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Abstract—With the ease-of-programming, flexibility and yet effi-
ciency, MapReduce has become one of the most popular frameworks
for building big-data applications. MapReduce was originally de-
signed for distributed-computing, and has been extended to various
architectures, e,g, multi-core CPUs, GPUs and FPGAs. In this work,
we focus on optimizing the MapReduce framework on Xeon Phi,
which is the latest product released by Intel based on the Many
Integrated Core Architecture. To the best of our knowledge, this is
the first work to optimize the MapReduce framework on the Xeon
Phi.

In our work, we utilize advanced features of the Xeon Phi
to achieve high performance. In order to take advantage of the
SIMD vector processing units, we propose a vectorization friendly
technique for the map phase to assist the auto-vectorization as well
as develop SIMD hash computation algorithms. Furthermore, we
utilize MIMD hyper-threading to pipeline the map and reduce to
improve the resource utilization. We also eliminate multiple local
arrays but use low cost atomic operations on the global array for
some applications, which can improve the thread scalability and
data locality due to the coherent L2 caches. Finally, for a given
application, our framework can either automatically detect suitable
techniques to apply or provide guideline for users at compilation
time. We conduct comprehensive experiments to benchmark the
Xeon Phi and compare our optimized MapReduce framework
with a state-of-the-art multi-core based MapReduce framework
(Phoenix++). By evaluating six real-world applications, the experi-
mental results show that our optimized framework is 1.2X to 38X
faster than Phoenix++ for various applications on the Xeon Phi.

I. INTRODUCTION

Big data analytics has been identified as one of the most
exciting areas for both academia and industry. We are facing the
challenges at all levels ranging from sophisticated data mining al-
gorithms to high-performance computing techniques and systems
to get the useful data in time. The high-performance requirements
come from the ever growing data and time-consuming analytics
processes. High-performance system support for data analytics
has become a fruitful research area. Recently, we have witnessed
the success of various co-processors applying on data analytics,
such as graphics processors (GPUs) [1], [2] and FPGA [3].
In order to fully utilize the capability of those architectures,
developers need to write co-processor specific programming
languages (such as CUDA [4], OpenCL [5] and Verilog [6]).
This may affect the developer productivity, maintenance costs as
well as the code portability and system scalability. Therefore,
it is desirable to have high-performance accelerator systems
with compatible software development and maintenance with the
CPU-based systems.

Recently, Intel released the long-awaited x86 accelerator
named Xeon Phi. It offers a much larger number of cores than

conventional CPUs, while its architectural design is based on x86.
Particularly, an Intel Xeon Phi coprocessor 5110P integrates 60
cores on a chip, with 4 hardware threads per core. The thread
execution on the Xeon Phi does not suffer from the branch
divergence. Furthermore, it highlights the 512-bit width vector
processing units (VPUs) for powerful SIMD processing. Besides,
L2 caches are fully coherent through ring-based interconnection.
It also provides low cost atomic operations. However, as designed
as a coprocessor, the Xeon Phi has limited 8 GB main memory.

While Xeon Phi has been just released, it has already demon-
strated its promising adoptions. A number of studies have demon-
strated its performance advantage [7], [8]. The supercomputer
STAMPEDE [9] and Tianhe-2 [10] also have equipped the Xeon
Phi coprocessors to unlock its hardware capability for scientific
computing. Instead of optimizing individual applications like pre-
vious studies [7], [8], we investigate a productivity programming
framework to facilitate users to implement big data analytics
tasks correctly, efficiently, and easily on Xeon Phi.

MapReduce [11] has become a popular programming frame-
work for big data analytics. It was originally proposed by
Google for simplified parallel programming on a large number of
machines. Users only need to define map and reduce functions
according to their application logics. The MapReduce runtime
automatically distributes and executes the task on multiple ma-
chines [11] or multiple processors in a single machine [12],
or GPUs [13]. Thus, this framework reduces the complexity of
parallel programming and the users only need to focus on the
sequential implementations of map and reduce functions.

A naive approach of developing a MapReduce framework on
Xeon Phi is to adopt Phoenix++ [14] directly, which is the state-
of-the-art MapReduce framework on multi-core CPUs. Since
Xeon Phi is also based on x86 architectures, Phoenix++ can
run on Xeon Phi without any changes. However, we find that
Phoenix++ cannot fully utilize the hardware capability of Xeon
Phi as Phoenix++ is not aware of the advanced hardware features
of Xeon Phi. First, Phoenix++ pays little attention to utilize
VPUs, which is critical for the performance on the Xeon Phi [7],
[8]. Second, Phoenix++ has high memory access latency due
to the relatively small L2 cache (512 KB) per core. Third, the
relatively small memory capacity (8 GB) may limit the thread
scalability. Unawareness of those hardware features results in
significant performance loss, as we demonstrated in Section IV.

To address the above-mentioned deficiency as well as fully
utilize Xeon Phi hardware capabilities, we develop MRPhi, the
first MapReduce framework on Xeon Phi with following features.
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• We implement the map phase in a vectorization friendly way
to take advantage of the SIMD VPUs.

• SIMD hash computation algorithms are developed in order
to benefit from the VPUs.

• Based on the MIMD hyperh-threading, we pipeline the map
and reduce phases to improve the resource utilization.

• We eliminate local containers by using low cost atomic
operations on the global container in certain cases. This
can address the thread scalability issue (due to the limited
memory size) as well improve the cache efficiency (by
utilizing the coherent L2 caches with ring interconnection).

• Finally, these techniques are not applicable for all cases.
For a given application, our framework is able to either
automatically detect suitable techniques to apply or provide
useful suggestions for users.

The rest of the paper is organized as follows. We introduce the
background in Section II. Section III gives detailed implementa-
tions. The experimental results are presented in Section IV. We
conclude this paper in Section V.

II. BACKGROUND

In this section, we first introduce the MapReduce framework
and Xeon Phi coprocessor. Then we identify the challenges of
developing the MapReduce framework on the Xeon Phi.
A. MapReduce Framework

MapReduce is a popular framework for simplified parallel
programming. We briefly introduce the MapReduce framework.

Programming model. The input of a MapReduce job is
specified by users, usually it is an array. The output is a set
of key-value pairs. A user specifies a MapReduce job mainly
by two functions, which are map and reduce. With the user-
defined functions, a MapReduce framework first applies the map
function to every element in the input array and generates a set of
intermediate key-value pairs (map phase). After the map phase,
the reduce function is applied to all intermediate pairs with the
same key and generates another set of result key-value pairs
(reduce phase). Finally, the result key-value pairs are ordered
(optional) and then output. The detailed programming model is
presented in the original MapReduce paper [11].

MapReduce workflow. The MapReduce framework is orig-
inally designed for distributed computing [11]. Later, it is ex-
tended to other architectures such as multi-core CPUs [12], [14],
[15], [16], GPUs [13], [17], [18], the coupled CPU-GPU archi-
tecture [19], FPGA [20] and Cell processors [21]. These different
MapReduce frameworks share the common basic workflow, but
differ in detailed implementation and optimization.

Figure 1 illustrates the basic workflow of a MapReduce
framework. At the beginning, a split function (either defined by
the system or users) divides the input data across workers. On
multi-core CPUs, a worker is handled by one thread. A worker
usually needs to process multiple input elements. Thus the map
function is applied to the input elements one by one. Such a
call of the map function for an input element is called a map
operation. Each map operation produces a set of intermediate
key-value pairs. Then a partition function is applied to these
key-value pairs according to the key. Then in the reduce phase,
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Fig. 1. The basic workflow of a MapReduce framework.

each reduce operation applies the reduce function to a set of
intermediate pairs with the same key. Finally the results from
multiple reduce workers are merged and output.

B. Intel Xeon Phi Coprocessor
Intel Xeon Phi coprocessor is recently released in November

2012. The Xeon Phi is based on Intel Many Integrated Core
Architecture. The current released product is 5110P. Overall, the
Xeon Phi 5110P integrates 60 x86 cores on the same chip. Each
core has the frequency of 1.05 GHz and supports 4 hardware
threads. The memory hierarchy of Xeon Phi is similar to a
conventional multi-core CPU. The memory refers to the main
memory on the Xeon Phi, which is shared and accessible for all
cores. The main memory size is 8 GB. Then each core does not
have its own local memory, but has local L1 and L2 caches. The
caches are managed by the underlying system as a conventional
CPU. The L2 cache size is 512 KB per core. Additionally, on
each core, there are 32 512-bit vector registers.

Xeon Phi has been used to accelerate linear algebra [8] and
molecular dynamics [7] for high performance. These studies
show good performance potential of Xeon Phi when the im-
portant hardware capabilities are utilized, e.g., 512-bit SIMD
vector processing units. Furthermore, Xeon Phi coprocessors
also start to play an important role for supercomputers, such as
STAMPEDE [9] and Tianhe-2 [10]. In the following, we briefly
introduce the major features of the Xeon Phi.

512-bit vector processing units (VPUs). Xeon Phi features
with wide 512-bit VPUs on each core. It doubles the vector
width compared with the latest Intel Xeon CPU. Furthermore, it
provides new SIMD primitives, such as scatter/gather. Therefore,
utilizing VPUs effectively is the key to deliver high performance.
The VPUs can be either exploited by manually implementations
with SIMD instructions or auto-vectorization by the Intel com-
piler. The auto-vectorization tries to identify loops that can be
vectorized to use SIMD VPUs at compilation time.

MIMD Massive thread parallelism. Each core of the Xeon
Phi supports up to 4 hardware hyper-threads. Thus, there are
240 threads in total. The MIMD (Multiple Instruction, Multiple
Data) thread execution allows different threads execute different
instructions at any time. Thus, we can assign different workloads
to different threads to improve the hardware resource utilization.

Coherent L2 caches with ring interconnection. The inter-
connection on the Xeon Phi employs a ring architecture. All L2
caches are coherent through the ring interconnection. This design
is able to improve the cache efficiency. Specifically, when a cache



miss occurs on a core (C0), an address request is sent to the
address ring. If the data is found in another core’s L2 cache, the
data will be forwarded to the original core C0 by the data block
ring. This way, it avoids the expensive memory access.

Low cost atomic operations. Atomic data types are well
supported on the Xeon Phi. Compared with native data types, the
operations on atomic data types do not have significant overhead.
Therefore, it is reasonable to exploit the use of atomic operations
when designing a parallel algorithm.

However, the memory size of the Xeon Phi is fixed and small
compared with traditional main memory, which is only 8 GB.
This may become a bottleneck when designing efficient algo-
rithms. We demonstrate such an issue for particular applications
and use low cost atomic operations to address it in Section III-E.

There are two modes to execute a program using the Xeon Phi,
which are offloading and native execution. In this study, we use
the native execution. We will develop the offloading version in
the future work. A native program entirely runs on the Xeon Phi.
There is no communication with the host. Additionally, Xeon Phi
is compatible with traditional parallel programming languages,
such as OpenMP, pthread, OpenCL, MPI and so on.

C. Challenges of a Shared Memory MapReduce Framework on
Xeon Phi

State-of-the-art shared memory MapReduce frameworks on
multi-core (such as Phoenix++ [14]) are designed to have flexible
intermediate key-value storage container targeting different kinds
of workloads and effective combiner implementation that perform
reduce function immediately on the map results locally in each
core [15]. These techniques reduce memory storage requirement
and traffic as well as increase data locality. However, we have
identified three major performance issues of Phoenix++ when
porting it onto Xeon Phi.

• Poor VPU usage. Phoenix++ takes little advantage of the
VPUs on the Xeon Phi. The compiler is unable to vectorize
the code effectively. This suggests that we should rewrite
the code in a suitable way to assist the auto-vectorization.

• High memory latency. Container (hash table or arrays)
building has a large number of random memory accesses.
As the local L2 cache per core on the Xeon Phi is small,
this results in high cache misses and memory latency.

• Small memory. Due to the limited memory (8 GB) on the
Xeon Phi, we find that Phoenix++ cannot handle the array
container efficiently when the array is large.

As a result, running Phoenix++ directly on the Xeon Phi
does not give good performance. In our framework, we propose
various techniques to address these performance issues.

III. OPTIMIZED MAPREDUCE FRAMEWORK ON XEON PHI

In this section, we present our proposed MapReduce frame-
work MRPhi, which is specially optimized for the Xeon Phi.
A. Overview

MRPhi adopts state-of-the-art techniques from the shared
memory MapReduce framework as well as specific optimizations
for the Xeon Phi coprocessor. Overall, we adopt the similar
design as Phoenix++ [14] to implement the basic MapReduce
workflow as shown in Figure 1. There are two major techniques

from Phoenix++ adopted in our framework, which are efficient
combiners and different container structures. We briefly introduce
the two techniques and refer readers to the original Phoenix++
paper [14] for more details.

• Efficient combiners. Each map worker maintains a local
container. When an intermediate key-value pair is generated
by a map function, the reduce operator is immediately
applied to that pair based on the local container. This process
is performed using a combiner. Therefore, a map operation
essentially consists of two parts, which are the computation
defined in the map function and combiner execution. After
that, the partition is applied to each local container and
multiple local containers are merged to a global container in
the reduce phase. Our MRPhi adopts this similar design but
with particular improvement (Section III-E). Note that both
local and global containers are stored in the main memory
of Xeon Phi.

• Hash table and array containers. MRPhi supports two data
structures for containers, which are hash table and array.
The array container is efficient when the keys are integers
and in a fixed range.
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Fig. 2. Proposed techniques (in dark box) and their applicability in MRPhi.

More importantly, we propose four optimization techniques
specific for Xeon Phi as shown in Figure 2. The left part
of the figure summarizes the flow of MapReduce framework
while the right part shows the optimization techniques applied
correspondingly. On the right part, the white boxes are the
adopted combiners and containers from Phoenix++ while the
dark boxes are our proposed optimization techniques.

• Vectorization friendly map phase. MRPhi implements the
map phase in a vectorization friendly way, which clears
the dependency among map operations. By doing this, the
Intel compiler can automatically vertorize multiple map
operations to take advantage of VPUs successfully.

• SIMD parallelism for hash computation. Hash computa-
tion can be implemented employing SIMD parallelism. We
implement it using SIMD instructions.

• Pipelined execution for map and reduce phases. In
general, the user-defined map function contains heavy com-
putation workload, while the reduce function has many
memory accesses [14]. In order to better utilize the hardware
resource with hyperthreading, we pipeline the map and
reduce phases based on the MIMD thread execution.

• Eliminating local arrays. For the array container, if the
array is large, it introduces a number of performance issues



due to local arrays adopted. We address these issues by
eliminating local arrays but employing low overhead atomic
operations on the global array. It also can improve the
cache efficiency because of the coherent L2 caches with
ring interconnection.

Note that these techniques are not applicable for all cases and
may introduce overhead. Our framework can either automatically
detect whether a specific technique is applicable or provides
helpful suggestions to users at compilation time.
B. Vectorization Friendly Map Phase

Utilizing VPUs is critical to high performance on the Xeon
Phi. For the MapReduce framework itself, except the hash
computation (presented in Section III-C), there is little chance
to employ SIMD instructions. However, the user-defined map
function either containing loops or not is potential for auto-
vectorization. For the case of containing loops, we leave the
compiler to identify the vectorization within the map function.
Our main focus is on the vectorization challenge for the case of
not containing loops in the user-define map function.

Recall that in the map phase, each thread (or map worker)
processes multiple map operations. We use directives to guide the
compiler to vectorize multiple map operations. Listing 1 shows
the basic idea. emit intermediate is a system-defined function to
perform combiners. The #pragma ivdep (line 3) tells the compiler
to vectorize this for-loop if there is no dependency.

1 //N: the number of map operations in the worker
2 //elems: the input array
3 #pragma ivdep
4 for(i = 0; i < N; i++) {
5 //the inlined map function
6 map(data_t elems[i]) {
7 ... //some computation
8 emit_intermediate(key, value);
9 ...

10 }
11 }

Listing 1. Vectorization for multiple map operations

This auto-vectorization can be effective if there is no depen-
dency among map operations (from line 6 to 10 in Listing 1).
However, in Phoenix++, if multiple emit intermediate operations
are performed concurrently, the execution will cause the conflict
on a local container. This conflict exists for either array or hash
table containers. Figure 3(a) illustrates an example that map
operations failed to be vectorized due to the dependency among
emit intermediate for an array container.

We propose a vectorization friendly technique to address this
issue. Instead of performing the combiner for each intermediate
pair generated by emit intermediate immediately, we buffer a
number of pairs. Writing to the buffer is independent for each
map operation. When the buffer is full, we call the combiner
for those pairs sequentially. Figure 3(b) demonstrates this vec-
torization friendly map. Our vectorization friendly map clears the
dependency among map operations and thus auto-vectorization
by the compiler is possible.

The vectorization friendly map is useful when the multiple
map operations can be vectorized (no loop in the map function).
On the other hand, this technique introduces overhead due to the
temporary buffer. Therefore, if this technique is enabled but the
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map operations cannot be vectorized, it will hurt the performance.
Since we rely on the compiler to enable vectorization, the
framework itself does not know until the compilation for a
specific application. If the map operations can be vectorized
based on the printout from Intel compiler about vectorization
eligibility, then it is worthwhile to adopt this technique. Due
to the clear output by the compiler and our clean design of the
interface, turning on or off this technique essentially is very easy.

C. SIMD Parallelism for Hash Computation

Hash computation is a key component in the MapReduce
framework as well as fundamental for many other data-intensive
applications, such as database and encryption systems. We ob-
serve that the auto-vectorization often fails due to the complex
logic for hash computation. Thus, we choose to manually imple-
ment the hash computation using SIMD instructions.

SIMD hash computation for native data types is straightfor-
ward. The same procedure is applied to different input elements,
which fully employs the SIMD feature. However, it is challenging
to process variable-sized data types, such as text strings. Overall,
various hash functions for strings, such as FNV [22] and djb2
[23], have the similar workflow, which processes characters one
by one as shown in Listing 2. As a result, the workload of
the hash computation for a given string depends on its length.
The challenge is how to handle variable lengths yet be efficient.
Furthermore, SIMD instructions only can be applied to special
VPU vector registers. Thus how to pack data from memory to
these vectors efficiently is another challenging problem.

1 int hash(char* str) {
2 v = ...//initialization
3 while (*str) {
4 v = func(v, *str++);
5 }
6 return v;
7 }

Listing 2. The workflow of hash functions for strings



We propose two SIMD hash computation algorithms. The first
one is easy to implement and fully takes advantage of SIMD
scatter/gather, but may lead to low SIMD hardware utilization.
The second one improves the SIMD hardware utilization but
at expense of high control flow overhead. In the following,
we name these two implementations as SIMDH-Padding and
SIMDH-Stream.

1) SIMDH-Padding: It contains multiple rounds and each
round processes characters from 16 consecutive strings in par-
allel. The intuition is within each round, we treat 16 strings as
equal-length strings with the length Lr. Lr is equal to the number
of characters in the longest string among these 16 strings. Then
if a string is shorter than Lr, we pad this string with empty
characters. Note that this padding in fact is implemented using
masks for efficiency.

SIMDH-Padding has significant low control overhead due to
its simplicity. It takes full advantage of SIMD instructions and
also able to utilize the SIMD gather for data packing. However,
it underutilizes the computation resource due to the padding of
empty characters.

2) SIMDH-Stream: This algorithm does not divide strings to
groups for different rounds. Instead, we continuously feed the
SIMD units with strings. We treat the input strings as a stream.
In Figure 4, the zero (\0) denotes the end of a string. Suppose
we process two strings (16 strings in practice) in parallel using
two SIMD units. The input array contains four strings: “This”,
“is”, “Xeon”, “Phi”. First, we start to process words “This” and
“is”. In the third iteration, the word “is” in the second unit is
finished. Then we immediately pack the first character “X” from
next word “Xeon” into the second unit and continue the process.
Then in the 5th iteration, the word “This” is finished in the first
unit. We pack the first character “P” from the word “Phi” into
the first unit.

Iteration 1 2 3 4 5 6 7 8 9 
Unit 1 T h i s \0 P h i \0 
Unit 2 i s \0 X e o n \0   

Fig. 4. The workflow of SIMDH-Stream.

For the data packing, we adopt a prefix-sum based method
as well as utilizing SIMD primitives. First, we use one SIMD
instruction to know which characters in the vector are zeros and
store the result in a mask vector. Then we perform prefix-sum
on the mask vector to obtain the index of next strings to process.
Finally, the SIMD gather is used to collect the characters. In order
to allow fast prefix-sum computation we use a lookup table. Since
each vector contains 16 32-bit elements, we store the prefix-sum
result for 8 elements instead of 16 elements for space efficiency.
As a result, a lookup table of 28 entries with the size of around
2 KB is used, which can fit into the cache.

Compared with SIMDH-Padding, SIMDH-Stream introduces
more complex control flow for data packing. SIMDH-Padding
simply checks whether the 16 packed characters are all equal
to zero in each iteration. If it is true, then we pack all first
characters of the next 16 strings to the vector. These actions
can be finished by two SIMD instructions (one comparison and
one gather). However, in SIMDH-Stream, we check characters

in the vector one by one for each iteration. If a character is zero,
then we load the first character of the next unprocessed string to
the vector. There is no direct SIMD instructions for this process.
However, SIMDH-Stream does not waste computing resources on
empty characters. We evaluate these two algorithms in Section
IV-B.

D. Pipelined Execution for Map and Reduce Phases
Pipelined map and reduce has been adopted in the MapReduce

framework for distributed computing to improve the performance
[24]. We propose to pipeline map and reduce phases on the Xeon
Phi based on the MIMD thread execution. The motivation is that
the map function defined by users usually performs heavy com-
putation. But the reduce phase contains many memory accesses
in which the major work is to construct the global container. We
pipeline the computation-intensive map and memory-intensive
reduce to improve the overall hardware resource utilization. This
technique is more effective for the hash table container. Because
the time of reduce phase when using the array container is usually
too short to take advantage of pipelining.
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We design an efficient producer-consumer model to pipeline
the map and reduce phases. There are three major data structures,
which are local hash tables, a global hash table, and partition
queues. Specifically, each map worker still has a local hash table.
However, the local table works on a pre-allocated fix-sized small
buffer, e.g., smaller than the L2 cache. This is to improve the
data locality of local hash table building. There are First-In-First-
Out queues for different partitions. The push and pop operations
on the queues are performed by the map and reduce workers,
respectively. Suppose there are Nr reduce workers, then there
are Nr queues.

Figure 5 illustrates an example of three producers and three
consumers. There are concurrent map workers (MWorker) and
reduce workers (RWorker) on each core. It works in this way.
Each map worker processes the data and builds its own local
hash table. When the local hash table size exceeds the buffer
size, it partitions the current table and sends partition i to queue
i. After that, the local buffer is empty, and the map worker starts
to build a new local table. On the other hand, each reduce worker
corresponds to one queue. As long as the queue is non-empty,
it fetches the partitions and builds the global hash table. Since
data are partitioned, there is no conflicts among reduce workers.



If the final global hash table is very small, e.g., smaller than
the L2 cache, the non-pipelined model will be more efficient.
The major reason is the reduce phase will be too short to take
advantage of pipelining because of the small hash table. On the
other hand, the pipelined model introduces storage overhead. Our
producer-consumer model is adaptive to this case. Recall that we
allocate a fix-sized buffer (smaller than the L2 cache) for the local
hash table. If the final hash table is smaller than this buffer, no
data will be fed to the reduce worker (the consumer) until the
map phase is finished. This way, our pipelined model essentially
degrades to a non-pipelined model as we expected.

E. Eliminating Local Arrays

Recall that in order to support efficient combiners, Phoenix++
uses a local container for each worker in the map phase. Then
the local containers are merged in the reduce phase for the final
result. This design is efficient when the container size is small.
However, it will introduce performance issues when the container
becomes large. An alternative is to eliminate local containers
and directly update on the global container with low-cost atomic
operations for combiners when the container size is large.

This technique is applied to the array container. Because the
atomic data types only support basic arithmetics while the hash
table usually requires more complex data types and operations,
such as text strings and memory allocation. Based on the low
overhead of atomic data types on the Xeon Phi, using the global
array directly is more efficient when the array becomes large.
There are two major advantages.

Thread scalability. Due to the relatively small memory size
on the Xeon Phi (8 GB), the thread scalability can be limited
when using local arrays. Note that the local array is allocated in
the memory of Xeon Phi. Suppose the local array size is L bytes,
the available memory is M bytes, then the maximum number of
concurrent threads for the map phase is bM

L c. As an extreme
example of using Bloom filter in bioinformatics [25] (evaluated
in Section IV), if the whole human genome is used, the local
array size is around 3.7 GB. In such a case, only two threads
can be used on the Xeon Phi employing local arrays.

Cache efficiency. When the array is small to fit into the L2
cache, using local arrays has good cache efficiency. However,
when the array becomes large, random memory accesses on local
arrays cause poor data locality. Eliminating the local arrays but
using the global array directly for combiners is able to improve
the cache efficiency by the ring interconnection for L2 caches
on the Xeon Phi. Specifically, when using local arrays, every L2
local cache miss should cause a memory access. On the contrary,
when using the global array directly, the global array is shared
across multiple cores. When a L2 cache miss occurs on one core,
the data may be copied from another core’s L2 cache to avoid the
expensive memory access. This takes advantage of the ring-based
interconnection architecture on the Xeon Phi.

Whether eliminating local arrays is decided by our framework
automatically. Specifically, we mainly consider the cache effi-
ciency. If the size of each local array is smaller than the L2
cache, then we keep these small local arrays as Phoenix++ does.
Otherwise our framework will eliminate the local arrays.

IV. EXPERIMENTAL EVALUATION

Hardware setup. We conduct our experiments on an Intel
Xeon Phi coprocessor 5110P. The hardware specification has
been summarized in Section II-B and the Intel compiler is used.

TABLE I
BENCHMARK APPLICATIONS.

Application Container Applied optimization
Monte Carlo Array (small) Vectorization friendly map
Black Scholes N/A Vectorization friendly map
Word Count Hash table SIMD hash, pipelining
Reverse Index Hash table SIMD hash, pipelinine
Histogram Array (large) Eliminating local arrays
Bloom Filter Array (large) Eliminating local arrays

Benchmark applications. We choose six MapReduce appli-
cations as shown in Table I. Particularly, Histogram, Word Count,
and Reverse Index are the sample applications from Phoenix++.
We implement Monte Carlo and Black Scholes, which follow
the GPU-based parallel implementations [4]. We also implement
the building phase of Bloom Filter, which simulates the use in
bioinformatics [25].

Implementation detail. MRPhi is developed using C++ and
pthread. It natively runs on the Xeon Phi coprocessor. We
organize the thread affinity in the scatter way such as thread
i belong to core (i mod 60), where 60 is the number of cores.

For the experiments, we first chracterize the performance
of Xeon Phi coprocessor. These early characterization results
motivate our design and are also useful for other developers. Then
we study the performance impact of our various optimization
techniques. Next, we conduct end-to-end performance compar-
ison with Phoenix++ on the Xeon Phi. Finally, we report the
performance comparison with a traditional Intel Xeon CPU. By
default, the number of threads per core is set to the one that can
generate the best performance, unless specified otherwise.

A. Characterizing Xeon Phi Coprocessor

addition multiplication division sqrt exp log
speedup 7.716101695 4.864139021 14.41095 8.301127 11.54114 10.82571
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Fig. 6. Speedup of vectorization for mathematical functions (a single thread).
Auto-vectorization performance. We first evaluate the per-

formance of auto-vectorization for computation-intensive work-
loads. For each mathematical function, we use one thread to
evaluate a large number of input elements. Figure 6 reports the
speedup of using vectorization over their scalar versions. It shows
5-14X speedup can be achieved employing vectorization. This
confirms that utilizing VPUs is crucial for high performance.

SIMD scatter and gather. We evaluate the new SIMD
scatter/gather instructions on the Xeon Phi. We make each thread
perform independent scatter and gather (each thread has its own
input and output arrays). We vary the total size of the data per
thread to study the performance. Figure 7 shows that when the
data size is small to fit into the local L2 cache, SIMD scatter and
gather are up to 3.4X faster than their scalar versions. However,
when the data size becomes large, the SIMD scatter and gather
do not help the performance since the performance is dominated



scatter
report bandwidth GB/sec
vector length per t  12KB 24KB 48KB 96KB 192KB 384KB 768KB 1.5MB 3MB 6MB 12MB
SIMD scatter 250 125 77 54 25 7.8 5.8 5.3 4.9 4.8 4.78
Scalar scatter 73 66 50 35 17 7.9 6 5.3 4.93 4.8 4.6

gather

vector length per t  12KB 24KB 48KB 96KB 192KB 384KB 768KB 1.5MB 3MB 6MB 12MB
SIMD gather 256 167 81 62 26 9.2 6.9 6 5.8 6 5.7
Scalar gather 86 78 53 41 16 9.7 6.7 5.7 5.9 5.6 5.8
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Fig. 7. Comparison between SIMD and scaler scatter/gather.

by the memory latency due to cache misses. This suggests us
that it is worthwhile to exploit the SIMD scatter/gather when the
memory accesses are distributed in a small range of addresses.
For example, it is efficient for SIMDH-Padding to use the SIMD
scatter/gather to pack data to the vector registers.

Atomic data types. We study the performance of atomic
operations for our purpose. Our context is random memory
accesses on a large array with a very low conflict rate. We design
our experiment to randomly update elements in an array with
32 million integers. Figure 8(a) shows that using the native and
atomic data types do not have much performance difference. Note
that we guarantee the update with native data types does not
have conflicts. We consider the overhead of atomic operations
is hidden by the memory latency. This suggests us when the
memory accesses are random with a low conflict rate, using
atomic data types on the Xeon Phi is a reasonable choice when
designing algorithms.

the vectori is 32 million integers
there are in total 100 million updates
report the bandwidth page mapping overhead (Gb/sec)
#thread

60 120 180 240 60 120 180 240
Native 1.167568 2.215385 3.2 3.927273 Memory bandwidth (read) 60 94 117 114
Atomic 1.183562 2.335135 3.323077 4.114286 Page mapping bandwidth 9.6 16.5 20 21.6

0 

1 

2 

3 

4 

5 

60 120 180 240 

B
an

dw
id

th
 (G

B
/s

ec
) 

#thread 

Native 
Atomic 

(a) Native vs. atomic  

0 

20 

40 

60 

80 

100 

120 

140 

60 120 180 240 

B
an

dw
id

th
 (G

B
/s

ec
) 

#thread 

Memory bandwidth (read) 
Page mapping bandwidth 

(b) Page mapping bandwidth 

Fig. 8. (a) The random memory access bandwidth with native and atomic data
types. (b) Memory bandwidth of page mapping.

Thread initialization overhead. Finally, we find the thread
initialization overhead on the Xeon Phi is high. The initialization
overhead on the Xeon Phi is around 0.75 millisecond per thread,
while only around 0.067 millisecond per thread on the Xeon
CPU. Therefore, we implement a thread pool and make the
threads be initialized only once (with the total overhead of around
240 millisecond). In our evaluation, we exclude this thread pool
initialization overhead since it is the same for all programs on
the Xeon Phi.

B. Performance Evaluation of Optimization Techniques
In this section, we evaluate the performance impact of our

proposed techniques in detail. When we evaluate a specific
technique, we evaluate the optimized implementation (with all
applicable techniques enabled, denoted as Opt.) and the other
implementation without this specific technique. Both of these
two implementations are implemented by ourselves. By default,

#path (M) #option (M)
100 200 300 400 500 600 700 800 128 160

Opt. 0.134 0.264 0.567 0.688 0.704 0.94 0.92 1.11 Opt. 0.33 0.379
w/o vector 0.5 1.1 1.4 1.88 2.33 2.89 3.22 3.75 w/o vector 1.1 1.36

0 

1 

2 

3 

4 

100 200 300 400 500 600 700 800 

Ti
m

e 
(s

ec
) 

#path (million) 

Opt. 
w/o vectorization 

(a) Monte Carlo 

0 

1 

2 

3 

4 

128 160 192 224 256 288 320 352 

Ti
m

e 
(s

ec
) 

#option (million) 

Opt. 
w/o vectorization 

(b) Black Scholes 
Fig. 9. Performance impact of vectorization friendly map for Monte Carlo
(with the number of paths varied) and Black Scholes (with the number of options
varied).

the number of threads per core is set to the one that can generate
the best performance, unless specified otherwise.

Vectorization friendly map. Figure 9 shows the performance
impact of vectorization friendly map for Monte Carlo and Black
Scholes with data size varied. It shows that the vectorization
friendly map can improve the performance by 2.5-4.2X and
3.0-3.6X for Monte Carlo and Black Scholes, respectively. For
those two applications, the map phase dominates the overall
performance (>99%). Therefore the vectorization for the map
phase can greatly improve the overall performance.

SIMD parallelism for hash computation. We first evaluate
the performance of hash computation separately using a single
thread. Figure 10(a) shows the performance result of pure hash
computation with the input data size varied. We use the same data
set as that used in the Word Count application. This shows that
the SIMDH-Padding and SIMDH-Stream achieve the speedup
of up to 2.8X and 2.2X over the scalar hash, respectively.
Though SIMDH-Padding wastes computation resource due to the
padding, it achieves better performance. There are two reasons.
First, the SIMD scatter/gather operations are more efficient used
in SIMDH-Padding due to the small address range of memory
accesses. Second, the control logic of SIMH-Padding is simpler,
thus the overhead of data padding to vectors is also lower.

We further show the performance impact of using the SIMD
hash for Word Count in Figure 10(b). It shows the overall
performance is slightly improved (around 6%). The insignificant
improvement is because the overall performance is dominated by
the memory latency rather than the hash computation [26].

hash computation

Data size(MB) 100 150 200 250 300 350 400 450 500
Scalar hash 2.05 3.1 4.1 5.11 6.15 7.19 8.2 9.21 10.3
SIMDH-Padding 0.75 1.1 1.5 1.85 2.25 2.65 2.98 3.31 3.7
SIMDH-Stream 0.94 1.4 1.88 2.34 2.82 3.3 3.76 4.22 4.7

word count

Data size (MB) 100 150 200 250 300 350 400 450 500
Opt. (w/ SIMDH-Padding 0.78 0.953 1.12 1.28 1.456 1.534 1.69 1.87 2.1
w/ scalar hash 0.792 0.986 1.17 1.354 1.524 1.61 1.785 1.97 2.2
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Fig. 10. The SIMD hash computation performance with the input data size
varied. (a) The pure hash computation time (one thread). (b) The performance
of Word Count with and without the SIMD hash computation.

Pipelined Map and Reduce. Word Count and Reverse Index
are able to take advantage of pipelined map and reduce. We
report the results of Reverse Index as Word Count has the similar
conclusion. We use the data set in Phoenix++ for evaluations,



which contains 78,355 files and 307,921 links in total. Figure
11(a) shows the elapsed time with the number of threads varied. It
shows that the overall performance is improved by around 8.5%.
We further decompose the time as shown in Figure 11(b). This
shows that for the map and reduce phases only, the pipelining
technique improves the performance by around 14%. However,
due to the storage overhead, the memory cleanup phase of the
pipelined map and reduce is more expensive and offsets the
overall performance improvement.

word count Time breakdown
60 120 180 240 Init. Map+Reduce Merge

Opt. 24.4 21.2 21.2 22 Opt. 0.186 17.2 1.24
w/o pipeline 24.5 23 23.2 25 w/o pipelin 0.124 20 1.26
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Fig. 11. Performance impact of pipelined map and reduce for Reverse Index.
(a) Elapsed time (b) Time breakdown.

Eliminating local arrays. Now we study how the performance
can be improved by eliminating local arrays but using atomic
operations on the global array.

#thread
60 120 180 240 60 90 120 150

Opt. (w/o lo  1.6 0.82 0.584 0.61 Opt. (w/o lo  2 1.75 1.3 1.2
w/ local arr 1.73 1.243 w/ local arr 2 1.8 1.35 1.23
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Fig. 12. Elapsed time of Histogram and Bloom Filter with the number of
map threads varied. Histogram: 16 million unique keys and 256 million input
elements; Bloom Filter: 30 million input elements, 300 million entries.

By eliminating local arrays, the thread scalability for the map
phases can be improved. Figure 12 demonstrates such scenarios.
The sizes of each local array are 64 MB and 40 MB for the
Histogram and Bloom Filter, respectively. Figure 12 shows that
the largest numbers of threads when using local arrays are 120
for Histogram and Bloom Filter, due to the limited memory size
(8 GB). On the contrary, if local arrays are eliminated, more
threads can be used. As a result, by eliminating local arrays,
it achieves the speedup of up to 2.1X and 1.6X for Histogram
and Bloom Filter, respectively. Note that, with the different sizes
of arrays, the available number of map threads for using local
arrays is different. Therefore, the performance improvement from
eliminating local arrays varies acorrs different data sets.

In Figure 12, we also observe that when using the same number
of threads, the optimized implementation still outperforms the
implementation using local arrays. We consider this is because
of the improved data locality. We further study this problem
and report the results for Histogram. We vary the data size
of each array (note that the Opt. solution only has one global
array). In this experiment, we exclude the impact from the thread
locality and make them be able to employ the same number of

#keys (M) #keys (M)
the map phase time (sec.) estimated l  

array size (KB) array size (K
128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB

Opt. (w/o local array 0.468 0.439 0.455 0.467 0.478 0.443 0.478 0.498 Opt. (w/o lo  
w/ local arrays 0.282 0.436 0.546 0.6 0.654 0.676 0.671 0.677 w/ local arr
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Fig. 13. Performance impact of eliminating local arrays for the map phase in
Histogram. (a) Time. (b) Estimated memory latency impact.

threads. Figure 13(a) shows that when the array size is small
enough to fit into the L2 cache, using local arrays is more
efficient. This is because the global array has the overhead of
cache coherence. However, when the array becomes larger, using
global arrays outperforms local arrays by up to 34%. In such
a case, both local and global arrays suffer from cache misses.
However, the optimized solution can take advantage from the
ring interconnection for better cache efficiency (Section III-E).

To confirm the cache efficiency, Figure 13(b) further shows the
estimated memory latency impact. The memory latency impact
is suggested by Intel to investigate the cache efficiency. It is an
approximation of the number of clock cycles devoted to each
L1 cache miss. Figure 13(b) shows the consistent trend of the
memory latency impact as the elapsed time.
C. MRPhi vs. Phoenix++ on the Xeon Phi

TABLE II
DATA SETS FOR END-TO-END PERFORMANCE COMPARISON.

Application Data set
Word Count Input data size: 500 MB
Reverse Index #files; 78,355 ; #links: 307,921 ; size: 1 GB
Monte Carlo #paths: 800 million
Black Scholes #options: 352 million
Histogram #unique keys: 16 million; #elements: 256 million
Bloom Filter #elements: 30 million; #entries: 300 million (Ara-

bidopsis chromosome 1)

Now we show the end-to-end performance comparison be-
tween our MRPhi and Phoenix++ [14], which is state-of-the-
art MapReduce framework on multicore. On the Xeon Phi,
Phoenix++ also runs natively. We use large data sets for eval-
uations, which are summarized in Table II.

Figure 14 shows the overall performance comparison. Since
the largest numbers of available threads for Histogram and Bloom
Filter are less than 60 threads, we use dash lines. Overall, MRPhi
outperforms Phoenix++ for all applications. For Monte Carlo and
Black Scholes, which take advantage of vectorization in MRPhi,
they are up to 2.7X and 4.6X faster than their counterparts in
Phoenix++. For Word Count and Reverse Index that are based
on the hash table, MRPhi can achieve the speedup of up to
1.2X. Furthermore, by eliminating local arrays, MRPhi is able
to achieve the speedup of up to 38X and 18X for Histogram
and Bloom Filter, respectively. Note that these two speedup
numbers are even better than those reported in Figure 12. This
is mainly because Phoenix++ has some implementation issues
when processing large arrays, which make it have worse thread
scalability as well as much worse performance than our own
implementation using local arrays.



60 120 180 240 reverse index 60 120 180 240 60 120 180 240 60 120 180 240
word count mrphi 2.9 2.1 1.9 2 MRPhi 24.4 21.2 21.2 22 monte carl mrphi 2.3 1.26 1.04 1.13 black sholemrphi 1.56 1.028 0.837 0.703
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Fig. 14. Performance comparison between MRPhi and Phoenix++ on the Xeon Phi. The horizontal axis is number of threads. The vertical axis is time (second).

In summary, our MRPhi can achieve the speedup of 1.2X to
38X over Phoenix++ for various applications on the Xeon Phi.
D. Performance Comparison between Xeon Phi and Xeon

Word Count Reverse Index Monte Car Black Scho HistogramSimp Bloom FilteHistogram Linear RegrKMeans
Xeon Phi 1.9 21.2 1.04 0.703 0.749 1.36 0.18 0.347 2.6
Xeon 1.6 2.5 12.2 14.5 4.86 3.65 0.39 0.145 2.1

normalized:

Monte Carlo Black Scho Histogram Bloom Filter Histogram Word CounReverse IndLinear RegrKMeans
Xeon Phi (MRP 1 1 1 1 1 Xeon Phi (M 1 1 1 1
Xeon (Phoenix+ 11.73076923 20.62589 6.488652 2.683823529 2.166667 Xeon (Phoe 0.842105 0.117925 0.417867 0.807692

Monte Carlo Black Scho Histogram Bloom Filter Word CounReverse Index
Speedup 11.73076923 20.62589 6.488652 2.683823529 0.842105 0.117925
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Fig. 15. Speedup of MRPhi on Xeon Phi over Phoenix++ on Xeon. .

Finally, we briefly compare the performance of MapReduce on
Xeon Phi with that on a conventional Xeon processor. We adopt
an Intel Xeon E5620 (2.4 GHz) CPU for comparison. The Xeon
E5620 CPU has 4 cores and 8 threads in total. It has 12 MB
cache. We report the performance of our MRPhi on the Xeon
Phi and Phoenix++ on the Xeon. Since Phoenix++ is originally
developed for multi-core CPUs. We use the data sets in Table II.

Figure 15 shows the performance comparison between the
Xeon Phi and Xeon for six MapReduce applications. Particularly,
for Monte Carlo and Black Scholes, which are able to employ
vectorization to exploit the SIMD VPUs on the Xeon Phi, they
can achieve the speedup of an order of magnitude on the Xeon
Phi. This confirms that using vectorization or SIMD instructions
is particularly important on the Xeon Phi.

On the other hand, Figure 15 also shows that Word Count
and Reverse Index on the Xeon Phi are not as fast as those on
the Xeon. From our further investigation, there are two major
reasons. First, the hardware design of small local cache per core
on the Xeon Phi is inefficient when there are a large number
of random memory accesses, such as Word Count and Reverse
Index using hash tables. Second, other system overhead on the
Xeon Phi is significantly higher than that on the Xeon. From the
performance tuning report of Intel VTune, we find the system
overhead (functions from the Linux kernel or pthread library)
takes 30-50% of the overall Xeon Phi running time. On the Xeon,
this percentage is lower than 10%.

V. CONCLUSION

In this work, we develop MRPhi, which is the first MapReduce
framework optimized for the Intel Xeon Phi coprocessor. In
MRPhi, in order to take advantage of VPUs, we develop a
vectorization friendly technique for the map phase and SIMD
hash computation. We also pipeline the map and reduce phases
to better utilize the hardware resource. Furthermore, we eliminate
local arrays to improve the thread scalability and data locality.
Our framework is able to identify suitable techniques for a given
application automatically. Our experimental results show that

MRPhi can achieve the speedup of 1.2X to 38X over Phoenix++
for different applications.
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