 1

to considerable amount of power saving compared to the pre-

vious MFA design [3]. As shown in equation (1), the Sum
equals to the three inputs doing XOR operation together. It is a

complex logic operation that needs many resource to realize in

a conventional manner. Equation (3) shows the logic function

presented using basic logic operations.

A⊕B⊕Ci = A ·B ·Ci+A ·B ·Ci+A ·B ·Ci+A ·B ·Ci (3)

Instead of using a large number of MTJs to form the logic

tree like the previous design, we propose a new structure to re-

alize the logic function for the area and power efficiency, which

is shown in the left half of Fig. 2. The idea lies in the fact that

since the logic function of the carry out is a majority function,

we can make use of the information carried within the Co. We

stack the A/B and B/Ci together with oxide barrier between

them to realize XOR operation. Previous papers and indus-

trial works show that this structure has the same high/low re-

sistance behaviour with the MTJ which has a fixed reference

layer [12, 19, 20]. A, B and Ci are shifted into this structure

from other parts of the racetrack memory.

As shown in Fig. 2, for the ease of explanation, we introduce

the interim Sum signal and its complementary signal which

are denoted as Sumin and Sumin respectively. As shown in

Table II, the Rleft column shows the resistance of left branch

in different input patterns. We use a resistor as the right branch

with the resistance of RH whose value equals to 2.5RL. A 2-

to-2 MUX is added in the adder to select the correct output.

The MUX takes Sumin and Sumin as inputs, Sum and Sum
as outputs while Co acts as a select signal. The truth table of

Sum regarding to A, B , Ci and Sumin is shown in Table II.

Now we have designed a 1-bit magnetic full adder. Since the

racetrack memory has inherent property of shifting, it is very

easy to build a serial multiple bits adder with the proposed 1-bit

adder. We just need to shift the operands to the adder inputs to

perform serial addition, which will be illustrated later.

B. Booth Multiplier

Booth algorithm is an optimization technique that allows for

reducing the number of partial products by recoding the num-

bers that are multiplied. In radix-4 Booth algorithm, we con-

sider the bits in blocks of three, such that each block overlaps

the previous block by one bit. Before grouping the block, a

zero is added to the LSB of the multiplier. If there are not

enough bits to obtain a MSB of the last block, we sign extend

the multiplier by one bit.

3C-3

288

1 01010110

-1-1-12

0011001111111111

00110011111111

001100111111

0001011000

0011110110101000

00101100Multiplicand (52)

Multiplier(107)

Booth encoding of multiplier

Partial products

Result(5564)

Fig. 3. The operation of the Booth multiplication

TABLE III

ENCODING AND DECODING REGARDING TO MULTIPLICAND

Y2i−1 Y2i Y2i+1 Partial Product

0 0 0 0* Multiplicand

0 0 1 1* Multiplicand

0 1 0 1* Multiplicand

0 1 1 2* Multiplicand

1 0 0 -2* Multiplicand

1 0 1 -1* Multiplicand

1 1 0 -1* Multiplicand

1 1 1 0* Multiplicand

For example, if we have a multiplier and a multiplicand

which are “01101011” and “00110100” respectively, then we

can get four blocks, which are “110”, “101”, “101” and “011”.

According to the bits in the four blocks, denoted as Y2i−1, Y2i

and Y2i+1, we can get four partial products by the correspond-

ing recoding rule shown in Table III. In our example case, the

four partial products are multiplication of multiplicand with “-

1”, “-1”, “-1” and “2” consecutively. Then the sum up of the

four partial products gives the multiplication result. The opera-

tion of the Booth multiplication is illustrated in Fig. 3. The pro-

cedure of the Booth multiplier can be classified into two steps:

partial products generation and partial products addition. First

we present our implementation of the partial products genera-

tion.

B.1 Partial Products Generation

For the performance concern, we implement partial products

generation in parallel. Since we choose radix-4 Booth algo-

rithm, we need to implement radix-4 based Booth encoder and

decoder. Table III shows the encoding and decoding regarding

to different block inputs.

As shown in the table, Y2i−1, Y2i and Y2i+1 are digits of the

input blocks of the multiplier. “0*” means the partial product

equals to zero multiplying the multiplicand. It is the same for

“1*”, “2*”, “-1*” and “-2*” respectively. First, we need to de-

code the block inputs to decide which partial products is needed

for the multiplication. Then control signals are computed in

the encoding step according to the following equations (4)-(8)

to control the generation of corresponding partial products.

zero = Y2i−1 · Y2i · Y2i+1 + Y2i−1 · Y2i · Y2i+1 (4)

one = Y2i−1 · Y2i · Y2i+1 + Y2i−1 · Y2i · Y2i+1 (5)

two = Y2i−1 · Y2i · Y2i+1 (6)

ne two = Y2i−1 · Y2i · Y2i+1 (7)

ne one = Y2i−1 · Y2i · Y2i+1 + Y2i−1 · Y2i · Y2i+1 (8)

These logic functions can be very easily implemented by

CMOS logic. Since we need to generate the partial products

in parallel, the data stored in the racetrack memory need to be

re-organized in a certain fashion to enable the parallel opera-

tion.

Fig. 4 shows the data organization of the multiplier and the

multiplicand. Although our design has great scalability and can

be applied to 64-bit multiplier, for simplicity, we use 8-bit data

as an example to illustrate the data organization and the data

flow in the multiplier. As shown in Fig. 4, the multiplicand X
is stored in the memory stripe in series, while the multiplier Y
is stored in the separate memory stripes. This data organization

ensures that the bits of multiplier can be accessed concurrently,

so that the partial products can be generated in parallel. As

we can see from Fig. 4, if the multiplier has 8-bit, then there

are four partial products needed to be generated based on the

four 3-bit groups in the multiplier. According to different par-

tial products, there are different transformations needed to be

applied.

For radix-4 Booth algorithm, there are five kinds of trans-

formations which are “remain”, “negation”, “left-shifting”,

“plusing-one” and “setting-to-zero”. Among the five transfor-

mations, “remain” would not cause any change, and can be ig-

nored. “Negation” can be realized by applying a 2-to-2 MUX

controlled by control signals in front of writing circuits, which

is shown in Fig. 4. The selecting signal of the MUX can be

the result of OR function of ne one and ne two, which means

either signal is valid, negation would be applied to the multipli-

cand to generate the required partial products. “Left-shifting”

and “setting-to-zero” can be realized by controlling the shift-

ing circuit, which is shared with the racetrack memory itself.

Since the initial state of the racetrack memory is zero, “setting-

to-zero” means doing nothing. “Plusing-one” can be realized

by setting the initial Ci to “1” when conducting the addition

operation.

B.2 Addition of Partial Productions

After obtaining all the required partial products, we need to

sum them together. In order to exploit the inherent advantages

of racetrack memory, we pipeline the addition operation. Since

the racetrack memory itself can be used as the stage register,

the pipelined addition can be very deep, which is very efficient

for data intensive applications.

Fig. 5 shows the pipelined addition based on racetrack mem-

ory. For simplicity, we take 8-bit multiplication as an example,

which means the final result has the length of 16 bits. For the

ease of illustration, we use a single stripe in the figure to rep-

resent the stripe set of the corresponding operand. For 8-bit

3C-3

289

... Y14 Y6...

... Y13 Y5...

... Y12 Y4...

... Y11 Y3...

... Y10 Y2...

... Y9 Y1...

... Y8 Y0...

0 0 00

... Y15 Y7...

...
X

1
X

0
...

...
P

12
P

11
...

...
P

22
P

21
...

...
P

32
P

31
...

...
P

42
P

41
...

W

W W

W

2-2
MUX

input

input

W

W

ne_one ne_two

Negation circuit

Fig. 4. Data organization for generation of partial products

...W
/R

W

/R

...
W

/R

ad
de

r

...W
/R

W

/R

...

...

...
W

/R

...
W

/R

ad
de

rStripes of the operand

Stripes of the operandad
de

r

Stripes of the result

Fig. 5. The pipelined addition based on racetrack memory

multiplication, there are four partial products, which should be

added together. Instead of feeding the four partial products to

four different stripe sets, we feed them to two stripes sets with

multiple access ports. We build the proposed adder right next to

(or a few units away from) the access ports. We feed two partial

products to the left adder and the other two partial products to

the right adder respectively. Then we use the adder in the mid-

dle to sum up the results generated by the left and right adders,

which is shown with blue arrows in Fig. 5. The final result is

written into a stripe used to store the result of the multiplica-

tion, which is demonstrated by the green arrow in the figure.

With such a structure, we can implement the multiplier with

much less resource. With cases having longer bit length, this

structure can save more resource in terms of racetrack memory

units.

IV. EXPERIMENT RESULTS

CMOS 45 nm design kit [21] and a model of perpendic-

ular magnetic anisotropy (PMA) racetrack memory based on

CoFeB/MgO structure [22] have been used to perform SPICE

simulations for the proposed multiplier. The main parameters

TABLE IV

MAIN PARAMETERS IN THE RM MODEL

Parameter Description Default value

WRT Width of racetrack 1F

LD
Length of the domain

in a racetrack
2F

LRT Length of racetrack 128F

TRT Thickness of racetrack 6nm

WEN Write energy 1pJ

WDE Write latency 5ns

SEN Shift energy 0.051pJ

SDE Shift latency 500ps

TABLE V

COMPARISON OF THE THREE FULL ADDERS

CMOS

FA

Previous

MFA

Proposed

MFA

Delay 100ps 180ps 240 ps

Energy 15fJ 7.6fJ 19fJ

Write operation NA 16 7

Area 11.04um2 3.36um2 1.142um2

of this PMA racetrack memory model are described in the Ta-

ble IV.

Based on the parameters in the Table IV, we simulate our

adder with the HSPICE. Table V shows the results of the three

1-bit full adders. The “Previous MFA” is the MFA proposed

in [3]. As shown in the Table V, our proposed adder has a

longer delay than the other two FAs. This is because a MUX is

added in the adder to trade for the power and area. However, the

longer delay would make nearly no difference between previ-

ous MFA and our proposed MFA, because the write latency of

RM is at ns level. According to the Table IV, even the shift de-

lay is much larger than the delay of the adder. Therefore, when

the adder runs with the input data, the total delay would be lim-

ited by the shift and write delay of the operands. Although our

proposed MFA has a slightly larger computing energy than the

previous MFA, the number of write needed by our proposed

MFA is much smaller than the previous MFA. As shown in

the Table IV, the write energy of the RM is at pJ level, thus,

the computing energy can be ignored when considering writing

energy. In this point of view, our proposed MFA saves 56.3%

energy compared with the previous MFA.

Fig. 6 shows the distribution of energy per bit and area of

multipliers with different input bits. The left axis shows the

value of energy per bit while the right axis shows the value of

area. Since the most time consuming operation in the pipelined

multiplier is the writing, which requires 5ns, hence, the fre-

quency of the multiplier is bounded at 200MHz. According to

Fig. 6, we can see that with the increase of bit length, the area

and energy per bit both increase, which is consistent with the

practical facts.

As we can see that the write latency of RM limits the speed

of our multiplier. However, this situation can be improved. As

we can see in Fig. 6 that the area of the multiplier is very small,

so we can parallelize the design to better make use of this in-

memory multiplier. With the fact that the key length of the

3C-3

290

0
5
10
15
20
25
30
35
40
45

0
20
40
60
80

100
120
140
160
180
200

8 bits 16 bits 32 bits 64 bits

um
2

pJ

Area Energy

Fig. 6. Energy per bit and area of multipliers with different bits

practical RSA algorithm is more than 512 bits, there are many

parallelization opportunities in the implementation of the RSA

algorithm.

V. CONCLUSION

In this paper, we propose a racetrack memory based in-

memory Booth multiplier targeting the compute intensive cryp-

tography applications. With its in-memory property, our de-

sign can help save considerable amount of time consumed in

I/O communication between the memory and the processor.

In order to build the multiplier efficiently, we design a com-

pact magnetic adder that possesses great power efficiency. The

multiplier is deeply pipelined to exploit the advantages of race-

track memory while avoiding the adverse impact of its sequen-

tial access mechanism. The experiment results show that our

proposed adder can save 56.3% energy compared with the pre-

vious state-of-the-art magnetic adder while the proposed mul-

tiplier has advantages of small area, low power and good scal-

ability. In future, we plan to extend this work to the full RSA

algorithm implementation to enable the in-memory accelera-

tion of the encryption scheme for data intensive applications.

ACKNOWLEDGMENTS

This work is in part supported by a MoE AcRF Tier 2 grant

(MOE2012-T2-1-126) in Singapore.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Communications of the ACM,

vol. 21, no. 2, pp. 120–126, 1978.

[2] S. S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall race-

track memory,” Science, vol. 320, no. 5873, pp. 190–194, 2008.

[3] H.-P. Trinh, W. Zhao, J.-O. Klein, Y. Zhang, D. Ravelsona, and C. Chap-

pert, “Magnetic adder based on racetrack memory,” Circuits and Systems
I: Regular Papers, IEEE Transactions on, vol. 60, no. 6, pp. 1469–1477,

2013.

[4] M. Hayashi, L. Thomas, R. Moriya, C. Rettner, and S. S. Parkin,

“Current-controlled magnetic domain-wall nanowire shift register,” Sci-
ence, vol. 320, no. 5873, pp. 209–211, 2008.

[5] R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury, K. Roy,

and A. Raghunathan, “Tapecache: a high density, energy efficient cache

based on domain wall memory,” in Proceedings of the 2012 ACM/IEEE

international symposium on Low power electronics and design, 2012, pp.

185–190.

[6] Z. Sun, W. Wu, and H. Li, “Cross-layer racetrack memory design for

ultra high density and low power consumption,” in Design Automation
Conference (DAC), 2013 50th ACM/EDAC/IEEE, 2013, pp. 1–6.

[7] H. Xu, Y. Li, R. Melhem, and A. K. Jones, “Multilane racetrack caches:

Improving efficiency through compression and independent shifting,” in

Design Automation Conference (ASP-DAC), 2015 20th Asia and South
Pacific. IEEE, 2015, pp. 417–422.

[8] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. Li, “Exploration of

gpgpu register file architecture using domain-wall-shift-write based race-

track memory,” in Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE, 2014, pp. 1–6.

[9] R. Venkatesan, S. G. Ramasubramanian, S. Venkataramani, K. Roy, and

A. Raghunathan, “Stag: Spintronic-tape architecture for gpgpu cache hi-

erarchies,” in Computer Architecture (ISCA), 2014 ACM/IEEE 41st In-
ternational Symposium on, 2014, pp. 253–264.

[10] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and

R. S. Shenoy, “Overview of candidate device technologies for storage-

class memory,” IBM Journal of Research and Development, vol. 52, no.

4.5, pp. 449–464, 2008.

[11] C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang,

Y. Liu, Y. Wang, and J. Shu, “Hi-fi playback: tolerating position errors in

shift operations of racetrack memory,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture. ACM, 2015, pp.

694–706.

[12] Y. Wang, H. Yu, D. Sylvester, and P. Kong, “Energy efficient in-memory

aes encryption based on nonvolatile domain-wall nanowire,” in Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2014.

IEEE, 2014, pp. 1–4.

[13] C.-Y. Lee, C.-S. Yang, B. K. Meher, P. K. Meher, and J.-S. Pan, “Low-

complexity digit-serial and scalable spb/gpb multipliers over large binary

extension fields using (b, 2)-way karatsuba decomposition,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 61, no. 11, pp.

3115–3124, 2014.

[14] A. Mandal and R. Syal, “Tripartite modular multiplication using toom-

cook multiplication,” International Journal of Advanced Research in
Computer Science and Electronics Engineering (IJARCSEE), vol. 1,

no. 2, pp. pp–100, 2012.

[15] S.-K. Chen, C.-W. Liu, T.-Y. Wu, and A.-C. Tsai, “Design and imple-

mentation of high-speed and energy-efficient variable-latency speculat-

ing booth multiplier (vlsbm),” Circuits and Systems I: Regular Papers,
IEEE Transactions on, vol. 60, no. 10, pp. 2631–2643, 2013.

[16] M. Zheng and A. Albicki, “Low power and high speed multiplication de-

sign through mixed number representations,” in Computer Design: VLSI
in Computers and Processors, 1995. ICCD’95. Proceedings., 1995 IEEE
International Conference on, 1995, pp. 566–570.

[17] H. Meng, J. Wang, and J.-P. Wang, “A spintronics full adder for magnetic

cpu,” Electron Device Letters, IEEE, vol. 26, no. 6, pp. 360–362, 2005.

[18] S. Matsunaga, J. Hayakawa, S. Ikeda, K. Miura, H. Hasegawa, T. Endoh,

H. Ohno, and T. Hanyu, “Fabrication of a nonvolatile full adder based on

logic-in-memory architecture using magnetic tunnel junctions,” Applied
Physics Express, vol. 1, no. 9, p. 091301, 2008.

[19] Q. Stainer, L. Lombard, K. Mackay, R. C. Sousa, I. L. Prejbeanu, and

B. Dieny, “Mram with soft reference layer: In-stack combination of

memory and logic functions,” in Memory Workshop (IMW), 2013 5th
IEEE International, 2013, pp. 84–87.

[20] Y. Wang, H. Yu, L. Ni, G.-B. Huang, M. Yan, C. Weng, W. Yang, and

J. Zhao, “An energy-efficient nonvolatile in-memory computing archi-

tecture for extreme learning machine by domain-wall nanowire devices,”

Nanotechnology, IEEE Transactions on, vol. 14, no. 6, pp. 998–1012,

2015.

[21] S. Nangate, “California (2008). 45nm open cell library,” URL¡
http://www. nangate. com, 2008.

[22] C. Zhang, G. Sun, W. Zhang, F. Mi, H. Li, and W. Zhao, “Quantitative

modeling of racetrack memory, a tradeoff among area, performance, and

power,” in Design Automation Conference (ASP-DAC), 2015 20th Asia
and South Pacific. IEEE, 2015, pp. 100–105.

3C-3

291

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /HelveticaNarrow
 /HelveticaNarrowBold
 /HelveticaNarrowBoldLefty
 /HelveticaNarrowBoldOblique
 /HelveticaNarrowLefty
 /HelveticaNarrowOblique
 /Helvetica-Oblique
 /HGGothicE
 /HGGothicM
 /HGGyoshotai
 /HGKyokashotai
 /HGMaruGothicMPRO
 /HGMinchoB
 /HGMinchoE
 /HGPGothicE
 /HGPGothicM
 /HGPGyoshotai
 /HGPKyokashotai
 /HGPMinchoB
 /HGPMinchoE
 /HGPSoeiKakugothicUB
 /HGPSoeiKakupoptai
 /HGPSoeiPresenceEB
 /HGSeikaishotaiPRO
 /HGSGothicE
 /HGSGothicM
 /HGSGyoshotai
 /HGSKyokashotai
 /HGSMinchoB
 /HGSMinchoE
 /HGSoeiKakugothicUB
 /HGSoeiKakupoptai
 /HGSoeiPresenceEB
 /HGSSoeiKakugothicUB
 /HGSSoeiKakupoptai
 /HGSSoeiPresenceEB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewCenturySchlbk-Bold
 /NewCenturySchlbkBoldCn
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbkBoldLeftie
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewCenturySchlbkRomanCn
 /NewCenturySchlbkRomanLeft
 /NewGulim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /UnDotum
 /UnDotum-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

