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ABSTRACT
Scientific computing applications often require support for
non-traditional data types, for example, numbers with a pre-
cision higher than 64-bit floats. As graphics processors, or
GPUs, have emerged as a powerful accelerator for scientific
computing, we design and implement a GPU-based extended
precision library to enable applications with high precision
requirement to run on the GPU. Our library contains arith-
metic operators, mathematical functions, and data-parallel
primitives, each of which can operate at either multi-term or
multi-digit precision. The multi-term precision maintains an
accuracy of up to 212 bits of signifcand whereas the multi-
digit precision allows an accuracy of an arbitrary number of
bits. Additionally, we have integrated the extended preci-
sion algorithms to a GPU-based query processing engine to
support efficient query processing with extended precision on
GPUs. To demonstrate the usage of our library, we have im-
plemented three applications: parallel summation in climate
modeling, Newton’s method used in nonlinear physics, and
high precision numerical integration in experimental math-
ematics. The GPU-based implementation is up to an order
of magnitude faster, and achieves the same accuracy as their
optimized, quadcore CPU-based counterparts.

1. INTRODUCTION
New generation GPUs (Graphics Processing Units) have

become a powerful and cost-effective co-processor for scien-
tific applications [24]. With the advance on the support of
general-purpose computation, GPUs have supported IEEE-
compliant native double precision floating point numbers.
However, data types with higher precision or extended pre-
cision are required in scientific applications [3] in two as-
pects. First, it is adopted to improve numerical reproducibil-
ity and stability. In some applications, computation with
native floating point numbers can cause large rounding er-
rors and produce incorrect final results, e.g., the climate
modeling [19]. Second, some applications inherently require
high precision support, such as high precision numerical in-
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tegral in experimental mathematics [7]. Without extended
precision support, such applications cannot be handled by
modern processors. In this paper, we present the design
and implementation of high-performance and high-precision
algorithms on GPUs. Moreover, we demonstrate the per-
formance of query processing with extended precision and
related applications on GPUs.

Extended precision libraries, such as ARPREC [6], QD [20]
and GMP [11], are provided to facilitate programming the
extended precision on CPUs. Unfortunately, the computa-
tion with extended precision is much more expensive than
native precision due to additional computation overhead in-
troduced. For example, an arithmetic operator with quad-
double precision (around 62 decimal digits), which consists
of hundreds of native precision arithmetic instructions, is
25x slower than a native precision arithmetic operator on
the CPU [3]. While the computational overhead can be a
killer for the CPU-based applications, there are opportuni-
ties on the GPU to support fast computation with extended
precision. This is because the GPU has over an order of mag-
nitude higher computational power and memory bandwidth.
For example, the NVIDIA 280 with 240 cores achieves over
1 Tera FLOPS (Floating Point Operations per Second) and
over 100 GB per second memory bandwidth.

With superb raw hardware performance, we develop an
extended precision library that is optimized with the GPU
hardware features. In particular, the library includes arith-
metics, mathematical functions and data parallel primitives.
We have implemented two basic extended precision formats,
namely multi-term [20] and multi-digit [6]. We show that an
efficient implementation on the GPU requires an optimized
memory layout, and memory accesses with a good temporal
locality.

Considering GPUs have been shown as a promising plat-
form for efficient query processing [18, 17], and modern sci-
entific applications may rely on data management systems
to maintain their data sets [15, 8], we integrate our extended
precision library into an existing GPU-based query process-
ing engine [17] to enable data management with extended
precision for scientific applications on GPUs. This way,
scientific applications requiring extended precision support
may directly take advantage of this extended query process-
ing engine on the GPU. For example, since the native pre-
cision causes large rounding errors in the global summation
of climate modeling [19], we develop a user-defined aggre-
gate function with extended precision in our query engine
to implement the summation.

Based on our library and GPU-based query processing en-



gine with extended precision support, we have implemented
three real-world applications to demonstrate the effective-
ness and efficiency. Specifically, the first application adopts
the multi-term format to maintain the numerical reproducibil-
ity in a climate modeling application [19]. The second ap-
plication computes a 42-digit physical constant [5] through
Newton’s method using the multi-term format. In the third
application, the multi-digit format is adopted in the numer-
ical integration algorithm [4] in experimental mathematics.
Compared with the parallel CPU implementations on quad-
cores, our GPU-based implementations are around 3-12x
faster than their CPU counterparts, meeting the same accu-
racy requirement.
The remainder of the paper is organized as follows. The

background and related work are presented in Section 2.
We describe the implementation of high precision algorithms
on GPUs in Section 3. Section 4 shows the experimental
results on the efficiency of operations implemented in our
library and database operations. Section 5 demonstrates the
performance of three applications with extended precision on
the GPU. Finally, we conclude in Section 6.

2. PRELIMINARY AND RELATED WORK
In this section, we introduce the preliminary on extended

precision formats, and then review the related work on their
applications in scientific computing.

2.1 Extended Precision Formats
Depending on how an extended precision number is repre-

sented, there are two basic kinds of formats, namely multi-
term and multi-digit.
Multi-term. The multi-term format represents an ex-

tended precision number as a sum of multiple native floating
point numbers, each of which has its own significand and ex-
ponent. The QD library [20] has adopted this approach and
implemented double-double (around 31 decimal digits) and
quad-double (around 62 decimal digits) precision, which use
two and four native double precision numbers to represent
an extended precision number, respectively.
Multi-digit. The multi-digit format stores an extended

precision number with a sequence of digits coupled with a
single exponent. ARPREC [6] is a representative high preci-
sion library using such method. In ARPREC, an extended
precision number (denoted as A) is represented as an ar-
ray of 64-bit words (the ith word is denoted as wi): A =
±248w3

∑n−1
k=0 wk+42

−48k, where ± = sign(w2), n = |w2|,
and w1 stores the number of words allocated for this ar-
ray. The multi-digit format can represent an arbitrary pre-
cision number at run-time. However, the computation cost
is usually higher than multi-term when the same precision
is required.

Algorithm 1 TWO-SUM(a, b)

s← a⊕ b;
v ← s⊖ a
e← (a⊖ (s⊖ v))⊕ (b⊖ v)
return (s, e)

For the detailed mathematical background and algorithms
for these extended precision formats, we refer readers to pre-
vious studies on extended precision techniques [9, 26, 20].
We show the example of an addition with quad-double pre-
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Figure 1: The algorithm of an addition with quad-
double precision [20]. The addition of two quad-
doubles numbers is implemented using the addition
with doubles.

cision. For any binary operator · ∈ {+,−,×, /}, and a and
b with native double precision, we use fl(a · b) = a ⊙ b
to denote the double precision result of a · b, and define
a·b = fl(a·b)+err(a·b). Algorithm 1 computes s = fl(a+b)
and e = err(a+ b). This algorithm is also illustrated in Fig-
ure 1(a). Let (a0, a1, a2, a3) and (b0, b1, b2, b3) represent two
quad-double precision numbers, and the sum of these two
numbers is represented as (s0, s1, s2, s3). Figure 1(b) shows
how an addition is performed on two quad-double precision
numbers. An additional Renormalization routine is used to
normalize the five-item expansion to four components.

2.2 Related Work
Nowadays, extended precision is widely used in various

scientific applications of different domains, such as physics,
chemistry, and applied mathematics [3].

Extended precision has been used to improve numerical
reproducibility and stability. He et al. [19] and Lake et al.
[21] have presented such scenarios and extended precision so-
lutions in climate modeling and planetary orbit calculations,
respectively. Moreover, XBLAS [28] has adopted extended
precision internally to improve the accuracy of results for
basic linear algebra routines.

Extended precision is also used to support the computa-
tion requiring arbitrary precision. For example, the arbi-
trary precision is suitable for a few applications from exper-
imental mathematics, such as numerical integration [7] and
integer relation detection [2]. More recently, Gunnels et al.
[16] have adopted the arbitrary precision library ARPREC
to solve discrete optimization problems.

GPGPU(General-Purpose Computation on Graphics Pro-
cessors) has become a fruitful research area in recent years.
We refer readers to the survey on GPGPU [24]. Previous
studies [18, 13, 10] show that the performance of database
operations can be improved significantly with the GPU ac-
celeration. There are several studies [14, 27] providing sim-
ple extended precision functions on GPUs using the multi-
term format based on single precision. Moreover, the ex-
tended precision technique is adopted in some GPU-based
applications [12]. To our best knowledge, there is neither
a public, complete library for general purpose high preci-



sion computation on GPUs nor a comprehensive study for
database operations with extended precision on GPUs.

3. EXTENDED PRECISION ON GPUS

3.1 Library Overview
We have implemented both multi-term and multi-digit

extended precision algorithms on the GPU using CUDA
[22]. Since we have mainly adopted the algorithms imple-
mented in the QD [20] and ARPREC [6] library on CPUs,
we named our GPU-based multi-term and multi-digit im-
plementations as GQD and GARPREC, respectively. Ex-
tended precision algorithms in those CPU libraries are de-
signed based on IEEE-compliant double floating point num-
bers. Similar to the CPU-based extended precision libraries,
our GPU-based library adopts native double floating point
numbers for our implementations on GPUs. Both GQD and
GARPREC have implemented arithmetic operators and im-
portant mathematical functions including square root, ex-
ponential and logarithm functions, and trigonometric func-
tions. GQD consists of double-double and quad-double pre-
cision, which can achieve the accuracy of around 31 and
62 decimal digits, respectively. GARPREC is suitable for
arbitrary precision computation. All arithmetic operators
and mathematical functions are implemented as GPU ker-
nel functions to facilitate further developments. Moreover,
we have also implemented data parallel primitives with ex-
tended precision, including map, scatter, gather, reduction,
prefix-sum, and sorting [18]. These primitives can be used
to construct high level applications effectively.

3.2 Memory Optimizations
Memory optimizations are used to improve the access lo-

cality of the extended precision computation. We carefully
design the data layout in order to exploit the coalesced ac-
cess feature of the GPU. In CUDA, when each 16 threads in
a thread group access consecutive memory addresses, these
memory accesses are coalesced into one access. Moreover,
we put the frequently accessed data, such as intermediate
results, into the local memory of the GPU, which is a small
user-programmable on-chip fast memory.
Coalesced access optimization. Although algorithms

for extended precision computation implemented on GPUs
are the same as traditional algorithms, an extended precision
number requires multiple native precision numbers for the
representation. To simplify our presentation, a native preci-
sion number used in extended precision formats is denoted
as an element. Suppose m elements are required for each
extended precision number. Given an array that contains n
extended precision numbers, there are (n×m) elements used
in this array. There are two methods to logically organize
these elements. For extended precision libraries on CPUs, a
sequential memory layout is adopted in QD and ARPREC.
In this approach, m elements used for the same extended
precision number are stored sequentially in a linear mem-
ory space. Suppose a thread accesses the jth element in
the ith extended precision number, it actually accesses the
(i×m+ j)th element in the array. Due to the SIMD nature
of GPUs, the memory addresses accessed by the threads in a
thread group are not consecutive. Therefore, these accesses
do not match the coalesced access pattern of GPUs. Instead,
the interval layout stores the elements of the same extended
precision number at a regular interval, n. Then the jth

element in the ith extended precision number is stored in
the position of (j×n+ i) in the array. In this way, memory
addresses accessed by the threads in a thread group are con-
secutive, matching the coalesced access pattern of the GPU.
Thus the interval memory layout is more suitable than the
sequential memory layout on the GPU, and is adopted in
our implementations. Specifically, we record the memory
address of first element for each extended precision number
for the representation. Other elements in an extended pre-
cision number can be accessed according to the address of
first element and the number of extended precision number
stored in the array. Figure 2 shows an example of different
memory layouts for four extended precision numbers, and
each one consists of four elements. Through evaluations,
the implementation employing the interval memory layout
is up to 3x faster than the sequential memory layout.

(a) Sequential memory layout

(b) Interval memory layout

Figure 2: Different memory layouts of extended pre-
cision numbers on GPUs. eij refers to the jth ele-
ment used in the ith extended precision number.
Elements in the same color belong to the same ex-
tended precision number.

Local memory optimization. Since an extended pre-
cision number is represented as multiple native numbers,
the memory pressure of extended precision computation is
much higher than native precision. Registers are usually
used in the native precision computation on GPUs to hold
necessary intermediate results. However, due to the large
size of intermediate results, e.g., around 70 double precision
numbers used for a 1000-digit extended precision number in
GARPREC, registers of a multiprocessor on GPUs may be
exhausted. Therefore, we use the local memory on GPUs
with a larger size but also a low memory access latency to
hold intermediate results. Moreover, the global memory is
further used if the local memory is also not sufficient to store
necessary intermediate results.

4. PERFORMANCE EVALUATION
This section presents the experimental results on the ef-

ficiency of extended precision operations on the GPU, in
comparison with their CPU-based counterparts.

4.1 Experimental Setup
We conduct our experiments on a commodity PC run-

ning Fedora 10 Linux with a 2.40 GHz four-core CPU (Intel
Q6600), 2 GB main memory and a NVIDIA GeForce GTX
280 GPU (G280). The theoretical bandwidth of G280 and
CPU are 141.7 GB/sec and 10.4 GB/sec, respectively. G280
has 240 processor cores and 1 GB device memory. G280
natively supports IEEE-compliant double precision floating
point numbers. Our implementations are developed using
NVIDIA CUDA 2.0 [22]. QD [20] and ARPREC [6] are
adopted as the CPU counterpart for the multi-term and
multi-digit formats. Additionally, all CPU-based implemen-
tations are compiled with the -O3 optimization option and
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Figure 3: Performance comparison of the exponen-
tial function in GARPREC for different memory lay-
outs with the precision varied.

developed using OpenMP [23] to take the advantage of mul-
tiple cores on the CPU.
We use the map primitive employing different functions

to measure the performance of various extended precision
computation operations in our library. The default data
sets used for the multi-term and multi-digit formats are ran-
domly generated 8 million and 1 million extended precision
numbers, respectively. For both formats, speedups of typ-
ical arithmetic operations and mathematical functions on
the GPU are reported. We also study the performance of
three basic database operations with extended precision on
GPUs, namely selection, sort, and non-indexed nested-loop
join (NINLJ). We have excluded the time of memory trans-
fer between the main memory and GPU memory for all eval-
uations.
While the native double precision on modern GPUs are

IEEE-compliant, it does not necessarily mean that all ex-
tended precision computation on the GPU produces the
exactly same result as that on the CPU. First, the IEEE
floating point standard has not described the required er-
ror bounds or any implementation details for mathematical
functions. A mathematical function with native precision
on the GPU may produce slightly different results compared
with the function on the CPU [22], and consequently cause
the result difference for extended precision. Second, algo-
rithms for most mathematical functions with extended pre-
cision do not have theoretical error bounds. For example,
the last word in ARPREC is not reliable for some functions
[1], such as the exponential function. Through our exten-
sive tests, the result on the GPU is different from that on
the CPU with up to the last two digits for mathematical
functions, but the exactly same as that on the CPU for
arithmetic operators. Moreover, the computation flow also
affects the result value for a specific application.

4.2 Evaluation Results

4.2.1 Computation Performance
We first study the performance impact from the opti-

mized memory layout. We show the comparison result of
multi-digit format with the sequential and interval memory
layouts. Figure 3 has shown the speedup of GPU-based im-
plementations with the sequential and interval memory lay-
outs for the exponential function in GARPREC compared
with their CPU counterparts. Overall, the implementation
employing the interval memory layout is around 3x faster
than the sequential memory layout, and 8-12x faster than
the CPU-based parallel implementation. The performance
improvement from the interval memory layout is due to the

coalesced access pattern adopted to utilize the high mem-
ory bandwidth on the GPU. Through our further evalua-
tions, the real memory bandwidth with and without the
coalesced access pattern on G280 are around 110 GB/sec
and 25 GB/sec, respectively. Considering the computation
and branch divergency that may offset the memory band-
width improvement, the difference of bandwidth efficiency
roughly agrees with the overall performance difference be-
tween the implementations with an interval and sequential
memory layout on the GPU.

Table 1: Speedups of arithmetics and typical mathe-
matical functions in GQD compared with their CPU
counterparts.

double-double quad-double
+ 20 16
× 21 11
/ 16 12

sqrt 21 12
exp 27 13
log 27 13
sin 13 10

Table 2: Speedups of arithmetics and typical math-
ematical functions in GARPREC compared with
their CPU counterparts.

500 digits 1000 digits 1500 digits 2000 digits
+ 12 12 12 11
× 11 9 8 8
/ 13 10 10 10

sqrt 13 11 10 10
exp 12 9 8 7
log 12 10 9 9
sin 8 7 7 7

Table 1 and 2 have summarized speedups of arithmetic
operators and typical mathematical functions in GQD and
GARPREC compared with their CPU counterparts. The
computation with double-double and quad-double precision
in GQD achieves the speedup of up to 27 and 16 times,
respectively. Arithmetics and mathematical functions in
GARPREC are 7-13x faster than their CPU counterparts.
Since the algorithm of multi-digit is more complex than that
of multi-term, it may decrease the speedup of GPUs, e.g.,
more statement branches can hurt the overall performance
due to the SIMD feature of GPUs. Therefore, the speedup of
GARPREC is less significant than that of GQD. Neverthe-
less, GPUs have been shown to accelerate the computation
with extended precision greatly.

4.2.2 Database Operations
We have integrated extended precision algorithms into an

existing GPU-based query processing engine [17] to support
data management with extended precision. We show the
performance of three basic database operations with double-
double and quad-double precision: selection, sort, and non-
indexed nested-loop join. Since aggregation is simply a par-
allel reduction or summation, we show its performance in



the context of user-defined aggregation functions in scien-
tific computing in Section 5.
Selection. We consider the range selection with selectiv-

ity varied to study the selection performance with extended
precision. The relation is fixed to 16 million tuples. Figure
4 shows the GPU-based selection with extended precision is
around 2-8x faster than their CPU counterparts.
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Figure 4: Performance comparison of selection with
double-double and quad-double precision on the
GPU and CPU when the selectivity is varied.

Sort. We have integrated the multi-term format to the
GPU-based bitonic sort. The sort on the CPU is a parallel
quick sort implemented with OpenMP. Figure 5 illustrates
the elapsed time of GPU- and CPU-based sort algorithms
with extended precision when the relation size is varied. Our
GPU-based sort outperforms the quick sort on the CPU by
up to 3.1 and 3.8 times for the double-double and quad-
double precision, respectively.
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Figure 5: Performance comparison of sort with
double-double and quad-double precision on the
GPU and CPU when |R| is varied, where |R| is the
number of tuples.

NINLJ. For two given relations R and S, we investigate
the non-equijoin R.val ≤ S.val ≤ R.val+δ, where δ is varied
in our evaluations to examine the performance with different
join selectivity values. R and S are fixed to 32,000 tuples.
Figure 6 shows the performance of NINLJ with extended
precision on the GPU and CPU. The GPU-based NINLJ is
around 6-7x faster than its parallel CPU counterpart.
Overall, the speedups of three operations are similar to

or slightly higher than the comparison result with native
precision reported by He et al. [18], which shows the GPU
has a similar capability to accelerate database operations
with extended precision. This indicates the effectiveness of
our optimization techniques for extended precision.

5. APPLICATIONS
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Figure 6: Performance comparison of NINLJ with
double-double and quad-double precision on the
GPU and CPU when the selectivity is varied.

In this section, we demonstrate three real-world scientific
applications that require extended precision support. We
compare the performance and accuracy of GPU-based im-
plementations with their CPU counterparts. We use the
experimental setup the same as that in Section 4. All CPU
implementations are also developed using OpenMP to un-
lock the power of the multi-core CPU.

5.1 Parallel Summation in Climate Modeling
In this application, the multi-term extended precision is

used to improve the numerical reproducibility and stabil-
ity in scientific computing. He et al. have identified the
numerical reproducibility issue raising in a parallel climate
modeling simulation [19]. They have observed that the same
simulation performed on different numbers of processors pro-
duced very different results. They further found that the
major error was generated from a global summation. Al-
though only two decimal digits are required for final results
in this application, the double precision is insufficient to pro-
vide the correct result due to large rounding errors. The
authors have addressed this issue by adopting the double-
double precision in the QD library.

As an example, we adopt the data of sea surface height
(SSH) including 7680 floating point numbers used in the
previous study of climate modeling [19] to demonstrate the
accuracy and performance of our GQD library. We focus
on the summation step that may produce incorrect results
when double precision is used. The summation is imple-
mented as a user-defined aggregate function sum in the
GPU-based query processing engine with extended preci-
sion. The correct result of summation for this data set is
0.35798583924770355. Table 3 shows summation results em-
ploying different levels of precision on the GPU and CPU.
Either the GPU or the CPU produces an incorrect result
when only the native double precision is used. In contrast,
double-double precision is sufficient for this application since
both the GPU and the CPU have generated the correct re-
sult.

To study the performance, we have randomly sampled the
original SSH data set to generate a new large data set in or-
der to scale the data size. We demonstrate the performance
of summation employing double-double precision only since
it is sufficient to produce correct results. Figure 7 shows the
elapsed time of the CPU- and GPU-based summation with
double-double precision as a function of the number of in-
put elements. The GPU-based implementation significantly
outperforms the CPU-based parallel implementation, with
a peak speedup of around 10x.



Table 3: Results of summation employing different
levels of precision on the GPU and CPU. The cor-
rect value is 0.35798583924770355.

CPU GPU
Native double 34.414768218994141 0.2500000000000000
Double-double 0.35798583924770355 0.35798583924770355
Quad-double 0.35798583924770355 0.35798583924770355
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Figure 7: Performance comparison of the summa-
tion with double-double precision on the GPU and
CPU when the number of elements is varied.

5.2 Numerical Analysis of Nonlinear Physics
In this application, one of the most fundamental numerical

analysis algorithms, namely Newton’s method, is used to find
an approximation for a given function [5]. The quad-double
precision is adopted to help scientists find a closed-form for-
mula based on the 42-digit result. Without the extended
precision, the analytic solution would be difficult to identify
and validate.
As an emerging science, the spontaneous synchronization

of oscillators usually occurs in the natural world, such as the
chorusing of crickets and the synchronous applause of con-
cert audiences. Recently, Quinn et al. [25] have studied this
process using a summation expression shown in Equation 1.

0 =

N∑
i=1

(2

√
1− s2N (1− 2

i− 1

N − 1
)2 − 1√

1− s2N (1− 2 i−1
N−1

)2
)

(1)
In Equation 1, N is the population size being considered

in the model, and sN is the N-dependent equation root rep-
resenting how far in or out of synchronization a group is.
Consequently, sN is a crucial parameter that can be used
to study and understand the model [25]. After obtaining
solutions of Equation 1 for different values of N , the sci-
entists further found that sN ∼ 1 − c1N

−1, where c1 is a
constant with the value 0.6054436..., which is known as the
QRS constant. Scientists wanted to find an analytic for-
mula to represent this constant. Bailey et al. have solved
this problem through a method of experimental mathemat-
ics [5]. As the first effort, they attempted to obtain a 42-digit
value to help identify the analytic solution. They developed
the algorithm on 64 CPUs using the quad-double precision
in QD to calculate this 42-digit QRS constant.
We use the GPU-based library to accelerate the com-

putation of this 42-digit QRS constant. The major time-
consuming step is to apply Newton’s method to Equation
1 with N varied until two successive values are differed no
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Figure 8: Performance comparison of Newton’s
method for the QRS constant computation on the
GPU and CPU with N varied, where N = 4m.

more than 10−52 [5]. Specifically, 15 values of N are used,
where N = 4m and m is ranged from 1 to 15. Newton’s
method is expensive in this application since N can be very
large. We focus on using the GPU to improve the perfor-
mance of Newton’s method for Equation 1 when N is large.

We have developed the GPU-based Newton’s method with
quad-double precision. The main components of the algo-
rithm are implemented as a data parallel map and reduction.
The map is used to compute each item of the summation in
Equation 1, and the reduction is applied to obtain the sum
of all items. Translated into database operations, the eval-
uation of Equation 1 is done through a selection with the
predicate on the range of the iterator and a user-defined ag-
gregation for the summation. With the required accuracy,
the result of Newton’s method on the GPU is the exactly
same as that on the CPU for a given N . Additionally, our
parallel CPU-based implementation is 3.2x faster than the
sequential one.

Figure 8 shows the elapsed time of the GPU- and the
CPU-based Newton’s method for the QRS constant com-
putation with N varied. The GPU-based implementation
is 8-12x faster than the CPU counterpart. For all calcu-
lations, when m is varied from 1 to 15 in this application,
our GPU-based implementation takes about half an hour in
total. Bailey et al. have reported that their implementa-
tion based on 64 CPUs required 25 minutes to perform the
same computation task [5]. The same result with the similar
elapsed time is obtained, but only one GPU is used in our
evaluation, which indicates the efficiency of our GPU-based
implementation.

5.3 High Precision Numerical Integration
High precision numerical integration (or called quadrature

in several literatures) [7] is a typical application in exper-
imental mathematics employing arbitrary precision. With-
out extended precision support, this application cannot be
handled by modern processors. Combined with the integer
relation detection algorithm [2], it can be used to discover
previously unknown analytic solutions for integrals.

Tanh-sinh is an effective algorithm for high precision nu-
merical integration [7]. There are several computation levels
to perform function evaluations corresponding to a group of
abscissa-weight pairs. The algorithm is done when the es-
timated accuracy is met or the defined number of levels is
exhausted. Bailey et al. [4] have implemented the parallel
tanh-sinh algorithm various integrals, and achieved signifi-
cant performance speedup. We implement the GPU-based
tanh-sinh algorithm using GARPREC to support arbitrary



precision. Function evaluation for a large number of input
elements is a data parallel primitive map on the GPU, which
corresponds to a selection in the database engine.
Following the previous study [7], we evaluate the GPU-

based numerical integration using two different precision lev-
els: 400, and 1000 decimal digits, respectively. We have ex-
cluded the time to generate the abscissa-weight table since
it can be initialized only once and is used for any prob-
lems for a given precision. Bailey et al. have categorized
different problems of numerical integration that they have
encountered into five types [7]. We choose the most expen-
sive problem in each category for our evaluations. These
five problems are summarized in Table 4. When the tar-
get accuracy is achieved, all of our evaluated problems on
both the GPU and the CPU consume the exactly same num-
ber of computation levels as shown in the previous work.
Moreover, our OpenMP-based CPU implementation is 2.5-
3.3x faster than the sequential implementation included in
ARPREC.

Table 4: Test sets of the numerical integration.
ID Problem Solution

1
∫ π/2

0
et cos tdt (eπ/2 − 1)/2

2
∫ 1

0

√
t log tdt −4/9

3
∫ π/2

0
log (cos t)dt −πlog2/2

4
∫∞
0

e−t2/2dt
√

π/2

5
∫∞
0

e−t cos tdt 1/2
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Figure 9: Performance comparison of high precision
numerical integration on the GPU and CPU for the
five problems when the precision is 400 and 1000
decimal digits.

Figure 9 shows the elapsed time of GPU-based numeri-
cal integration compared with the CPU counterpart for the
400- and 1000-digit precision. Overall, the GPU-based im-
plementation is 3-9x faster than the parallel CPU-based im-
plementation.

6. CONCLUSION
As the GPU becomes a promising parallel platform for sci-

entific computing, we implement a GPU-based high-performance
extended precision library to enable numeric applications
that require a high precision for GPU-acceleration. Our
library consists of basic arithmetic operators, mathematic
functions, as well as data-parallel primitives with extended
precision. It supports both multi-term and multi-digit ex-
tended precision formats. In addition, to support scientific

data management on the GPU, we have integrated our ex-
tended precision library to a GPU-based query processing
engine. The experimental study shows that our library on
G280 provides a performance speedup of up to an orders of
magnitude over existing CPU-based extended precision li-
braries on a quad-core CPU and has a similar performance
improvement to native precision on the GPU for database
operations. Moreover, we have also implemented three real-
world scientific applications employing extended precision
to demonstrate the efficiency of our library. Compared with
the CPU-based parallel implementation, the GPU-based im-
plementation achieves the same accuracy requirement and a
speedup of 3-12x.

The code base and report are maintained at:
http://code.google.com/p/gpuprec/ .
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