Melia: A MapReduce Framework on
OpenCL-based FPGAs

Zeke Wang, Shuhao Zhang, Bingsheng He, Wei Zhang

Abstract—MapReduce, originally developed by Google for search applications, has recently become a popular programming
framework for parallel and distributed environments. This paper presents an energy-efficient architecture design for MapReduce on
Field Programmable Gate Arrays (FPGAs). The major goal is to enable users to program FPGAs with simple MapReduce interfaces,
and meanwhile to embrace automatic performance optimizations within the MapReduce framework. Compared to other processors like
CPUs and GPUs, FPGAs are (re-)programmable hardware and have very low energy consumption. However, the design and
implementation of MapReduce on FPGAs can be challenging: firstly, FPGAs are usually programmed with hardware description
languages, which hurts the programmability of the MapReduce design to its users; secondly, since MapReduce has irregular access
patterns (especially in the reduce phase) and needs to support user-defined functions, careful designs and optimizations are required
for efficiency. In this paper, we design, implement and evaluate Melia, a MapReduce framework on FPGAs. Melia takes advantage of
the recent OpenCL programming framework developed for Altera FPGAs, and abstracts FPGAs behind the simple and familiar
MapReduce interfaces in C. We further develop a series of FPGA-centric optimization techniques to improve the efficiency of Melia,
and a cost- and resource-based approach to automate the parameter settings for those optimizations. We evaluate Melia on a recent
Altera Stratix V GX FPGA with a number of commonly used MapReduce benchmarks. Our results demonstrate that 1) the efficiency
and effectiveness of our optimizations and automated parameter setting approach, 2) Melia can achieve promising energy efficiency in
comparison with its counterparts on CPUs/GPUs on both single-FPGA and cluster settings.

Index Terms—FPGA, MapReduce, Programming Frameworks, Cost Model, OpenCL

1 INTRODUCTION

MapReduce, originally developed by Google for search appli-
cations, has become a popular programming framework in data
centers with thousands of machines [15] or parallel architectures
such as a machine with multi-core CPUs [34], Xeon Phi [29]
or GPUs [18], [23], [19]. Many applications such as machine
learning and data mining algorithms can be easily implemented
with MapReduce, with a small set of simple and sequential
APIs. MapReduce has abstracted the complexity of underlying
hardware and systems from users. For example, Mars [18] allows
users to adopt MapReduce interfaces to program GPUs, without
worrying about the underlying details on GPU architectures. There
are MapReduce design and implementation on other parallel
architectures including multi-core CPUs [34] and CPU-GPU
architectures [19]. In those studies, MapReduce is designed as
a software library to improve the programmability of parallel
architectures. Advanced features such as fault tolerance are
usually neglected, which allows the design and implementation
of MapReduce concentrating on individual parallel architectures.

On the other hand, Field Programmable Gate Arrays (FPGAs)
have been an effective means of accelerating and optimizing many
data processing applications such as relational databases [32],
[46], [9], data mining [40], image processing [30] and streaming
databases [41]. Quite different from CPUs and GPUs, FPGAs are
(re-)programmable hardware and have very low energy consump-

o Zcke Wang, Shuhao Zhang, and Bingsheng He are with Nanyang
Technological University, Singapore. Corresponding author: Bingsheng
He, bshe@ntu.edu.sg.

o Wei Zhang is with Hong Kong University of Science and Technology.

Manuscript received March 31, 2015; revised December 15, 2015; accepted
February 10, 2016.

tion. Moreover, FPGA vendors such as Xilinx and Altera and have
recently released OpenCL SDKs as a new generation of high-
level synthesis (HLS) tools to users. Under the OpenCL abstrac-
tion, FPGAs can be viewed as massively parallel architectures.
Encouraged by the success and wide adoptions of MapReduce,
a MapReduce framework on FPGAs is able to enable users to
program FPGAs with simple and familiar interfaces. The key
problem is how to enable automatic performance optimizations
for a MapReduce framework on FPGAs.

Despite the recent success of FPGAs in data processing
applications, we have identified the following two key obstacles
in the design and implementation of MapReduce on FPGAs.
First, FPGAs are usually programmed with low-level hardware
description languages (HDL) like Verilog and VHDL (e.g., [39],
[32], [46], [9]). Although there has been a MapReduce implemen-
tation on FPGAs [37], the users are still required to implement
map/reduce functions through VHDL/Verilog, which hurts the
programmability and requires a long learning curve on both
programming and performance optimizations. It is desirable that
users can implement their custom data processing tasks with
a high-level language. Second, since MapReduce has irregular
access patterns (especially in the reduce phase) and needs to
support user-defined functions, careful designs and optimizations
are required for efficiency. Compared with CPUs/GPUs, FPGAs
have lower clock frequency. Memory stalls can be even more
significant on FPGAs, especially for the irregular accesses from
MapReduce.

To address those two obstacles, we implement and evaluate
Melia, an OpenCL-based MapReduce framework on FPGAs.
Melia takes advantage of the recent HLS tools developed by
Altera, which provides an OpenCL SDK [38], [10], [14], to allow
users to write OpenCL programs for FPGAs. In particular, the

Altera’s OpenCL SDK provides the pipeline parallelism technol-
ogy to simultaneously process data in inherently multithreaded
fashion. With the OpenCL abstraction, the FPGA can be modeled
as a parallel device consisting of multiple pipelining execution
units'. Based on OpenCL, Melia enables users to write simple and
familiar MapReduce interfaces in C. To improve the efficiency
of Melia on FPGAs, we evaluate a series of FPGA-centric
optimizations such as memory coalescing and private memory
optimizations for memory efficiency, and loop unrolling and
pipeline replications for pipeline efficiency. Those optimizations
introduce a series of tuning parameters which significantly affect
the performance and resource utilization of Melia on FPGA. We
develop a simple yet effective cost- and resource-based approach
to determine suitable settings of those parameters.

Our experiments are conducted in two parts: real experiments
on a single FPGA, and back-of-envelop performance/energy
consumption analysis on multiple FPGAs in a cluster setting.
We first evaluate Melia on the Terasic’s DES5-Net board with
an Altera Stratix V GX FPGA. We choose five commonly used
MapReduce benchmarks. Our experiments demonstrate that 1)
our parameter setting approach can predict the suitable parameter
settings that have the same or comparable performance to the best
setting, 2) our FPGA-centric optimizations significantly improve
the performance of Melia on FPGA with an overall improvement
of 1.4-43.6 times over the baseline (without optimizations) on
FPGA; 3) As a sanity check, Melia achieves averagely 3.9 times
higher energy efficiency (performance per watt) than the CPU- and
the GPU-based counterparts. We further extend Melia to multiple
FPGAs in a distributed setting, and evaluate the energy efficiency
of Melia with performance/energy consumption analysis.

In summary, this paper makes the following three contri-
butions. First, we propose the first OpenCL-based MapReduce
framework for FPGAs to address the programmability problem
of FPGAs. Compared with commercial tools such as Altera
OpenCL SDK, this study offers a higher-level programming
framework with MapReduce, which further abstracts the hardware
details of FPGA, and resolves the programming complexity of
FPGAs. Second, we implement our proposed system on the latest
Altera FPGA, and empirically demonstrated the efficiency and
effectiveness of FPGA-centric optimizations and our automated
parameter tuning approach. Third, we discuss the lessons we have
learned from experiences and provide insights and suggestions on
programming FPGA.

The rest of the paper is organized as follows. We briefly
introduce the background in Section 2. Section 3 describes the
detailed design and implementations of Melia, followed by the
experimental results on a single FPGA in Section 4. We extend
the framework to FPGA cluster design in Section 5. We discuss
our experiences from this study and point out a number of open
problems in Section 6 and conclude this paper in Section 7.

2 BACKGROUND AND RELATED WORK
2.1 FPGAs

Generally, FPGA technology is low-power and offers a recon-
figurable hardware solution for many applications. The FPGA
implementation generally needs the input design specified at
Register-transfer-level (RTL) or gate level using a HDL, such as
Verilog and VHDL. Since HDL is cycle-sensitive and error-prone,

1. This paper focuses on Altera FPGAs. Other vendors like Xilinx also have
similar plans to support OpenCL.

L [g| L @ om 8 ©m LM e o
-%L-gi
L |y M L oo M Lo L o wmm
E-B-B
L] |g| L] [L] Lo B O M L [g W
;i ;1
-
o g @ @ Umo B O O m@ 8 m
o oo DD A O O WO a o
M!’ M
DSP b/lock Memo{y block Logic/ block

Fig. 1. Resource features on FPGA.

generally good knowledge of hardware design detail and hand-
on experiences are required to guarantee a successful design or
implementation.

The most common part in the FPGA architecture [25] is
logic blocks (called Configurable Logic Block, CLB (Xilinx),
or Logic Array Block, LAB (Altera)), as shown in Figure 1.
They are fine-grained logic and capable to implement bit-level
computation. Modern FPGA families expand to include coarse-
grain function blocks into the silicon, such as DSP blocks and
Memory blocks. Having these dedicated hardware-based macros
embedded into FPGA helps implementation of computational
intensive applications with less area and higher throughput.

There have been many studies on leveraging FPGAs in
data processing applications (e.g., [47], [22], [17], [44]). We
refer readers to a tutorial [31] for more details on FPGA-based
data processing. Roughly, we can classify them into two major
categories: integrating FPGA into the data path (e.g., [17]) and
viewing FPGA as a co-processor/accelerator (e.g., [9], [30]).
Using FPGAs in the data path, Netezza [17] employs FPGAs
to filter and transform tuples from the disks prior to processing.
Also, as an I/O engine, the FPGA-based circuits are developed
for various data streaming operators, such as projection, selection
and windowed aggregation [46], [32], [33]. Designed as an
accelerator, FPGAs have been used to accelerate various database
operations or applications such as join [9], [44] and frequent
pattern mining [40]. Most previous studies implement specific
applications with HDL. In contrast, this paper focuses on the
implementation with high level synthesis.

2.2 Altera’s OpenCL Architecture

OpenCL [24] has been developed for heterogeneous computing
environments. OpenCL is a platform-independent standard where
the data parallelism is explicitly specified in the code. This pro-
gramming model targets at a host-accelerator model of program
execution, where a host processor runs control-intensive task and
offloads computationally intensive portions of code (i.e., kernel)
onto an external accelerator.

Recently, Altera provides the OpenCL SDK [38], [45] to
abstract away the hardware complexities from the FPGA imple-
mentation. Figure 2a illustrates the Altera architecture for OpenCL
system implementation. An OpenCL kernel execution contains
multiple kernel pipelines and their interconnects with global
memory and local memory. The Altera’s SDK can translate the
OpenCL kernel to low-level hardware implementation by creating
the circuits for each operation of the kernel and interconnect them
together to realize the data path of the kernel. Figure 2b shows the
pipelined parallelism in the case of a simplified vector addition
example [38], which can achieve the throughput of one work

CU-2 |

Pipeline J

X 3K

Cu-1

Plpeline J

FPGA

= ¥4
Global Memory Interconnect
The 2 load and 1 store sites
arbitrate for the global memory

i L or local memory accesses

(a) DDR (b)

Fig. 2. Altera OpenCL system implementation

item finished per cycle. The frequency of FPGA kernel can vary
with the OpenCL kernel. It mainly depends on the FPGA resource
utilization by the OpenCL kernel. Ideally, the more resource that
the kernel consumes, the lower frequency that the FPGA execution
has.

From the perspective of OpenCL, the memory component of
FPGA computing system contains three layers. First, the global
memory resides in DDRs on the FPGA board. The accesses to
global memory has long latency. Second, the local memory is a
low-latency and high-bandwidth scratch-pad memory. In our test-
ed FPGA, the local memory has 4 banks in general. The private
memory, storing the variables or small arrays for each work
item (i.e., the basic execution unit in OpenCL), are implemented
using completely-parallel registers which are plentiful resources in
FPGA. Compared with CPU/GPU, FPGA has relatively sufficient
number of registers, which should be employed efficiently to store
intermediate results for each individual work item.

As in Figure 2, we can configure multiple kernel pipelines,
i.e., Compute Unit (CU), if resource allows. Different CUs are
executed in parallel. Each CU implements a massive pipelined
execution for the OpenCL program, and has its own local memory
interconnect while all the pipelines share the global memory
interconnect. In particular, the load/store operations to local
memory access in one CU can combine together to arbitrate for
the local memory. However, the load/store operations to global
memory access will compete for the on-board global memory
bandwidth [38]. Compared with global memory, the on-chip local
memory is low-latency and high-throughput. Moreover, the global
memory system is lack of dedicated cache hierarchy which causes
the global memory transactions of FPGA are less efficient than
that of GPU/CPU. Thus, the local and private memory should be
employed whenever possible to reduce global memory accesses.

2.3 MapReduce

MapReduce is a programming framework, originally developed
by Google and mainly used for parallel and distributed data pro-
cessing. In the big-data era, MapReduce has gained a significant
amount of interests from both industry and academia. The basic
idea of MapReduce is to offer simplified data processing and to
hide the details of parallel and distributed executions from users.
Formally, MapReduce consists of two user-defined functions: Map
and Reduce. The Map function takes as input a key-value pair
(keyl, valuel) and generate intermediate key-value pairs in the
form of (key2, value2). Next, the system automatically groups the
intermediate key-value pairs on the key, and forms the pairs of
a key and the values of the same key (key2, list(value2)). For
each key?2, the Reduce function processes its corresponding value

list. Many previous studies (e.g., [15], [23], [34], [18], [16]) have
demonstrated that MapReduce offers simplified yet reasonably
efficient parallel and distributed data processing. More details
about MapReduce and its usage in parallel data processing can
be founded from recent surveys [27], [28].

Closely related to this study, FPMR [37] attempted to imple-
ment MapReduce on FPGA. However, those studies are limited
in two aspects. First, the developers [37] are still required to
implement map/reduce functions through VHDL/Verilog. Second,
FPMR is rigid in some specific application (without flexible
data shuffling). Instead, this paper has the full OpenCL-based
MapReduce framework on FPGAs, and the MapReduce can also
support flexible data shuffling. In [43], [48], FPGAs (together
with GPUs) are adopted to implement the MapReduce framework,
where the host CPU implements the scheduling task and the
FPGAs (together with GPU) are considered as co-processors.
There have also been two studies [13], [36] on offering the
capability of executing MapReduce functions in OpenCL. Still,
they are very preliminary in the sense that they only implement
very basic form of MapReduce. The major contributions of our
paper include 1) offering a more FPGA friendly MapReduce
framework, and 2) the optimizations are guided by the cost model.

On parallel architectures, there have been OpenCL-based
MapReduce implementations [11], [12], which target at the multi-
core CPU or the GPU in a single host. The state-of-the-art OpenCL
implementation of MapReduce on CPUs/GPUs [12] is imported
to FPGAs, denoted as baseline. We have observed that the
baseline implementation, which does not include optimizations
(e.g., loop unrolling), suffers from severe memory stalls and
pipeline inefficiency (as we will see in the experiments).

3 DESIGN AND IMPLEMENTATION OF MELIA

This section presents design and implementation of Melia on
a single FPGA. Based on the single-FPGA implementation, we
extend our design to multiple FPGAs in Section 5.

3.1 Melia Overview

We have identified the following two key challenges for an effi-
cient MapReduce on FPGAs. The first problem is on high-latency
global memory transactions. Unlike the CPU/GPU, the FPGA
does not have dedicated cache hierarchy. Then, the global memory
access transactions generated on the FPGA directly interface with
the memory controller of the external memory. Second, writing
the OpenCL program should consider the efficiency of pipeline
executions on FPGAs.

With the abstraction of Altera OpenCL SDK, the FPGA
can be modelled as a massively parallel architecture with a
multi-level memory hierarchy. Many design and implementation
optimizations that have been developed for the CPU and the
GPU can be applicable to the OpenCL program, and their
impact should be revisited under the new FPGA abstraction.
Example optimizations include memory coalescing and local
memory optimizations to resolve the memory stalls. On the
other hand, there are some new optimization strategies that are
particularly attractive on the new FPGA abstraction. Examples
include pipeline replications and loop unrolling. Altera OpenCL
SDK explicitly supports loop unrolling to take advantage of
the flexible hardware resource allocations on FPGAs. Pipeline
replications enable multiple replicated pipelines to execute in
parallel to fully take advantage of hardware resources on FPGAs.

Those optimizations are correlating factors in performance tuning
for the OpenCL-based MapReduce on FPGAs, including hardware
frequency and resource utilization. Due to the architectural differ-
ence between FPGAs and CPUs/GPUs, many tuning knobs [12],
[11] from CPUs/GPUs are no longer applicable to FPGAs.

Taking those issues into account, our design of Melia addresses
the aforementioned challenges. Our optimizations improve the
memory efficiency and pipeline efficiency. To ease the complexity
in performance tuning, we develop a simple yet effective cost-
and resource-based approach to automatically determine suitable
settings of those parameters. The approach takes into consideration
the cycles of the pipeline, the frequency and resource limitation of
FPGA, and recommends the best parameter configuration. We first
present the overall workflow of our implementation, and details of
our optimizations and automated parameter settings in the later
two subsections.

Melia is currently designed and implemented as a software
library. Users are able to use Melia, almost in the same way
as other MapReduce frameworks [18], [23], [19]. Specifically,
users need to first implement a map() and a reduce() function
in C. For the reduce function, users can annotate whether
it is an associative and communicative function. If so, Melia
can enable early reduction optimization. Given the two user-
defined functions, Melia first determines the suitable execution
parameters (Section 3.3). Next, the user compiles and executes the
program on the FPGA. During the execution, Melia executes the
two user-defined functions according to the overall workflow in
Algorithm 1.

The overall execution of Melia is designed as two stages:
map and reduce. The map function takes one input unit and then
generates one key-value pair. Whenever an intermediate key/value
is emitted, the insert() is invoked (in Algorithm 2). The system
maintains a bucket based hash table. The bucket stores the key-
value pairs or reduction object [12], [11] for each key. The usage
of reduction object is to represent the partial reduction result. If
the reduce function is associative and communicative, the key-
value pair is inserted to a reduction object. Otherwise, it is directly
appended to hash table. Multiple OpenCL work items access the
shared hash table. Locks are used for synchronization among work
items. In the reduce phase, each work item is responsible for one
bucket of the hash table. If reduction objects are used, no explicit
reduction phase is conducted.

Algorithm 1: OVERALL WORKFLOW OF MELIA.

/*Stage 1: the map stage;*/
for each key/value pair in the input do
‘ execute map(); //when an intermediate key/value is emitted, the insert() is
invoked.

W=

end

/*Stage 2: the reduce stage;*/

for each key/value pair in the intermediate output from the map stage do
| execute reduce();

end

FIESEE VRS

Our implementation requires quite some design and engineer-
ing efforts in optimizing the efficiency of Melia. We take as one
example the insertion of a key-value pair into a reduction object in
MapReduce, illustrated in Algorithm 2. When a key-value pair is
to be inserted into the reduction object, the index is calculated via
the hash value of the key. Since there are read/write conflicts to the
same bucket, a lock mechanism is employed. The work item polls
the corresponding lock of the index until the work item acquires
the lock. If the bucket of the index is empty, Melia first creates
a new bucket in the hash table. If the key of the bucket is same
as the inserted key, Melia atomically reduces the key-value pair to

the bucket, using the reduce function provided by the user. If the
keys are not the same, the computing work item calculates a new
index for the next round.

Melia employs the static memory coalescing, in terms of built-
in vector type uint4, to combine several small-sized global memo-
ry accesses to form the vector load/store accesses (e.g., the register
bucket_uint4). Therefore, the global memory transactions for the
bucket information in Melia are one vector load operation (Line 9)
and one vector store operation (Line 12). With the reduced number
of load/store operations, the OpenCL kernel can use less hardware
resource and then might achieve higher frequency.

Algorithm 2: INSERT (key, key_size, val, val_size)

1 index = hash(key, key_size)%NUM_BUCKETS;
2 DoWork =1,
3 while (DoWork) do

/* wait until having lock [index] */
4 with_lock = 0;
5 while (with_lock == 0) do
6 | with_lock = get_lock(index);
7 end
8 index_base = index;
/* (coalescing read from 128-bit memory) :valid,
key_addr, val_addr,key_val_size */
9 bucket_unitd = buckets|[index];
/* bucket [index] is empty */
10 if (bucket_unitd.valid == 0) then
11 (key_addr, val_addr) = atomic_alloc(key_size, val_size);
/* (coalescing write to 128-bit memory) :valid,
key_addr, val_addr,key_val_size */
12 bucket_unitd =
(1, key_addr, val_addr, (key_size, val_size));
13 buckets[index] = bucket_unitd;
/+ store key and value data */
14 copy(key_addr, key, key_size);
copy(val_addr, val, val_size),
15 DoWork =0;
6 end
/* key is same as bucket [index] */
17 else
18 if (equal(bucket_unitd.key_addr, bucket_unitd.key_size,
key, key_size)) AND reduce is associative and communicative then
/x reduce val to bucket [index] */
19 reduce(bucket_unitd.val_addr, bucket_unitd.val_size,
val, val_size); DoWork =0;
20 end
/+ key is not same as bucket [index] */
21 else
22 DoWork =1;
23 index = update_index(index);
24 end
25 end
/x release the lock[index_base] */
26 release_lock(index_base);
27 end

3.2 Optimization Techniques

To reduce the number of global memory transactions, Melia
employs a series of memory optimizations such as memory
coalescing and private memory optimizations [4]. To improve
the pipeline execution efficiency, Melia converts multiple nested
loops into a single loop and combines the replicated instructions
whenever possible. Then, it is more efficient to map to the FPGA
pipeline. Furthermore, we apply loop unrolling and pipeline repli-
cations to better utilize the FPGA resource. Those optimizations
are automatically included in our framework implementation.
For user-defined functions, only loop unrolling is automatically
applied in Melia (by identifying the target loops through source
code analysis), and other optimizations are left to users.

Private memory. The private memory on FPGA are imple-
mented using completely-parallel registers (logics), which are
plentiful resources in FPGAs. Then, the private memory is useful
for storing single variables or small arrays in the OpenCL kernel
[4]. The kernel can access private memories completely in parallel,
and no arbitration is required for access permission. Therefore, the

private memory has significant advantages, in terms of bandwidth
and latency, over local memory and global memory. Since the
general MapReduce applications require a lot of memory accesses,
we should use private memory, instead of local memory and global
memory, whenever possible.

Local memory. The local memory on the FPGA is consid-
erably smaller than global memory; however, it has significantly
higher throughput and much lower latency. The local memory are
implemented in on-chip memory blocks [5] in the FPGA. The
on-chip memory blocks have two read and write ports, and have
twice the operating frequency as the frequency of the OpenCL
kernel pipelines. Thus, the local memory is able to support four
simultaneous memory accesses. Therefore, the local memory is
good for the intermediate data between the work items in the same
work group. In Melia, we maintain reduction objects in the local
memory.

Kernel pipeline replication. If the resource is sufficient on the
FPGA, the kernel pipeline can be replicated to generate multiple
compute units (CUs) to achieve higher throughput. Generally, each
CU can execute multiple work-groups simultaneously. The inner
hardware scheduler can automatically dispatch the work-groups
among CUs. For example, if two CUs are implemented, each CU
executes a half of the work-groups.

Since kernel pipeline replication can consume more resource,
the frequency tends to be lower than that of one kernel pipeline.
That means, two CUs cannot double the performance. Another
issue is that the global memory load/store operations from the
multiple compute units compete for the global memory accesses.
Nevertheless, we find that more compute units can still bring
performance gains in most cases. Hence, we simply take the
largest number of CUs that can fit into the resource budget of
FPGA.

Loop unrolling. If a large number of loop iterations exist in
the kernel pipeline, the loop iterations could potentially be the
critical path of the kernel pipeline. Then, unrolling the loop by an
unroll factor could increase the pipeline throughput by decreasing
the number of iterations. However, on FPGA, loop unrolling is
achieved at the expense of increased hardware resource consump-
tion. Different from loop unrolling on CPUs/GPUs, the FPGA
allocates more hardware resources to the execution of unrolled
loops.

Loop unrolling might have another side-product benefit: the
load/store operations with simple array indexes, are coalesced
so that more valid data can be loaded per memory transaction.
This reduces the number of total memory accesses, which further
improves the performance.

3.3 Parameter Settings for Melia

The FPGA compilation time is long (hours) and there are several
optimization parameters to tune the performance in Melia. The
design space of optimizations is large, since there are a number
of optimization methods and we need to determine where to
apply these optimizations in the OpenCL-based MapReduce
applications. It is critical to address the main bottleneck by
the proper optimizations. Therefore, it is necessary to have an
automated tool which can guide the parameter settings, under the
resource constraints in FPGA. Additionally, since different kinds
of optimizations consume different amount of hardware resources
on FPGAs, this paper presents the FPGA-specific cost model
to guide the suitable optimization configuration for MapReduce.

Due to the resource constraints of an FPGA, the selection and
configuration of individual optimizations significantly affect the
application performance, as we demonstrated in Section 4.

The flow contains three stages to determine tuning parameters
for local memory, loop unroll and replicated kernel pipelines
accordingly.

Stage 1: 1t is the user to determine whether the local memory
is employed, according to the specific MapReduce applica-
tion. MapReduce applications can be roughly divided into the
reduction-intensive and map computation-intensive applications
[12]. The former kind has a large number of key-value pairs
for each unique key, and then the reduction computation time is
significant. The later kind represents the applications that spend
most of their time for computation in the map stage. Therefore,
the local memory is recommended for the reduction-intensive
applications and the size of local memory are determined by
the user. However, the local memory is not suitable for the
applications of map computation-intensive applications (e.g., no
key-value pairs share the same key).

Stage 2: The design flow guides how to determine the unroll
factor f in the Map/Reduce function. If no fixed loop iterations
exist in the Map/Reduce function, then f is 1 and the design flow
directly go to the next stage (CU_nwum). Otherwise, there are
total_loop_nwum iterations in the map/reduce function, and we
roughly estimate the unroll factor (f) as follows.

On the current version of Altera OpenCL SDK, it is rec-
ommended that f is a divisor of total_loop_num. The system
iterates all possible unroll factor(f), ranging from the smallest
divisor (1) to the biggest divisor (total_loop_num) in the
map/reduce function. Next, the OpenCL kernel with the unroll
factor(f) is passed to the Altera resource estimation tool [4] to
estimate the resource utilization of the OpenCL kernel. While the
entire compilation process may take hours, the resource estimation
can give the statistics on resource usage in seconds or minutes.
Then, the cost model roughly provide the rough trends of the
execution cycles and kernel frequency. We estimate the execution
time by multiplying the estimated execution cycles with the
estimated frequency. The details on estimating the frequency and
clock cycles are described in Section 3.3.1 and 3.3.2. We accept
the unrolling factor only if the kernel can fit into the FPGA.

Stage 3: We determine the C'U_num, the maximum number
of replicated kernel pipelines under the constraint that the required
utilization of each feature (such as logic, memory block and DSP
block) is less than a predefined resource usage threshold (95% in
our study).

In the following, we present the details on our cost models.
The proposed cost models are used to guide the developer
how to determine the parameter setting for the MapReduce
applications, not to accurately predict the frequency and clock
cycles. The unique architectural feature of FPGA actually allows
us to simplify the cost estimation. In our experiment, we observe
that our cost models can roughly predict the suitable parameter
configuration, and the simplified cost models are sufficient for the
purpose.

3.3.1 Cost Model for Estimating Frequency

It is hard to develop an accurate analytical model to estimate
the hardware frequency due to the internal complexity of FPGA.
Fortunately, we observe that there is a strong correlation between
the resource utilization on FPGA and the hardware frequency.
Thus, we develop a simple linear regression model for hardware

time

Case 1:
0a)X_0b 0c)
1a 1b Cilc D)
C2a) (C2b)@ 2c)
MTP =2 3a 3b)

@B (oc)

1Cice)

e | C_2c)
)@ ! (3¢ D

Caa) (@R
(52) (@)

MTP =4 Coa (60
C7a) [@GETI)
(b)
(") memory operation @D computation operation

Fig. 3. OpenCL kernel execution flow: (a) MTP =2, (b) MTP =4

frequency based on resource utilization, which is generally
accurate enough for our experiments.

The FPGA mainly has three features (logic element, memory
block and DSP block), and each feature can have different resource
utilizations. For simplicity, we assume that the feature with the
largest utilization is chosen to determine the frequency of kernel.
Next, we use the applications in the Altera OpenCL SDK as
training data sets. For each application, we obtain the maximum
resource utilization and the kernel frequency. Finally, we apply
least squares method to determine the linear model function
that can best fit the training data set, and obtain the estimated
frequency Flestimateq- In our experiment, we obtain the linear
model in Eq.1, where the Riaz utilization 1S the maximum
resource utilization of the given OpenCL kernel, reported from
Altera resource estimation tool [4].

Festimated =—-79 % Rmaz_utilization + 245M H~ (1)

3.3.2 Cost Model for Estimating Clock Cycles

The Altera’s OpenCL Compiler [38] translates the OpenCL kernel
to a hardware pipeline, which implements each operation in
the OpenCL kernel by the specific circuit. Then, these circuits
are wired together to execute the pipeline. Then, the massive
parallelism exists in the global memory accesses and arithmetic
computations. The total clock cycles for the execution highly
depends on the degree of global memory parallelism in the kernel
pipeline. We adopt one metric [20], MTP (Memory Thread
Parallelism), to represent the maximum number of threads that
can access the global memory simultaneously.

To further explain how the multiple threads are executed in
the kernel pipeline, we illustrate the pipeline execution of the
vector addition, as shown in Figure 3. For Case 1 in Figure
3a, the global memory system can service two global memory
transactions simultaneously (M T P = 2), and the “m_z” indicates
the work item with ID (m) loads from (x = a or b) or stores to (x
= c) the global memory. In this case, the computation operations
are completely hidden behind the global memory operations, the
kernel throughput is bounded by the global memory transactions.
For Case 2 in Figure 3b, it can service four global memory
transactions simultaneously (MTP = 4), and then the kernel
throughput is greatly improved.

We estimate the total number C'rpg 4 of elapsed clock cycles
on the FPGA to be the larger one of the clock cycles for memory
accesses and computations (Eq.2). Cyem and Ceomp denote the
total number of clock cycles in global memory accesses and the
total number of clock cycles in computations, respectively. This
estimation simplifies the interaction between memory accesses

and computation, which assumes a maximum overlapping between
Cmem and Ceomyp. Due to the massive parallel pipeline on FPGAs,
this overlapping is high in practice and the simplified estimation
is sufficient.

CVFPGA = Max(cmen% Ccomp) (2)

Estimating C'.y,p. Based on the full pipelined property of
the arithmetic operation implemented on FPGA, the arithmetic
operation can achieve the throughput with one operation per cycle.
Another advantage of arithmetic operation is that each arithmetic
operation in the OpenCL is implemented with specific circuit, then
no resource competition will occur among arithmetic operations.
Therefore, we estimate Ceomyp to be the total number of clock
cycles for all instructions in the critical path. We have developed a
tool to count the number of instructions in each kind, and multiply
the unit cost of each kind of instruction. Table 1 lists a sample
of instructions and their unit costs on the FPGA used in our
experiments. We obtained the unit costs from profiling the FPGA
IP cores of the Altera OpenCL SDK.

TABLE 1
Latency (cycles) of each kind of instructions

fp_sqrt fp_mul fp_add/sub fp_div
28 5 7 14
int32_add/sub | int32_mul int32_div global memory
1 3 32 35

Estimating C,c,,. We consider two major factors: total
number of memory accesses and how memory accesses are served
in parallel on the FPGA. Eq.3 gives the estimation on Cpyenm,
where L,,erm and N,,em denote the clock sum of the total
global memory accesses and the latency of one global memory
access and the number of global memory accesses, respectively.
Thus, Lpem X Npem denotes the total clock cycles for memory
accesses, if memory requests are served one by one. On FPGAs,
memory accesses are severed in parallel with a degree of MT P.
Lopem is obtained from profiling the FPGA, and N, and
MTP can be obtained with the simulation tool [49]. Differently,
we consider that the FPGA does not have dedicated cache
hierarchy, when counting N, em .

Lmem X Nmem

Cmem = W (3)

4 EXPERIMENTAL EVALUATION

This section presents the experimental studies on a single FPGA.
The major goal of the experiments is to evaluate the efficiency
and effectiveness of the optimization techniques in Melia over the
baseline implementation on FPGA [12].

4.1 Experimental Setup

Our experiments were conducted on a machine with CPU and
one FPGA board (Terasic’s DES-Net board) which includes 4GB
DDR3 device memory, and an Altera Stratix V GX FPGA (5S-
GXEA7N2F45C2). The FPGA [5] includes 622K logic elements,
2560 M20K memory blocks (50Mbit) and 256 DSP blocks. The
FPGA board is connected to the host via an X8 PCI-¢ 2.0 interface.

We compare Melia with the state-of-the-art OpenCL MapRe-
duce [12] on the high-end 2.40GHz Intel Xeon CPU E5645 (12
cores) and an AMD FirePro V7800 GPU. The peak DRAM

TABLE 2
Application and datasets used in our experiments

Application Dataset Size
K-means, K = 40 (KM) 200M points
Word Count (WC) 100MB text file

String Matching (SM)
Matrix Multiplication (MM)
Similarity Scope (SS)
Histogram movies (HM)
Inverted index (II)

100MB text file

2000%2000 matrices

2000 files each with 2000 features
100M movive rating points

200M tuples

bandwidth of the high-end Intel CPU is around 32GB/sec. The
low-end CPU is the Intel Xeon Processor E3-1230L. The GPU has
18 streaming multiprocessors (SM), and each SM has 128 Radeon
cores, with a clock rate of 700MHz. Thus, there are 1440 Radeon
cores on this GPU. Each SM has 32 KB local memory. The device
memory is 2GB DDRS, with 1200 MHz clock frequency and peak
bandwidth of 153.6 GB/sec. The GPU is connected to the host via
an X16 PCI Express 3.0 interface.

A fair and accurate comparison on the energy consumption
across multiple platforms is a nontrivial task, since these three
platforms can have very different hardware and peripheral e-
quipment in practice. Thus, we adopt two methods to compare
the energy efficiency among three platforms. The first method
is an estimation with multiplying the execution time by the
corresponding TDP (Thermal Design Power) of the platform.
This methodology is used in the previous studies [10], [7]. In
practice, this offers a good estimation on the energy consumption
of each platform, since we have various optimizations to maximize
the resource utilizations on high-end CPU, GPU and FPGA.
The second method is to further add a low-end CPU power
consumption for the FPGA/GPU implementation, in addition to
the first method. The reason of using a low-end CPU is, since
the CPU is roughly idle during OpenCL kernel on FPGA/GPU are
running, it is unfair to count the power consumption of full-fledged
Intel CPU into the power consumption of FPGA/GPU platform.
In this study, we assume the energy consumption of the low-end
CPU to be 25W. The TDPs of the high-end CPU, the GPU and the
FPGA are 80W, 150W, and 25W, respectively.

Applications. We have used seven common MapReduce
benchmarks, which have been used in the experiments of previous
studies [1], [12], [18], [21].

These applications cover different performance aspects of
MapReduce: reduction-intensive and map computation-intensive
applications. The former kind of applications usually have a large
number of key-value pairs for each unique key, whereas the map
tasks spend most of the time in the latter kind of applications. The
details on the applications and their data sets are summarized in
Table 2. The default data have uniformly distributed input keys.
K -means clustering (KM) is one of the most popular data mining
algorithms. Word Count (WC) can be reduction-intensive if the
number of distinct words (DW) is small. We use DW =500
as the default setting. String Matching (SM) is used to check
whether the target string is in the file. For simplicity, the first
string in the file is set to be the target string to search. Matrix
Multiplication (MM) is a map computation-intensive application.
Similarity Scope (SS) is used in web document clustering, which
computes the pair-wise similarity score for a set of documents.
It is also a map computation-intensive application. Histogram
movies (HM) generates a histogram of the movie rating data. It
is a reduction-intensive application. Inverted index (II) generates

word-to-document indexing for a list of documents. It is a
reduction-intensive application. Among them, KM and WC are
in HiBench [21], while HM and II are in PUMA [1].

In summary, MM and SS are map computation-intensive, and
others are reduction-intensive. The input data sets are initially
loaded into the device memory, excluding the cost of PCI-e data
transfer time.

4.2

In this subsection, we study the separate impact of individual
FPGA-centric optimizations in Melia, through manually en-
abling/disabling certain optimizations in Melia. It is important to
study the impacts of these optimizations, since the performance
can be significantly improved with proper optimizations.

Private memory. We first study the performance impact
of the private memory access optimization. Figure 4(a) shows
the speedup of private memory on Melia with one and two
CUs (denoted as 1-CU and 2-CU, respectively). We define the
performance speedup of an optimization technique to be the
ratio of the elapsed time without the optimization technique to
that with the optimization technique. We recommend that the
private memory should be chosen for storing intermediate data
in the Melia framework and user-defined map/reduce functions
whenever possible. One reason is that FPGA has a plentiful
amount of reconfigurable logics for the private memory. The usage
of the private memory reduces the number of long-latency global
memory accesses. Since the multiple kernel pipelines are more
global memory intensive than that of one kernel pipeline, the 2-
CU case can achieve a higher performance speedup than that of
1-CU case. We do not include the results for SS, MM, KM, HM
and II, because the private memory optimization is not necessary
for those applications.

Memory coalescing. Figure 4(b) shows the performance
speedup of the static memory coalescing on the seven applications.
With memory coalescing, multiple global memory transactions are
combined, and the total number of global memory accesses is
reduced. Similar to the results on private memory optimizations,
the 2-CU case also achieves more performance speedup than that
of 1-CU case. Specific to FPGA, this optimization also reduces
the hardware required resource consumption. We use KM as an
example, and memory coalescing has a significant speedup of
1.42 on KM. The 2-CU KM variants with and without coalescing
require 72% and 93% of the total FPGA resource, respectively.
Even worse, the high resource consumption also leads to a lower
frequency. Those two factors contribute to the relatively high
overall speedup of memory coalescing on KM.

Loop unrolling. Figure 4(c) shows the performance speedup
of the loop unrolling on the FPGA. Loop unrolling is not
applicable to SM and WC, due to their irregular loops. For the
other three applications, loop unrolling achieves very significant
performance speedup (up to 8.48). The throughput of the pipeline
in the FPGA is always determined by the slowest part of the
pipeline. Through loop unrolling, we can allocate more resource
to the slowest part of the pipeline, and make the throughput of
each part of pipeline more balanced.

Local memory. Figure 4(d) shows the performance speedup
of the local memory for WC SM HM and II. The local memory
has significant advantages in latency and throughput over global
memory. Another advantage is that each kernel pipeline has its
own local memory, the pipeline do not need to compete with the

Impacts of FPGA-Centric Optimizations

16 4
1.4 4

1.011.02

peedup

P 06

(b) Memory coalescing

10 -

m1-cu 8.48
7 2-CU 8 - 713
o 6 9
3 4.68
(5]
S 4
(2]
2 4
0 T T
KM MM SS

(c) Loop unrolling

129 407 2 4 48 1 436
7] mi1-cu 9 | 159 156 159 162 20 |

0 % ! ! 16 A
5 6.6 @ 2-Cu | % | 08 1 113 532
8 . .
& % | -

WC KM SM SS MM HM 1l WC KM SM MM SS HM I
(d) Local memory (e) 2-CU (f) Melia over baseline on the FPGA

Fig. 4. Performance speedup of individual optimization on the FPGA, where K-means (KM), Word Count (WC), String Matching (SM), Matrix
Multiplication (MM), Similarity Scope (SS), Histogram movies (HM) and Inverted index (l1).

250 2000

—&— Measurement

Doy | W gt——8 o, | BT
g % ... -+ M-~ Estimation
= 2 1200 -,
> B A
o 5 .
& 100 ¥
£l 8
S—_) 50 ~—@— Measurement O a0 N\ e
+ M- Estimation
04 . T T 0
R SRR S Y SR SN SR S
R P A A A S
S s 9 s F N T T
& & s G s

(a) Frequency estimation (b) Clock Cycle estimation

Fig. 5. Frequency and clock cycle estimations of WC on the FPGA

other kernel pipelines for local memory accesses, unlike global
memory accesses. Since each kernel pipeline has its own local
memory, the 2-CU case can achieve more significant performance
speedup than 1-CU case.

Pipeline replication. Figure 4(e) shows the performance
speedup of the multiple kernel pipelines (CU) on the FPGA.
Increasing the pipelines from one to two results in the speedup of
1.08-1.59 on the seven applications. That shows the importance
of fully utilizing the hardware resource.

Put them all together. Finally, we compare Melia with
the baseline approach (without FPGA-specific optimizations) on
FPGA, as shown in Figure 4(f). The speedup of all FPGA-centric
optimizations is 1.4-43.6 times over the baseline approach. This
validates the importance of FPGA-centric optimizations in writing
an efficient OpenCL program for FPGAs.

4.3 Cost Model Evaluations

In this subsection, we evaluate our cost models from two aspects:
cycles and frequency estimations and optimization parameter
setting.

Estimations of cycles and frequency. We first study our
predictions on the clock cycles and hardware frequency. We
have studied three reduction-intensive applications (WC, KM and
SM) and two map computation-intensive applications (MM and
SS). We observe that our predictions can generally capture the

150

— 120
g 200 - h__’\'___‘\.’_'
< 150 s
=) °
g 100 T 60
g 50 —e— Measurement é ” —e—Measurement
w --m-- Estimation -~ Estimation
0+ T T T T T |
0 4
IS T SRS C R SN © 2 N 9
N I S P X X QF
9 S < S S 3 S S 3
& S SRt e

(a) Frequency estimation (b) Clock cycle estimation

Fig. 6. Frequency and clock cycle estimations of SM on the FPGA

—&— Measurement

«+ M-+ Estimation
= 150

Frequency(|

50 —e—Measurement 4004 mo
-+ M- Estimation 0 e
0+ !

: 2 < > % S
R P ST SR R L B Al o e~
S N LL & N7 7 L L

S < < & X < X X PN PN
IR & R NN X
S s & & < TS S

(a) Frequency estimation (b) Clock cycle estimation

Fig. 7. Frequency and clock cycle estimations of KM on the FPGA

trend of clock cycles and frequency. In the following, we present
the detailed results for two representative applications, WC and
SS, without and with loop unrolling optimizations, respectively.
Additionally, they cover a series of memory optimizations.

10000
—e— Measurement

8000 "
-+ M-~ Estimation

6000

Clock cycles(M)

4000

Frequency(MHz)

—e— Measurement

@
o

2000

«+m-- Estimation
0+ T T 0 T
R < Q D ¥ N R < \ D Wl N
AU G ¢SS S S
A L L L

(a) Frequency estimation (b) Clock cycle estimation

g Fig. 8. Frequency and clock cycle estimations of MM on the FPGA

5000

N
a
S

—@— Measurement

T 200 S 4000 -~ Estimation
< g
X 150 < 3000
2 >
[~ [%)
$ 100 $ 2000
g —o—Measurement 2
o S0 imati 1000
--a-+ Estimation
0+ T T T 0 e
L SOOI ‘q'g'u'e'a'm
AT E SN DS N I Sy
5 X X 5 < < C

< hS < <

(a) Frequency estimation (b) Clock cycle estimation

Fig. 9. Frequency and clock cycle estimations of SS on the FPGA

TABLE 3
Configuration of best and predicted cases for the five applications

Configuration | Best Case Predict

wC SM+P+C+2CU SM+P+C+2CU

KM SM+P+C+U8+2CU SM+P+C+U20+1CU
SM SM+P+C+2CU SM+P+C+2CU

MM NSM+P+C+U25 NSM+P+C+U40

SS NSM+P+C+U80 NSM+P+C+U80
HM SM+P+C+2CU SM+P+C+2CU

1I SM+P+C+2CU SM+P+C+2CU

For each application, we consider different combinations of
FPGA-centric optimizations. Thus, we use the following abbre-
viations to represent the optimizations and their parameters used
in the evaluation: G, P, C, SM, NSM and U f represent the
baseline global memory version, private memory, static memory
coalescing, local memory, non local memory, and loop unrolling
with unrolling factor f, respectively.

Figures 5(a), 6(a), 7(a), 8(a) and 9(a) show the predictions on
hardware frequency of running WC, SM, KM, MM and SS with
Melia, respectively, in comparison with the measured frequency
after the real FPGA compilation. Our simple approach can roughly
predict the hardware frequency of the OpenCL kernel, with
the input from the corresponding estimated resource utilization
provided by the Altera resource estimation tool.

Figures 5(b), 6(b), 7(b), 8(b) and 9(b) show the predictions on
the elapsed clock cycles. Generally, our prediction on clock cycles
is able to capture the trend of the MapReduce application with
different parameter configurations. On WC, our estimation can
predict the clock cycle reductions of the memory optimizations
(local memory, private memory and static memory coalescing),
and the corresponding MT'P value used in Figure 5(b) is 11.3.
For SS, KM and MM, our estimation can also predict the impact
of loop unrolling, which significantly reduces the clock cycles
by shortening the critical path of the kernel pipeline, and their
corresponding MT P values are 30.4, 60 and 70, respectively.
For SS, our estimation can predict the clock cycle trend with
varying unrolling factor f. For MM and KM, our estimation can
not accurately predict the clock cycle trends, but the performance
of the estimated parameter configuration can be very close to the
optimum performance.

Optimization parameter setting. We now evaluate the effec-
tiveness of our models in predicting the suitable parameter settings
in Melia. We study the predicted optimization configuration of
parameter settings for the seven applications in comparison with
the best configuration in Table 3. We obtain the best/worst/medium
configurations by experimentally measuring the execution time of
all possible configurations. Our model is able to match the best
cases for the five applications (WC, SM, SS, HM and II). For
MM and KM, the performance of the predicted configuration is

comparable to or very close to the best case, as shown in the Table
4. More importantly, our prediction can effectively avoid the worst
configuration, and significantly outperform the medium case in all
applications.

4.4 Comparisons Between FPGA and CPU/GPU

We evaluate the execution time, and energy efficiency (per-
formance per watt) of Melia, in comparison with its state-of-
the-art counterparts on CPU/GPU. Note, we directly use the
implementation [11], [12] from the author.

Comparisons with GPU. We show the ratios of Melia over
the GPU-based counterpart [11], [12] on the execution time
and energy efficiencies (with/without low-end CPU), as shown
in Figures 10(a), 10(b) and 10(c). In particular, Melia achieves
averagely 3.6 (2.1) times higher energy efficiency (performance
per watt) than the GPU-based counterparts without (or with) low-
end CPU. Due to the low power feature of the FPGA, Melia has a
lower power consumption on all applications.

For the execution time, there is no conclusive comparison
between FPGA and the GPU. On KM, Melia significantly
outperforms the GPU-based MapReduce on all the two metrics,
since the KM implementation utilizes the optimization methods:
local memory and loop unrolling. In particular, FPGA is good
for computation-intensive MapReduce applications with regular
memory access pattern, since FPGA can provide multiple custom
pipelines (via loop unrolling) to efficiently improve the computing
ability and on-chip buffers to reduce global memory accesses.
For example, KM can employ the loop unrolling to improve
computation ability and on-chip buffers to reduce the number
of memory accesses. Compared with the GPU-based counterpart,
Melia achieves slower performance on other applications. Take
SS and MM as examples. Melia fully utilizes the loop unrolling
optimization. However, still many global memory transactions
impede the further performance improvement since no dedicated
cache is involved on the FPGA. In contrast, GPU is good for the
computation-intensive application with irregular memory access
pattern, since GPU has powerful computation ability and high
memory bandwidth.

Comparisons with CPU. We present the overall comparison
with the CPU-based MapReduce without figures. Previous stud-
ies [12], [11] have compared the MapReduce performance on the
CPU and the GPU. Our results are consistent with their studies.
Eventually, Melia has higher energy efficiency than the CPU-based
MapReduce on all the seven applications, with the improvement
of up to 16.7 times. In general, CPU is good for the control-
intensive application, since CPU has powerful cache hierarchy and
superscalar technology to reduce the latency of memory access.

For the seven MapReduce applications presented at our
experiment, we summarize our findings as follows. First, FPGA is

TABLE 4
The best, worst, medium execution time for different configurations, and
the execution time of our predicted configuration.

Worst Best Medium | Predicted

WC | 1269ms | 510ms 810ms 510ms
KM | 7450ms | 1131ms | 3456ms 1872ms
SM 506ms 416ms 470ms 416ms
MM 37.8s 5.3s 20.6s 5.4s
SS 21.2s 2.5s 9.6s 2.5s
HM 28.9s 3.12s 4.96s 3.12s

11 53.4s 6.48s 10.48s 6.48s

10 8 -
2™ 2
S g e 5.83
>)
o g 6 <
= [} QL
¢ s 241
E E 41 24 286 273 W 2.33
£ >) 4 e 32 175 14 |4 167 159
2 ° 2 :
TP 0
WC SM KM MM SS HM 1l WC SM KM MM SS HM I wC SM KM MM SS HM I
(a) Time ratio of FPGA over GPU (b) Energy gain of FPGA over GPU (without low- (¢) Energy gain of FPGA over GPU (with low-end
end CPU) CPU)

Fig. 10. Comparison of Melia on FPGA over on GPU.

81 7.64 a lot of global memory accesses. Third, CPU is good for the
control-intensive applications, since CPU has powerful cache
hierarchy and superscalar technology to reduce the average latency
of memory access. For example, SM, WC, HM and II require
powerful cache hierarchy and powerful superscalar technology to
deal with plenty of branches.

Elapsed Time (S)

4.5 Other Studies

In this subsection, we study the robustness of Melia in the
following aspects.

100 200 300 400 500 1000 1500
Fig. 11. WC with varying data sizes (MB)

S ! Different data sizes. We also study the different data sets
508 of the application (WC) for the case study. Figure 11 shows
§ 0.6 the elapsed times of WC with input sizes (100MB, 200MB, ...,
E 0.4 500MB, 1000MB, 1500MB). The experimental result shows that
oo ' the performance scales well for increasing data sizes.

£02 Locking overhead. We also study the locking overheads of
g 0 five MapReduce applications (WC, KM, SM, MM and SS) on
a

WC KM SM MM SS HM I OpenCL-based FPGAs. We estimate the locking overhead as
subtracting the MapReduce application without locking operations
from the same MapReduce application with locking operations.
Fig. 12. Lock overheads for seven MapReduce applications The time breakdown is shown in Figure 12. The experimental
result shows that the locking overhead is one important component
good for computation-intensive applications with regular memory ¢ the total execution time for each MapReduce application,
access pattern, since FPGA can provide multiple custom pipelines gipnce FPGA cannot efficiently accommodate the standard locking
to efficiently do the computation and on-chip buffers to efficiently ,echanism (e.g., atomic_cmpxchg) from OpenCL specification.
read/write data. For example, KM can employ the loop unrolling Input data characteristics. We also study the impact of input
to improve computation ability and on-chip buffers to reduce jata characteristics [2], [42] of the MapReduce application (WC)
the number of global memory accesses. Second, GPU is good , FPGA/GPU, as shown in Figure 13. In particular, we adopt
for the computation-intensive applications with irregular memory (he two cases of input data in the previous study: skewed key
access patterns, since GPU has powerful computation ability and ..urrence (SKO) and uniform key occurrence (UKO). The SKO
high memory bandwidth. For example, MM and SS requires the ¢ the case that the same key occurs consecutively, which implies
powerful computation ability to efficiently do the computation 5¢ work items of MapReduce framework need to compete for the
and requires high memory bandwidth to efficiently deal with gyme Jock (one distinct key has one corresponding lock). On the
other hand, UKO is when keys uniformly appear, which implies
that the possibility of lock contention is relatively low. Based on

M Real computation Locking overhead

12 4
the experimental result, there are two observations. First, the input
Z 4 | data with UKO has much better performance than that with SKO,
g) . since the lock contention is serious for SKO, which significantly
9 7 .
g 6 - S S 2‘ 2 9 degrades the performance of OpenCL-based Melia. Second, FPGA
N AN 7 . .
9 \ \ N . has significant performance advantage over GPU when the number
& 3 A \ \ N . of input distinct keys is small, since the lock-step execution model
N A . B .
] § § %§ % g of GPU cannot efficiently address the serious lock contention, then
N 7! A . .
0 . S & anil 45 work items actually execute sequentially.

50 100 200 300 400 500 600 When the number of distinct keys is known before MapReduce
@GPUUKO mFPGAUKO #GPUSKO NFPGASKO runtime performs, we can allocate proper FPGA on-chip buffer to

Fig. 13. Execution time for various number of distinct keys on FPGA and store the reduction object and the proper hashing function can be
GPU
10

TABLE 5
Comparison with direct HLS acceleration (MM)
LUTs REGs RAMs | DSPs | time
With Melia | 179630 | 273103 | 1886 32 541s
Direct HLS | 160480 | 244187 | 1657 32 3.45s

used, so that FPGA on-chip buffer can be fully utilized. Then, the
amount of FPGA resource can be reduced and more aggressive
optimizations (e.g. more CU) can be applied to MapReduce
programs. Take WC as an example, we can allocate three CUs
for the implementation when the number (500) of input distinct
keys is known before execution, then we get the performance
improvement by 1.21X, compared with the default implementation
with two CUs.

Comparison with direct HLS acceleration. We have com-
pared the HLS enabled MapReduce runtime Melia with direct
HLS acceleration. The implementation based on Melia requires
more FPGA resources than the direct HLS acceleration. On
the other hand, Melia improves the programmability so that
the user only needs to implement two primitives (map and
reduce), and MapReduce is able to exploit the parallelism in the
underlying computing resources. Take MM with full optimizations
for example. With Melia, the HLS enabled MapReduce roughly
requires 10% more resources than the direct HLS acceleration, as
shown in Table 5. The execution time of Melia (5.41s) is much
larger than that of HLS implementation (3.45s) since the locking
overhead of Melia is significant.

4.6 Finding summary

Overall, FPGA demonstrates the significant energy efficiency,
in comparison with its CPU- and GPU-based counterparts. The
performance and energy consumption comparisons of FPGA-
based MapReduce over the CPU/GPU-based MapReduce are
resulted from the differences in the architectures as well as
the algorithm design. First, the FPGA usually has much lower
hardware frequency than CPU/GPU, respectively. In our experi-
ments, the FPGA has the frequency of hundreds of MHz, while
GHz for the CPU/GPU, respectively. Moreover, compared with
CPU/GPU, FPGA does not have coherent cache hierarchy, e.g.,
L1/L2 caches. For some applications, Melia can still be faster
than the MapReduce implementations on CPU/GPU, thanks to
the FPGA-centric optimizations. Second, FPGA by design has
much lower power consumption than CPU/GPU. This is a direct
factor contributing to the superb energy efficiency of FPGA over
CPU/GPU.

5 EXTENSIONS TO MULTIPLE FPGAS

Our extension (simulation) follows the common MapReduce
design [15]. Many good mechanisms of MapReduce are inherited,
including task scheduling and fault tolerance. Thus, we focus on
how FPGAs are interconnected to make a large-scale system.
While FPGAs can be integrated as a co-processor, we adopt a
radical approach by viewing FPGAs as individual nodes. The
Melia implementation on a single FPGA is used to process
the map and the reduce tasks on a chunk of input data and a
chunk of intermediate key-value list generated from the map task,
respectively.

We design a FPGA-based computing cluster with master/slave
architecture. The master node runs on a standard server, which
is responsible for task scheduling and other management in
MapReduce. Each slave node is a standalone FPGA board,

11

which is plugged into one slot of a custom direct point-to-
point backboard [35]. The backboard employs the high-speed
Transceivers (MGTs) on the FPGA, named RocketlOs [5], to
provide a custom high-speed data network. In particular, since
MGT is full duplex and no software overhead is required, the
data transfer bandwidth between any pair of two FPGA nodes
at either direction can achieve 800MB/s via 14.1Gb/s transceiver.
This is significant data transfer bandwidth advantage of FPGA
over CPU/GPU. Dozens of FPGAs (16 in our performance/energy
consumption analysis) forms a pod. All the FPGAs within a pod
are fully connected via the backboard. To support a larger number
of FPGAs, we leverage existing cluster network topologies [3],
which connect pods with Ethernet switches in a tree-like network
topology. Our cluster design is a hybrid one with both the features
of FPGA backboard and Ethernet switches. For CPU/GPU-based
cluster, we consider a common setting: a 10Gb/s Ethernet switch
within the pod of 16 machines each, and pods are connected with
10Gb/s switch. The FPGA cluster uses the same cross-pod design.
We use the power consumption model [6] for Ethernet switches.
For example, an 10Gb/s 32-port switch roughly consumes 786
Watts.

There are two issues that are worth discussion. The first one
is on cost efficiency. The FPGA board used in the experiment
costs 8,000 USD each, and the workstation costs 2,000 USD
each. The FPGA board is more expensive than the server. In the
real production environment, only the FPGA itself is required,
rather than the entire FPGA board. Thus, the price per FPGA
should be much lower than the FPGA board. Second, we adopt
the fair scheduling policy in Apache Hadoop 2.5.1 — YARN, to
handle job/task scheduling and fault tolerance. Both CPU/GPU-
and FPGA-based clusters use the same policy in the simulation.
Thus, we omit the experimental studies on those issues.

Simulation setup. We conduct the simulation about perfor-
mance and energy consumption analysis according to the approach
introduced by Lang et al. [26]. The basic idea is that, in the map
phase, we consider the computation time of the map tasks; in the
reduce phase, we estimate the time of network transfers required
by the data shuffling and the computation time of the reduce tasks.
For more details, we refer readers to the original paper [26].

We scale the data size by a factor (X f, meaning that we scale
the input data size or dimensions in Table 2 by f); that is, each
node roughly has the same amount of data as shown in Table 2.
We use the machine and FPGA setup in Section 4 as the input
hardware profile in the performance/energy consumption analysis.

Performance/energy analysis. Figures 14(a)(b) show the
performance/energy consumption analysis results of Melia on
CPU/GPU/FPGA clusters. The results are shown with 32 slave
nodes (either FPGAs or servers with CPUs/GPUs) and the
input data scale of (x32). Overall, in the cluster setting, seven
MapReduce applications of Melia even more significantly out-
performs its CPU/GPU counterparts in terms of performance and
energy efficiency, in comparison with the results in Section 4.
In particular, the performance of Melia is better than CPU/GPU
cluster as show in Figure 14(a), since the RocketlO network in
FPGA cluster can provide much more data transfer bandwidth
than Ethernet of CPU/GPU cluster. Therefore, the time required
for data shuffling in FPGA cluster is significantly less than that
in CPU/GPU cluster. Furthermore, our FPGA cluster design has
taken the backboard support of FPGAs, which eliminates the
standard server components, which are required by the CPU/GPU
cluster. Therefore, the energy consumption advantage of FPGA

35 4 270 -
30 £ 240
= €210
~ o
g 5 Z 180
5 20 £ 150
B 15 2 120
Qo
210 S 9%
o 5 60
5 Z 30
0 &~ 0

CPU mGPU
(a) Time consumption of CPU/GPU/FPGA

FPGA

CPU EmGPU FPGA
(b) Energy consumption of CPU/GPU/FPGA

8 ré~
2

Z6 A D
(] = =
£ g
347 32
g 7 F238
= 2 A 7 >
w oo
L H

0_ % _OLLI

16 32
7ZATime(s) -m-Energy (KJ)

(c) WC with varying FPGA nodes (8, 16, 32 and 64)

64

Fig. 14. Comparisons (time and power consumption) of Melia on CPU/GPU/FPGA clusters.

cluster over CPU/GPU cluster is much more significant than the
performance advantage, as shown in Figure 14(b).

Scalability. We also study the impact of different FPGA nodes
for the MapReduce application WC as the case study, as shown in
Figure 14(c). The results are shown with varying slave nodes (8,
16, 32 and 64) and the input data scale of (x 32). The experimental
result shows that more FPGA nodes can have better performance,
since the data set for each FPGA node is accordingly reduced.
However, the cluster with more FPGA nodes may have more
power consumption, consumed by more data shuffling between
FPGA nodes.

6 EXPERIENCES AND OPEN PROBLEMS

Our initial studies show a few opportunities for further improving
the performance and energy efficiency of MapReduce on FPGAs.

First, with OpenCL abstractions, FPGAs can be viewed as
a highly parallel architecture with strong and efficient support
on hardware pipeline executions. This fits extremely well with
massively parallel processing like MapReduce. The fast inter-
“thread” communication within the same hardware pipeline can
significantly accelerate the performance and ease the program-
ming.

Second, the FPGA programmability for more complex appli-
cations has been improving greatly. Besides Altera OpenCL SDK,
Xilinx C/C++ HLS tools significantly reduce the programming
complexity on FPGAs.

Third, as energy efficiency has a more significant role in
system designs, FPGAs are more likely to become an important
citizen in MapReduce, and other data processing systems. Through
proper optimizations, we demonstrate that FPGAs achieve sig-
nificantly higher energy efficiency than CPUs/GPUs, with slight
performance degradations or even better performance on FPGAs.

We have also identified a few open problems:

First, MapReduce in specific and data processing in general are
complex in its runtime logic. Even though FPGAs have low power,
we still require a significant amount of design and implementation
effort to further improve the performance and energy efficiency of
Melia.

Second, even with OpenCL abstraction, reconfigurable com-
puting still has other challenges. More advanced system features
such as the partial reconfiguration capability is still prelimi-
nary [8]. Also, as our experiments show, memory stall optimiza-
tions and pipeline execution efficiency are two most important
performance factors. For example, the hardware reconfigurable
capability also requires careful algorithmic designs, since even the
unexecuted code in runtime has to consume resources on FPGA.

12

FPGAs now do not offer coherent cache memory hierarchy. The
locality and coherency are left to programmers.

Third, similarly to GPU, FPGA is relatively weak on synchro-
nization handling and memory subsystems (no cache coherence).
For example, we found that the atomic-lock seriously affect
performance. It is desirable to develop software or hardware
techniques to improve those issues on FPGAs.

7 CONCLUSIONS

MapReduce has become a popular programming framework in
parallel architectures. In this paper, we implement and evaluate
an OpenCL-based MapReduce framework (Melia) with a series of
optimizations for FPGAs, based on the recently released Altera
OpenCL SDK. We evaluate Melia on a recent Altera FPGA.
Our evaluations show that memory stalls and pipeline execution
efficiency have significant impact on the overall performance and
energy efficiency of FPGAs. Our results demonstrate that 1) our
parameter setting approach can predict the suitable parameter
settings that have the same or comparable performance to the
best setting, 2) our FPGA-centric optimizations significantly
improve the performance of Melia on FPGA with an overall
improvement of 1.4-43.6 times over the baseline on FPGA. Both
real experiments on a single FPGA and performance/energy con-
sumption analysis on a cluster setting demonstrate the significant
performance and energy efficiency improvement of Melia over its
CPU/GPU-based counterparts.

One interesting future direction is to schedule the exe-
cution among heterogeneous environments (including FPGAs,
GPUs and CPUs), and to extend the methodology to gener-
al OpenCL programs. We have made Melia open-sourced in
http://www.ntu.edu.sg/home/bshe/Melia.html.

8 ACKNOWLEDGEMENT

We thank Altera University Program for their kind support in
our research. This work is in part supported by MoE AcRF
Tier 2 grants (MOE2012-T2-1-126 and MOE2012-T2-2-067) in
Singapore.

REFERENCES

[1] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar. Puma: Purdue
mapreduce benchmarks suite. Technical report, Purdue University,
http://core.ac.uk/download/pdf/10238137.pdf, 2012.

S. Ahmed and D. Loguinov. On the performance of mapreduce: A
stochastic approach. In Big Data, Oct 2014.

M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In SIGCOMM, 2008.

Altera. Altera sdk for opencl optimization guide. 2013.

Altera. Stratix v device overview. 2014.

[2]
[3]

[4]
[5]

(6]
(7]

[8]

[91

[10]

[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]
[25]
[26]
[27]
[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]
[37]

[38]
[39]

G. Ananthanarayanan and R. H. Katz. Greening the switch. In USENIX,
2008.

O. Arnold, S. Haas, G. Fettweis, B. Schlegel, T. Kissinger, and
W. Lehner. An application-specific instruction set for accelerating set-
oriented database primitives. In SIGMOD, 2014.

C. Beckhoff, D. Koch, and J. Torresen. Migrating static systems to
partially reconfigurable systems on spartan-6 fpgas. In IPDPS Workshops
and Phd Forum, 2011.

J. Casper and K. Olukotun. Hardware acceleration of database operations.
In FPGA, 2014.

D. Chen and D. Singh. Fractal video compression in opencl: An
evaluation of cpus, gpus, and fpgas as acceleration platforms. In ASP-
DAC, 2013.

L. Chen and G. Agrawal. Optimizing mapreduce for gpus with effective
shared memory usage. In HPDC, 2012.

L. Chen, X. Huo, and G. Agrawal. Accelerating mapreduce on a coupled
cpu-gpu architecture. In SC, 2012.

J. Costabile. Hardware acceleration for mapreduce analysis of streaming
data using opencl. Technical report, Altera, 2015.

T. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. Singh. From opencl to high-
performance hardware on fpgas. In FPL, 2012.

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI, 2004.

W. Fang, B. He, Q. Luo, and N. K. Govindaraju. Mars: Accelerating
mapreduce with graphics processors. TPDS, 2011.

P. Francisco. The netezza data appliance architecture: A platform for
high performance data warehousing and analytics. 2011.

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a
mapreduce framework on graphics processors. In PACT, 2008.

C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin. Mapcg: writing
parallel program portable between cpu and gpu. In PACT, 2010.

S. Hong and H. Kim. An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness. In ISCA, 2009.

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The hibench
benchmark suite: Characterization of the mapreduce-based data analysis.
In ICDEW, 2010.

Z. Istvan, G. Alonso, M. Blott, and K. Vissers. A flexible hash table
design for 10gbps key-value stores on fpgas. In FPL, 2013.

W. Jiang and G. Agrawal. Mate-cg: A map reduce-like framework for
accelerating data-intensive computations on heterogeneous clusters. In
IPDPS, 2012.

Khronos OpenCL Working Group. The opencl specification, v1.1.48.
2009.

I. Kuon, R. Tessier, and J. Rose. Fpga architecture: Survey and
challenges. Found. Trends Electron. Des. Autom., 2(2), 2008.

W. Lang, S. Harizopoulos, J. M. Patel, M. A. Shah, and D. Tsirogiannis.
Towards energy-efficient database cluster design. PVLDB, 2012.

K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon. Parallel data
processing with mapreduce: A survey. SIGMOD Rec., 2012.

F. Li, B. C. Ooi, M. T. Ozsu, and S. Wu. Distributed data management
using mapreduce. ACM Comput. Surv., 46(3), Jan. 2014.

M. Lu, Y. Liang, H. P. Huynh, Z. Ong, B. He, and R. Goh. Mrphi: An
optimized mapreduce framework on intel xeon phi coprocessors. TPDS,
2015.

S. McBader and P. Lee. An fpga implementation of a flexible, parallel
image processing architecture suitable for embedded vision systems. In
IPDPS, 2003.

R. Mueller and J. Teubner.
SIGMOD, 2009.

R. Mueller, J. Teubner, and G. Alonso. Data processing on fpgas. In
VLDB, 2009.

R. Mueller, J. Teubner, and G. Alonso. Streams on wires: A query
compiler for fpgas. Proc. VLDB Endow., 2009.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Evaluating mapreduce for multi-core and multiprocessor systems. In
HPCA, 2007.

R. Sass, W. V. Kritikos, A. G. Schmidt, S. Beeravolu, and P. Beeraka. Re-
configurable computing cluster (rcc) project: Investigating the feasibility
of fpga-based petascale computing. In FCCM, 2007.

O. Segal, M. Margala, S. R. Chalamalasetti, and M. Wright. High level
programming for heterogeneous architectures. In FSP, 2014.

Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang. FPMR:
Mapreduce framework on fpga. In FPGA, 2010.

D. Singh. Field-programmable gate array. Altera Whitepaper, 2011.
S.Kestur, J.D.Davis, and O.Williams. Blas comparison on fpga, cpu and
gpu. In ISVLSI, 2010.

Fpga: What’s in it for a database? In

13

[40]
[41]
[42]
[43]
[44]
[45]
[40]
[47]

[48]

[49]

J. Teubner, R. Mller, and G. Alonso. Fpga acceleration for the frequent
item problem. In /CDE, 2010.

J. Teubner and R. Mueller. How soccer players would do stream joins.
In SIGMOD, 2011.

D. Tiwari and D. Solihin. Modeling and analyzing key performance
factors of shared memory mapreduce. In /PDPS, 2012.

K. H. Tsoi and W. Luk. Axel: A heterogeneous cluster with fpgas and
gpus. In FPGA, 2010.

Z. Wang, B. He, and W. Zhang. A study of data partitioning on opencl-
based fpgas. In FPL, 2015.

Z. Wang, B. He, W. ZHang, and S. Jiang. A performance analysis
framework for optimizing opencl applications on fpgas. In HPCA, 2016.
L. Woods, Z. Istvan, and G. Alonso. Ibex-an intelligent storage engine
with support for advanced sql off-loading. In VLDB, 2014.

L. Woods, J. Teubner, and G. Alonso. Complex event detection at wire
speed with fpgas. In VLDB, 2010.

J. Yeung, C. Tsang, K. Tsoi, B. Kwan, C. Cheung, A. Chan, and P. Leong.
Map-reduce as a programming model for custom computing machines.
In FCCM, 2008.

Y. Zhang and J.D.Owens. A quantitative performance analysis model for
gpu architectures. In HPCA, 2011.

Zeke Wang received his B.Sc. degree from
Harbin University of Science and Technology,
China, in 2006 and the Ph.D. degree from Zhe-
jiang University, Chinain 2011. He is a Research
Fellow at Parallel Distributed Computing Cen-
ter, School of Computer Engineering, Nanyang
Technological University. His current research
interests include heterogeneous computing (with
a focus on FPGA) and database systems.

Shuhao Zhang is a Ph.D candidate in Depart-
ment of Computer Science and Engineering,
Nanyang Technological University. He received
the bachelor degree from Nanyang Technolog-
ical University in 2014. His major research in-
terests include High Performance Computing,
Stream Processing, Parallel and Distributed Sys-
tems.

Bingsheng He received the bachelor degree
in computer science from Shanghai Jiao Tong
University (1999-2003), and the PhD degree
in computer science in Hong Kong University
of Science and Technology (2003-2008). He is
an Associate Professor in School of Computer
Engineering of Nanyang Technological Univer-
sity, Singapore. His research interests are high
performance computing, distributed and parallel
systems, and database systems.

Wei Zhang received the Ph.D. degree from
Princeton University, Princeton, NJ, USA, in
2009. She joined Hong Kong University of
Science and Technology in 2013 as an assistant
professor and established Reconfigurable
System Lab. She was an assistant professor in
School of Computer Engineering at Nanyang
Technological University, Singapore from 2010
to 2013. She has authored and co-authored
more than 60 book chapters and papers
in peer-reviewed journals and international

conferences. Her current research interests include reconfigurable
system, FPGA-based design, low-power high-performance multicore
system, embedded system security and emerging technologies.

