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Abstract. In this paper, we develop a family of methods to characterize
the behavior of a representative SSD. We first study how writes are
handled inside the SSD by varying request size of writes and detecting
the placement of requested pages. With the assistance of the obtained
result, we further examine how this SSD performs garbage collection and
flushes write buffer. The result shows that the clustered pages composed
of certain four flash pages must be written and erased simultaneously,
implying storage waste will arise if such clustered pages are partially
written.

We then conduct two case studies to analyze the storage efficiency when
this SSD is used for different purposes. In the first case, we collect the
block access traces for 10 server applications, and derive that there would
be a moderate storage waste if the same sequence of writes are issued
to the SSD. In the second study, we build a hybrid storage system with
the SSD as cache layer, and extract the write requests issued to the SSD
cache for analysis. The result for this case shows that the number of
written pages caused by a write request can be as much as 4.2 times
that of pages requested, implying an extremely low storage efficiency,
and we further demonstrate that most of such unnecessary writes can
be avoided by simply delaying the issue of internal write requests, which
are generated when a read request cannot be serviced by the cache layer,
and then issuing them at same time.

1 Introduction

NAND-flash based Solid state disks (SSDs) 3 have been incorporated into the
computer storage architecture over the past several years, and now have be-
come an important supplementary to traditional rotational hard disk drives
(HDDs). Compared with their rotational counterparts, SSDs have a much higher
read/write throughput, and due to the absence of moving mechanical compo-
nents, SSDs are able to sustain an order of magnitude less random access latency.

3 We restrict our discussion to flash based SSDs, as most SSDs in the market are of
this kind.



The layout of data in SSDs is much more complicate than in HDDs. The
storage space of an SSD can be partitioned into multiple domains, each contain-
ing a number of flash memory pages that share some specific resources [7]. Due
to resource contention, an access requesting two pages within a same domain
might have a longer latency than that requesting two pages placed in different
domains. The difference in the internal structure and access latency between
SSD and HDD can also lead to the different way in which access requests are
serviced, and it is worth exploring the service of access requests inside SSDs, as
it can be used to reveal how SSD realizes its specific internal structure and assist
the incorporation of SSD into storage systems.

In this paper, we develop a family of methods to characterize the behavior of
a representative SSD. First, we carry out an investigation on how write requests
are serviced inside this SSD. To this end, we issue multiple writes with varying
request size to the SSD, and then detect the placement of requested pages via
comparing the latencies among a set of carefully designed read requests. The
result implies there exist clustered pages which are comprised of certain four
pages and must be written simultaneously, and pages for servicing write requests
are chosen such that there are least number of partially written clustered pages.
We then study how garbage collection is performed by overwriting the certain
page of clustered pages that have been completely written and then measuring
the resulted page placement, and find that the four pages of a clustered page must
also be erased at same time. In addition, we extract the length of flush periods,
defined as the interval between two flushes of SSD write buffer, using a method
similar to that of investigating the service of write requests. The difference is
that the varying parameter is no longer the request size of writes, but the interval
between two consecutive write requests instead.

The characteristics of clustered pages that the four pages must be written
and erased simultaneously implies there will be a waste of storage if a clustered
page is partially written. In order to quantify storage efficiency, we conduct two
case studies in which the SSD is used for different purposes. In the first case, we
analyze the block access traces of ten server applications, and find that if the
same sequence of write requests are issued to the SSD, hundreds of thousands
of wasted pages, i.e., the unwritten pages of partially written clustered pages,
will be produced. In the second case, we use Flashcache [24] to deploy a hybrid
storage system with SSD serving as cache layer, and collect the traces of accesses
to the SSD cache for multiple IO access patterns. The result shows that due to
the long inter-arrival interval of internal write requests which are generated when
a read request cannot be serviced by cache layer, the wasted pages can be up
to 1.2 times more than those requested when reads account for the majority of
IOs, which in turn leads to a write amplification up to 4.2. We show that most
of such wasted pages can be eliminated by simply delaying the issue of internal
write requests and then issuing them simultaneously.

The remainder of paper is organized as follows. Section 2 describes the back-
ground and related works. The methods of capturing SSD behavior and the
corresponding results are presented in Section 3 in detail. Two case studies are



presented in Section 4 to quantify SSD storage efficiency. We finally conclude
this work in Section 5.

2 Background and Related Works

2.1 Solid state disk

Data is accessed in page granularity in SSDs, and in this sense a flash memory
page can be viewed as a block of hard disks. The difference between them is that
flash pages do not support in-place update, and can be overwritten only after
being erased. The erase operation of SSDs, however, is not page-based, but in a
granularity of erase blocks. An erase block is comprised of a number (usually 64
or 128) of consecutive flash pages, and as a result, each time when a block is to
be erased, the valid pages in it should first be copied to the free pages of other
blocks, which leads to the notorious write amplification problem of SSDs.

To hide these behavioral differences, a flash translation layer (FTL) [16] [8]
[17] [11] is employed in SSDs. To support out-of-place update, FTL provides the
map of logical page number to physical page number, giving an illusion of in-place
update to the host. Another important function of FTL is to perform garbage
collection (GC). GC erases one or more blocks when there are no sufficient
free pages to service write requests or when device is idle, and generally the
blocks with least valid pages are selected for GC so that write amplification
is minimized. In addition, since each SSD block can only withstand a limited
number of erase cycles, FTL also implements wear-leveling to evenly spread the
writes to each block and hence extend SSD lifetime.

FTL is usually implemented as a firmware run by an SSD controller. With the
assistance of FTL, the SSD controller translates incoming read/write requests
into flash memory operations and issues commands to flash memory through a
flash controller. Besides the SSD controller, there are three other major compo-
nents inside an SSD. The host interface logic connects device to the host via an
interface connector such as SATA. A RAM buffer is also commonly deployed in
SSDs to improve access performance by temporarily storing data accessed and
buffering write requests. Data is persistently stored in an array of flash memory
packages which are connected to the flash controller via multiple channels. Each
flash memory package is composed of multiple dies, and each die further contains
multiple planes, each with a number of flash blocks inside. The design issues of
SSD architecture are discussed in detail in [4] [9].

The four-level hierarchy of flash memory corresponds to four levels of paral-
lelism: channel-level, package-level, die-level and plane-level. Flash pages across
different channels, packages or dies can be operated independently, and can thus
support parallel operations over them natively. However, the plane-level paral-
lelism is not activated in general, unless there are multiple operations of same
type simultaneously accessing flash pages across different planes of the same
die, in which case the plane-level parallelism can be exploited through n-plane
command which enables n (typically 2 or 4) planes of a same die to work si-
multaneously. There have been many studies [18] [13] [22] toward effectively



exploiting the rich parallelism inside SSDs for better IO performance, and the
interplay among different levels of parallelism is investigated in [12].

2.2 The Extraction of SSD Parameters

There are a number of parameters associated with SSDs. Since SSD parameters
can substantially affect the performance of device, it is thus of practical meaning
to extract them as it can guide the design of systems and applications that
are better suited to the characteristics of SSDs and thus able to exploit SSD
performance more effectively.

While part of these parameters such as page size and block size are well
documented, there also exist some implicit parameters, e.g., parallel degree and
size of clustered page, hiding inside SSD internals. Chen et al. [7] probe the size
of chunks, which consist of pages that are continuously allocated within a single
domain, parallel degree and page mapping policy of several SSDs, and give a
detailed discussion on the influence of parallelism on SSD performance.

Another work of SSD parameter extraction is [14], which develops a set of
micro benchmarks to extract the size of clustered page/block and read/write
buffer, and modifies Linux block layer such that the incoming reads/writes are
aligned with the boundary of clustered pages and then split into pieces with the
same size of read/write buffer. Although the term “clustered page” is also used in
this work to represent an internal storage unit of SSD, it has a different meaning
from the counterpart used in our work. By its definition in [14], a clustered page
is actually composed of pages across different SSD domains, and hence closely
related to the degree of parallelism inside SSD. On the contrary, the clustered
page defined in our work consists of certain four flash pages that are placed in
the same domain and must be written and erased simultaneously.

3 The Measurement of SSD Parameters

3.1 Experimental Enviorment

The experiment platform is HP xw6600 workstation with an Intel Quad Core
Xeon(R) E5420 2.5GHz processor and 4GB main memory. The installed operat-
ing system is Ubuntu 12.04 with Linux Kernel 3.2.0, held in a 250GB 7200RPM
hard disk. For the measurement, we use a 128GB SSD built upon multi-level
cells (MLC) flash memories. The sequential read and write rates of this SSD
can achieve 520 and 200 MB/s, respectively, and the random counterparts are
30 and 80 MB/s. To avoid the interference from the OS (e.g., page cache and
file system), we make no partition on this SSD and perform the measurement
directly on the raw block device. Same as in [7], we choose noop as the IO sched-
uler for this SSD, leaving the optimization for access requests handled by the
device itself. For the sake of expression, this SSD will be referred to as “SSD-A”
in the following text.



3.2 Characterizing SSD Behaviors

We adopt the generalized model presented in [7] to profile SSD internals. As
described in this model, an SSD consists of multiple domains, each of which is a
set of flash memories that share some specific resources; the pages continuously
allocated within one domain comprise a chunk.

Servicing Write Requests We intend to investigate how flash pages get writ-
ten under different write patterns, thereby revealing how write requests are ser-
viced. To this end, we first initialize several disjoint address ranges of SSD-A with
writes of varying request sizes. In doing so, we need to disable the page cache
of operating system and the write buffer of SSD-A so that each write requests
will be directly handled by flash memories. Since due to resource contention,
the pages inside a domain will experience a longer read latency compared with
those across multiple domains, we issue a set of read requests that are able to
realize this difference in read latency, and compare their service time to derive
how pages are placed. The whole process is shown in Procedure 1 in detail.

Procedure 1: Measuring SSD page placement (I)

pg size: page size of SSD
range: size of address space for each initialization
max rq size: maximum write size in page unit
max offset: maximum offset in page unit
read buf size: SSD read buffer size
SSD read(pos, size):reads size bytes against pos
stride read(pos, offset): two read threads are created, each reading one page;
the first thread reads against pos, and sencond one skips offset over last one
SSD write(spos, epos, size): sequentially fill address range [spos, epos] of SSD
with size-byte writes, during which OS page cache and SSD write buffer are
disabled

for i← 1 to max rq size do
spos← (i− 1)× range; epos← i× range
rq size← i× pg size
SSD write(spos, epos, rq size)
for j ← 1 to max offset do

latency← 0; offset← j × pg size
for k ← 0 to 1000 do

latency ← stride read(spos, offset) + latency
SSD read(spos + max offset× pg size, read buf size) /* polute SSD
read buffer */

end
print rq size, offset, latency/1000

end

end
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Fig. 1: The variation of page placement with the request size of writes

In Procedure 1, we create two concurrent threads for each read. Both threads
read only one page. The first thread reads against the start address of current
address range, and the second thread skips offset pages over the first one.
Figure 1 shows how latency of 2-thread read varies with offset in several address
ranges initialized with writes of different request size. Since the latency varies
periodically with offset, we only plot the latency for the first two cycles in Fig.
1.

From Fig. 1, we can make the following derivation regarding the service of
write requests inside SSD-A. For a write with a request size of n (n ≤ 32) pages,
numbered from 1 to n, dn/4e domains will be used to handle this request such that
domain i (0 < i < dn/4e) holds pages {2i−1, 2i, 2(i+dn/4e)−1, 2(i+dn/4e)}, and
domain dn/4e holds remainder pages. For instance, 2 domains will be involved
in the service of a write with request size of 7 pages; the first domain holds
page 1, 2, 5 and 6, and the other domain stores page 3, 4 and 7. A write with
larger request size can be viewed as a composition of several sub-writes, each
requesting 32 pages (the last sub-write can have a less request size), and will be
handled in the same way as these sub-writes.

The above result demonstrates that SSD-A tries to write as close as possible
to four pages for each domain when servicing write requests. It also implies for
each incoming write request, SSD-A places the requested pages in the domains
next to the last domain involved in the service of last write request, regardless of
how many pages were written in this domain. This implication is also validated
by the length of variation cycle of read latency. As shown in Fig. 1, the variation

cycle has a length of 128×n/4
dn/4e for the address range initialized with n-page writes.

A reasonable speculation following the way write requests are handled inside
SSD-A is that the certain four pages within same domain must be written simul-



taneously, and if only part of these four pages have been written, the other pages
can be programmed (written) only after the written ones have been erased.

Procedure 2: Measuring SSD page placement (II)

cycle: length of variation cycles of two-thread read latency, measured in
Procedure 1
device size: SSD device size
rand pos(pos, size): randomly choose a position within [0, pos) that is aligned to
size

len← cycle× pg size
for i← 0 to 4 do

SSD write(0, device size, 256× pg size)
rq size← (i + 1)× pg size
SSD write(0, range, rq size)
for j ← 1 to max offset do

latency← 0; offset← j × pg size
for k ← 0 to 50000 do

pos← rand pos(range, len) + rand pos(len/4, rq size)
latency ← stride read(pos, offset) + latency

end
print rq size, offset, latency/50000

end

end

To verify the above speculation, we carry out another experiment in a similar
way to Procedure 1. We first sequentially fill the whole address space of SSD-A
with writes of a large request size so that the placement of pages are the same
as that shown in Fig. 1j-1l. Then, starting from address 0, we sequentially write
SSD-A with a request size of one page, during which the OS page cache and
on-device write buffer are disabled. We use the same method as Procedure 1
to detect the placement of pages within the address range filled in the second
write phase. This time we allow the first thread to read addresses other than
the start position of address range, i.e., address 0. Specifically, each time the
first thread reads against an address randomly selected from the address set
{i × cycle × pg size + j × rq size|0 ≤ i <

range
cycle×pg size , 0 ≤ j < 8},

where cycle is the cycle length (32 in this case, as shown in Fig. 1a), and other
variables have the same meaning as the counterparts in Procedure 1. We do
this because, as can be inferred from Fig. 1, the latency of 2-thread reads keeps
almost unchanged when the first thread reads against different addresses of this
set. The detailed implementation is shown in Procedure 2.

We repeat this experiment for four times. Each time we choose a different
write size in the second write phase, and adjust the candidate address set for
the first read thread accordingly. The experiment result is shown in Fig. 2.
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Fig. 2: The variation of page placement with the size of write request and the
availability of free space

Comparing Fig. 2 with Fig. 1a - 1d, it is intuitive to observe that when write
request size of the second write phase is less than four pages, there will be a
substantial difference in page placement between the two scenarios with/without
the first write phase, and such difference disappears when the request size of
second-phase writes increases to four pages. Therefore, we can infer that pages
written in the second phases of the first three runs (corresponding to Fig. 2a,
2b and 2c, respectively) have been relocated and compacted to provide more
available flash pages, otherwise the corresponding page placement should keep
unchanged as writes of seconde phase are gradually serviced. This result also
confirms our speculation made above: the certain four pages within same domain
must be programmed simultaneously; if only part of these four pages have been
written, the other pages are left unable to service write requests until the written
ones have been erased, leading to a waste in storage. For the sake of expression,
we call each such four pages a clustered page.

From the definition of clustered pages, it is not difficult to see that storage
waste will raise from the service of writes with a request size that is not a multiple
of four pages, since at least one involved clustered page will be partially written.
Such feature of clustered pages helps to understand our result regarding the
service of write requests. As we have mentioned, a write requesting n pages will
be handled such that page 2i−1, 2i, 2(i+dn/4e)−1 and 2(i+dn/4e) requested in
this write will be placed in the same domain and occupy a full clustered page. In
this way, for each write request, there is at most one clustered page, i.e., the last
one involved, that might will be partially written, and the storage waste is thus
minimized. In the mean time, the parallelism among domains can be effectively
exploited.

Garbage Collection The SSD erase granularity has been studied in [14] based
on the assumption that after the whole SSD has been sequentially written, the
speed of following random writes with a request size equal to the size of erase
unit must be same as that of sequential writes, as there is no page relocation
in both cases. In this work, we are more interested in whether the blocks with
pages in same clustered pages must be erased simultaneously or not, for which
a more intuitive result can be obtained by carefully overwriting the clustered
pages that have been completely filled.

As shown in Procedure 3, we first sequentially fill the whole space of SSD-A
with writes of a request size of four pages so that each involved clustered page



Procedure 3: Measuring page placement after garbage collection

single write(pos):write a single page at pos with SSD write buffer enabled

chunk size← 4× pg size
SSD write(0, device size, chunk size)
for i← 0 to range/chunk size do

single write(i× chunk size)
end
len← cycle× pg size
for i← 1 to 4 do

for j ← 0 to max offset do
latency← 0; offset← j × pg size
for k ← 0 to 50000 do

/* each time the first thread reads the (i + 1)-th page of a clustered
page */
pos← rand pos(range, len) + rand pos(len/4, chunk size) +
i× pg size
latency ← stride read(pos, offset) + latency

end
print i, j, latency/50000

end

end

is fully written and page placement inside SSD-A is same as in Fig. 2d. After
that, from address 0, we gradually overwrite the first page of clustered pages.
As write process progresses, garbage collection will be revoked to reclaim the
overwritten pages, and we are then able to answer the question concerned by
examining whether the non-overwritten pages have been relocated.
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Fig. 3: Page placement inside clustered pges before/after garbage collection

Figure 3b - 3d present the placement of non-overwritten pages after garbage
collection, and their counterpart before garbage collection is shown in Fig. 3a for
comparison purpose. It can be easily derived from Fig. 3 that the three pages of
clustered pages that did not get overwritten during the write process have been
relocated after garbage collection. We are thus able to conclude that the four
pages of each clustered page must be erased simultaneously, and a write with a
request size of n pages thus actually leads to 4 × dn/4e pages being written in



the sense that there is no difference between a written page and an unwritten
one within the same clustered page, both of which cannot be programmed until
being erased. As a result, the write amplification for a write requesting n pages
is 4 × dn/4e /n, and this number may be further increased by 1 in the case
where there are many partially written clustered pages that can be relocated
and compacted to generate a large number of free pages.

Flushing Write Buffer The problem of partially written clustered pages can
be alleviated by the existence of write buffer in most SSDs. When a write request
arrives, the SSD first buffers it and then flush all the buffered write requests to
the flash memory for persistent storage. As such, the number of pages written
each time is increased, reducing the ratio of partially written clustered pages.

The flush of write buffer will be triggered when the buffer is full, or after a
certain time period, which we call flush period. The corresponding two param-
eters associated with SSD write buffer are thus the size of write buffer and the
length of flush period. As the measurement of the former parameter has been
conducted in [14], we are more interested in the latter parameter.

We have revealed how request size of writes affects page placement for the
case with write buffer disabled. Conversely, we can also infer from observed page
placement the request size of writes and the number of buffered pages for flush,
both of which are in principle the same. In this regard, we follow the same way
as we did in Procedure 1 with the exception that the parameter varying across
address ranges is not the request size of writes, but the interval between two
consecutive writes instead. In addition, the write buffer is no longer disabled
during the initialization phase. Due to page limit and its similarity to Procedure
1, the detailed implementation is not presented.
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Fig. 4: The variation of page placement with the interval between two consecutive
writes

Figure 4 gives the measured latency of two-thread reads for different inter-
arrival interval of write requests. For demonstration purpose, we only provide
in this figure the result for cases in which the buffered pages for each flush



occupy only one clustered page. Comparing Fig. 4 with Fig. 1, we can find that
Fig. 4h and 4c are, respectively, the same as Fig. 1a and 1b, which means the
numbers of buffered pages for flush in corresponding two cases are 1 and 2,
respectively, and the length of flush period is thus 10 milliseconds. Moreover, as
can be observed from Fig. 4, the read latency in each case exhibits a periodical
pattern with a cycle length reversely proportional to the inter-arrival interval. It
can be inferred from this observation that the flush of write buffer is performed
once every 10 milliseconds, rather than in 10 milliseconds after the arrival of the
earliest buffered write, in which case there would be two buffered pages for each
flush if the inter-arrival interval of writes is within the range (5ms, 10ms), and
Fig. 4d-4g thus must have the same cycle length as Fig. 4c.

4 Case Study of SSD Storage Efficiency

4.1 Server Storage

We first study the case in which SSD-A is used as storage device for server
applications. To this end, we download the HDD block access traces of two OLTP
applications (Financial 1 and Financial 2) [3] and eight other server applications
[1] [25]. Table 1 gives the general information of these block traces.

Table 1: Description of server traces
name no. WR records name no. WR records

Financial 1 4,099,354 Home 4 2,354,032
Financial 2 653,082 Online 4,211,728

Home 1 8,882,821 Web Mail 6,381,984
Home 2 4,901,076 Web Research 2,413,936
Home 3 908,835 Web Users 5,127,100

For each trace, we intend to investigate the storage efficiency when the same
sequence of writes are issued to SSD-A. To simplify the investigation, we as-
sume that two consecutive writes with an interval less than a certain threshold
will be flush simultaneously; the threshold is chosen to be longer (20ms in our
investigation) than the time to access data in most modern HDDs so that two
consecutive writes with an interval longer than the threshold are likely to be
independent, and thus will be issued with the same interval in SSD case. As a
result, the number of buffered writes for flush derived under such setting will be
an over-estimation to the real value as pages for flush are those that have been
buffered over a time period longer than the flush period.

Figure 5 presents the number of wasted pages, i.e., the unwritten pages in
partially written pages, when the same sequence of writes of each trace are issued
to SSD-A. It can be seen from this figure that each trace will generate hundreds
of thousands of wasted pages, which means a moderate degree of storage waste,
as compared with the number of write records in Table 1.
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Fig. 5: Storage waste in different server traces

4.2 Hybrid SSD/HDD Storage System

Due to their superior access performance but relatively high cost, SSDs have
been extensively used as an additional cache layer on the top of HDDs to form
hybrid SSD/HDD storage systems with improved storage performance [20] [27]
[26] [21] [15] [10] [6] [23].In such systems, if a read request cannot be serviced by
cache layer, it will generate a write request to the cache, and the inter-arrival
interval of such write requests, which we will call internal write requests in the
sense that they are issued inside the storage system, is no less than the service
time of read requests of hard disks, which can be as much as tens of milliseconds
due to high position delay [2]. As a result, if SSD-A is employed as the cache
layer, the internal write requests can lead to a significant waste of cache storage
because of their slow arrival rate and the existence of clustered pages inside
cache.

We carry out several experiments to investigate the storage efficiency when
SSD-A is used as the cache layer of hybrid storage systems. The experimental
platform is Flashcache [24], a popular open source solution to hybrid SSD/HDD
systems, and the tool for I/O test is fio [5]. For experiment, we issue a set
of random reads and writes, each requesting one page, to storage system, and
explore the resulted storage waste. We run the experiment five times, each lasting
five minutes and with a varied fraction of reads. The page cache of operating
system and SSD write buffer are both enabled during the experiment.
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Fig. 6: Storage waste in hybrid storage system

The result of storage efficiency is demonstrated in Fig. 6. Since the OS page
cache is enabled, writes are first handled in the memory and thus completed



much faster than reads. Consequently, there are roughly the same number of
reads and internal writes in all scenarios. In addition, writes buffered in memory
are issued to storage system in a batch mode, and thus incurs little partially
written clustered pages. Therefore, wasted pages are mostly caused by internal
writes, and thus of roughly the same number in all scenarios, which is verified
in Fig. 6a.

Fig. 6b describes the ratio of unwritten pages to pages requested (including
those involved in internal write requests) in different scenarios, and it is not
surprising to see from this figure that this ratio increases near linearly with the
percentage of reads. In addition, this figure also shows there is a serious storage
waste when reads account for a large fraction of total IOs. For instance, in the
scenario with all IOs being reads, each write request leads to 2.2 wasted pages
on average, implying a write amplification up to 4.2, which will be achieved after
page relocation.

When OS page cache is enabled, the data read from storage device will be
stored in memory, i.e., page cache, so that future reads requesting the same data
can be satisfied without disk access. Therefore, for hybrid storage systems, the
issue of internal write requests can be safely delayed without performance loss,
as long as there is a copy of the corresponding data in memory. As a result, we
can suspend the issue of internal write requests until there are a certain number
of such write requests accumulated, and then simultaneously issue them to the
cache layer to improve storage efficiency.

 0

 500

 1000

 1500

 2000

 2500

 3000

10 20 30 40 50 60 70 80 90 100

n
o

. 
o

f 
u

n
w

ri
tt

e
n

 p
a

g
e

s

percentage of reads

(a) number of unwritten pages

 0

 0.002

 0.004

 0.006

 0.008

 0.01

10 20 30 40 50 60 70 80 90 100

ra
ti
o

 o
f 

u
n

w
ri
tt

e
n

 p
a

g
e

s

percentage of reads

(b) ratio of unwritten pages

Fig. 7: Storage waste in hybrid storage system with the isssue of internal write
requests delayed

We implement the above method in Flashcache [24]. In our implementation,
the issue of delayed internal write requests takes place when a certain time period
has passed by after last issue, or the number of delayed requests exceeds a specific
threshold. We repeat the above experiments and show the corresponding results
in Fig. 7. We can draw from this figure that there will be little storage waste
when the issue of internal write requests is delayed: in all cases, the number of
wasted pages is no more than 0.5% that of pages requested. In addition, it is
worth noting that this method of reducing cache writes is orthogonal to those
presented in [6] [20] which reduce the writes to cache by neglecting the data that
have been requested only a limited times.



Besides improving storage efficiency, there are some other advantages that
can arise from delaying the issue of internal write requests. First, issuing mul-
tiple writes requests at same time can effectively exploit the rich parallelism
inside SSD cache. In addition, read/write interference inside SSD, which has
been reported to be able to significantly hampers access performance of SSDs
[19] [7], can also be alleviated as a result of reduced number of flushes of SSD
write buffer.

5 Conclusion

In this paper, we carry out an extensive investigation on the behavior of a rep-
resentative SSD, and obtain two major findings. First, the investigation exposes
the existence of clustered pages, each of which consists of certain four flash
pages that must be programmed and reclaimed simultaneously. Second, pages
are placed inside the SSD such that the parallelism of the SSD can be effectively
exploited, on the premise that the number of partially written clustered pages,
which are the source of storage waste, is minimized.

In order to quantify the impact of clustered pages on storage efficiency, we
then conduct two case studies in which this SSD is used as server storage and
cache layer of a hybrid storage system, respectively. The result of the former case
shows that there would be a moderate waste of storage when the SSD is used for
server storage. For the latter case, the storage efficiency is extremely low when
most IOs are reads, and we find that this is because of the long inter-arrival
interval of internal write requests which are generated when a read cannot be
serviced by cache layer. By delaying the issue of such internal write requests,
we can substantially reduce the number of wasted pages, thereby enhancing the
storage efficiency and extending the lifetime of SSD.
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