
MEADOWS: Modeling, Emulation, and Analysis of Data of

Wireless Sensor Networks
Qiong Luo, Lionel M. Ni, Bingsheng He, Hejun Wu, and Wenwei Xue

Department of Computer Science

The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon

Hong Kong, China

{ luo, ni, saven, whjnn, wwxue} @cs.ust.hk

Abstract

In this position paper, we present MEADOWS, a
software framework that we are building at
HKUST (The Hong Kong University of Science
and Technology) for modeling, emulation, and
analysis of data of wireless sensor networks.
This project is motivated by the unique need for
intertwining modeling, emulation, and data
analysis in studying sensor databases. We
describe our design of basic data analysis tools
along with an initial case study on HKUST
campus. We also report our progress on
modeling power consumption for sensor
databases and on wireless sensor network
emulation for query processing. Additionally,
we outline our future directions on MEADOWS
for discussion and feedback at the workshop.

1. Introduction

Sensor networks have created exciting opportunities for
data management [2], especially for in-network query
processing [1][5][11][18], because these networked sensor
nodes form a large-scale, dynamic, and distributed
database with each node acquiring, processing and
transmitting data simultaneously. However, studying in-
network sensor query processing is a challenging task due
to the unique features of sensor networks. These unique
features include: (1) each sensor node has limited
computation, communication, and storage capabilities as
well as limited power supply; (2) sensory units and
communication channels are lossy and error-prone; and
(3) deployed sensor nodes are embedded in the physical
world, scattered geographically, and often mobile. To
facilitate the study of sensor databases in general and in-

network query processing in specific, we propose
MEADOWS, a software framework that we are building
at HKUST (The Hong Kong University of Science and
Technology) for modeling, emulation, and analysis of
data of wireless sensor networks.

Modeling, emulation, and data analysis for sensor
networks is essential for studying in-network query
processing systematically. On one hand, studying query
processing techniques in real sensor networks with real
applications has been fruitful and has a high practical
impact [11]. On the other hand, the tight integration of
sensor networks with the physical world, the high
uncertainty in sensory data, and the high deployment cost
make it hard to produce general and complete results
through field studies only. Consequently, it is highly
desirable to perform in-depth analysis of sensory data
from field studies and to model and emulate sensor
networks in controlled environments.

Let us give a real-world example to illustrate the
usefulness of MEADOWS. This example is an
experimental monitoring application that we deployed
near a frog pond on HKUST campus in the spring of
2004. We used the MICA2 Motes made by Crossbow [4]
for the sensor nodes and TinyDB [15] as well as other
software running on the motes to collect sensory data. In
TinyDB, the data collection process is the execution of
declarative, SQL-like queries, which eases application
development and allows for performance optimization.
However, answering some important questions about the
query processor for the application is difficult or
infeasible through a simple field study. Specifically,
some of these questions are as follows:

(1) We have only ten sensor nodes available for the
application. How many do we really need and what
geographical deployment topology do we use to observe
important phenomena such as trends in temperature,
humidity, and frog croaks around the frog pond?

(2) If we collect sensor readings every 30 seconds,
what is the status of power consumption at each node over
time and when will the batteries run out?

Copyright 2004, held by the author(s)
Proceedings of the First Workshop on Data Management for
Sensor Networks (DMSN 2004),
Toronto, Canada, 2004

(3) If we change the type of sensor nodes (e.g., CPU,
radio channel, sensing units), the sensor network routing
scheme, or the data collection queries, what are the
resulting answers to questions (1) and (2)?

In MEADOWS, we attempt to answer these questions
through data analysis, modeling, and emulation. We
show that we can determine the number of sensor nodes
needed and the geographical deployment scheme by
performing data analysis (Section 2). We also show that
we can realistically estimate power consumption in
various scenarios by including real-world factors into
modeling and emulation (Sections 3 and 4). In addition,
the integration of data analysis, modeling, and emulation
helps answer the questions better than merely employing
one of these three approaches in isolation. Our ultimate
goal is to enable various studies on sensor databases and
sensor query processing.

To date, modeling, emulation, and data analysis of
sensor networks for query processing is still at an early
stage. Our work in MEADOWS is only an initial step in
this direction. In this early report, we present a case study
of preliminary sensor network data analysis in Section 2, a
hierarchical power consumption model for sensor
databases in Section 3, and a sensor network emulator for
query processing in Section 4. We draw conclusions and
list future directions in Section 5.

2. Analysis of Sensor Network Data

In this section, we focus on real-world sensory data and
discuss a case study of collecting and analyzing the data
from a small network of sensors deployed outdoors on the
HKUST campus. The purpose of this case study is to
explore how data analysis can help answer questions
about sensor query processors. In addition, we aim to
gain insights for data analysis tool design.

2.1 Overview

Analysis of real-world data provides a realistic basis for
modeling and emulation. Because sensor networks are
designed to be tightly embedded in the physical world,
collecting and analyzing real-world sensor network data is
both challenging and worthwhile. Even though there have
been a few projects on outdoor deployment of sensor
networks [14], we have not yet seen studies that answer
questions about query processors. Therefore, as a first
step of our framework development, we conducted a field
study with this specific goal in mind. The scale of the
study was small due to our resource limitation. However,
the study is sufficient for the purpose of producing an
initial design of data analysis tools.

The case study is the frog pond monitoring application
we briefly described in the Introduction. The frog pond is
located at the northeastern corner of the campus.
Throughout the late spring, the frogs in the pond croak
loudly all day long. We chose the frog pond as it has this
interesting phenomenon as well as other outdoor

microclimate characteristics (e.g., close to the sea and two
pagodas).

We deployed a small number of sensor nodes in two
groups near the frog pond. We collected one-day of
sensory data during four two-hour periods. We pre-
processed the data by adding labels (e.g., timestamps) and
converting data formats (e.g., from raw sensor readings to
more human-friendly engineering units). We analyzed the
data by examining patterns, exceptions (outliers), and
correlations. Finally, we discuss our design of data
analysis tools as well as the insights gained from the case
study.

2.2 The Case Study

We deployed two groups of MICA2 motes in the two
pagodas near the frog pond (Figures 1 and 2). Mote 0’s of
both groups were sink nodes connected with a laptop
through a serial cable. Group 1’s Motes 1-5 used the
MTS310CA sensor boards, which detect temperature,
light, noise level, acceleration and magnetic value.
Group2’s Motes 1-2 used the MTS420CA weather sensor
boards, which measure temperature, light, acceleration,
humidity and barometric pressure. We used TinyDB [15]
to collect data from Group 1 and a modified Xlisten
program from the TinyOS Sourceforge CVS directory
[17] to collect data from Group 2, due to the applicability
of the software to different types of sensor boards. In
addition, we logged battery voltage of both groups for
data conversion and analysis.

Figure 1: Deployment of Group 1 Motes

It was a cloudy day and rained intermittently. We
collected data during the following four 2-hour periods:
6:30-8:30, 12:30-14:30, 17:30-19:30, and 22:00-24:00.
We set the sampling period of each reading to be 30
seconds and collected thousands of readings per group.
We show three figures (Figures 3-5) as representative
examples.

The noise readings of all sensor nodes in Group 1
were similar at any point in time. We picked two motes

that differed most in the readings, Motes 1 and 5, shown
in Figure 3. These readings mainly captured frog croaks.
They indicate that frogs croaked most actively in the early
morning and least actively at noon time. There is a gap of
a few minutes in the morning readings, which was due to
a crash of our data logging program and its subsequent
recovery.

Figure 2: Deployment of Group 2 Motes

Noise (ADC counts)

300

400

500

600

700

800

900

1000

4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24

Group 1 Mote 1

Group 1 Mote 5

Figure 3: Group 1 Noise Readings

The humidity readings of Group 2 remained at the
level of around 90% most of the time (Figure 4).
Readings of abnormally high humidity (larger than 130%)
at Mote 1 were detected in the early morning, because
rain drops accidentally splashed onto Mote 1 when we
took it out of a box and deployed it. The water made the
humidity sensor at Mote 1 malfunction and thus return
abnormally high readings. This kind of physical problem
for motes is common and recoverable [14]. After being
dried, the humidity sensor returned to normal operation.

The temperature readings of the two groups varied
slightly within each group (21-24°C in Group 1 and 21-
23°C in Group 2). As illustrated in Figure 5, the
temperature measured by Group 2 motes was often
slightly higher than that measured by Group 1 motes
(except around noontime), even though the two pagodas
were close to each other (within 20 meters). We think
there are two possible reasons for this difference: (1) the
temperature sensors of the two groups have different

hardware characteristics since they are made by different
companies, and (2) the microclimates in the two pagodas
had a slight difference due to their different geographical
locations.

Relative Humidity (%)

60

70

80

90

100

110

120

130

140

150

4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24

Group 2 Mote 1

Group 2 Mote 2

Figure 4: Group 2 Humidity Readings

Temperature (°C)

20.5

21

21.5

22

22.5

23

23.5

24

4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24

Group 1 Mote 1

Group 2 Mote 2

Figure 5: Temperature Readings of Two Groups

2.3 Discussion

From our data analysis, we suggest that the application
only use one Mote per pagoda for a small-scale case study
around the frog pond, since the readings within each
group were similar and there were slight differences
between the two groups that were deployed in different
geographical locations (pagodas). Moreover, if the
application scenario changes and more questions about
the query processor are asked, we need to have a set of
general data analysis tools to answer these questions.

Based on our experience with the frog pond case
study, we propose the following three requirements for a
sensory data analyzer.

(1) The analyzer should have data acquisition
functions that are fault-tolerant and adaptive, since the
sensory data collection process determines the quality of
sensory data. The fault-tolerance requirement is because
hardware malfunctioning is common in field studies, as
we experienced. It is thus desirable that a data collector is
able to recover, to migrate the work from a failed node to
a normal node, and to resume the work. The adaptivity
requirement is to take advantage of the patterns and
regularities captured in sensor readings. For instance,

continuous quantities such as temperature can be
measured with a sampling frequency adapted to the
changes in the temperature readings in order to improve
power efficiency while keeping the quality of sensory data
unaffected.

(2) The analyzer should have a set of basic functions
for data pre-processing and post-processing operations.
Data pre-processing is to further ensure the quality of the
data for analysis. Data post-processing is mainly for the
presentation of analytical results. For example, the
function convert() converts sensor readings from raw
ADC counts to human-friendly engineering units, the
function calibrate() performs hardware-specific
calibration of the readings, and the function plot() plots
data points and curves following user-defined criteria for
analytical summaries.

(3) As the core of the analyzer, the sensory data
analysis functions include pattern and outlier detection,
and correlation of multiple sensory attributes or multiple
sensor nodes. We further discuss these two types of
functions as follows:

First, detecting patterns and outliers in single-node
single-attribute sensory data is the basic analytical
operation. For instance, given the temperature readings of
one sensor node, the basic analytical information about
these readings must include a summary of the range, the
trend, and the outliers of the data. As a result of
measuring natural phenomena, sensory data has inherent
patterns as well as outliers. Moreover, outliers are
sometimes due to real events in the environments and
sometimes due to system errors. It is necessary to pay
special attention to outlier analysis.

Second, correlation analysis gives insight into sensory
data, because each sensor node has multiple sensory
attributes and multiple sensor nodes work concurrently in
a geographical region. The inherent correlations between
natural phenomena as well as the temporal and spatial
correlations of sensor nodes are useful for both sensor
query processing and application deployment. For
example, when an application is detecting transient
changes such as a sudden increase in the noise level, it can
utilize the spatial correlation of a cluster of adjacent nodes
to detect the noise with a high fidelity. In other words, an
increase in the detected noise level could be the result of a
real event and/or a system error. But if multiple nearby
nodes report the same event, the probability of the change
occurring as a result of a system error is much lower than
that of it occurring as a result of a real event.

In summary, analytical results from real-world sensory
data, such as patterns, outliers, and correlations, can help
answer questions about query processors as well as
improve query processing. In addition, data analysis can
interact with modeling and emulation to better serve the
purpose of studying query processing. On one hand,
analytical results serve as a realistic basis for modeling
and emulation; on the other hand, modeling and emulation
can be used for guiding and cross-validating data analysis.

3 Modeling Power Consumption

Having presented a case study of sensory data analysis,
next we turn to modeling sensor databases. Due to the
short time period (eight hours) and resource constraints
(no oscilloscope on site) of the field study, we were
unable to obtain detailed power consumption statistics.
Since power efficiency is a major issue in sensor query
processing, we examine this issue through modeling and
emulation.

3.1 Overview

Power efficiency is a major issue in sensor networks,
since sensor nodes are battery-powered and it is difficult
or infeasible to recharge deployed sensor nodes in
practice. There has been work on the power efficiency of
sensor nodes [6][13], sensor networks [8][10], and senor
query processing techniques [1][3][11][18]. However, it
remains unclear how to evaluate systematically the power
efficiency of sensor databases. The main reason is that
there are many intertwined factors that affect power
consumption in a sensor database system: sensor node
computation, wireless transmission, and various query
processing techniques. Therefore, we propose to
represent these factors in a general model to study the
power consumption of sensor databases.

We group these factors into a three-level hierarchy
(Figure 6): the sensor database, the sensor network, and
the sensor node. The sensor node model captures the
power consumption characteristics of a single sensor node
and provides a quantitative approach to estimate the
power consumption of a single sensor node by the
operations of the node. The sensor network model groups
the main factors in wireless communication that affect
power consumption. It adapts the quantitative approach
provided by the sensor node model to a network
environment. The sensor database model formalizes the
main factors of database workloads that affect power
consumption in a sensor network and further improves the
accuracy of power consumption estimation for database
workloads.

As a result, our hierarchical model can estimate the
power consumption of a sensor query processing
workload in a unified and general way. We can
instantiate each level of model with specific real-world
factors and realistically estimate power consumption of
query workloads. For instance, we can use the MICA2
hardware specification for the sensor node, a typical
network routing scheme for the sensor network, and a
monitoring query used in our frog pond application for the
database workload.

In the remainder of this modeling section, we use
UML (Unified Modeling Language) style illustrations for
modeling (Figures 6-9). A big box with a small square on
top represents a package, e.g., “Sensor Database Model” .
A package can contain other packages. A dashed line

with an arrow stands for the “uses” relationship. A solid
line with an arrow stands for the “has” relationship.

���������
	
���������������

����������	
����� ����	 ����������

����������	
����� ������������������

� "!�#$ %

&�' #)(�#�*

Figure 6: Model Hierarchy

3.2 The Model

We show our hierarchical power consumption model in
Figures 7, 8, and 9 and describe them briefly. For brevity,
all formulas are omitted and will be available in a
technical report.

In Figure 7, we represent the configuration of a smart
sensor node as a package of six types of units: the
processor, the RAM, the flash memory, the wireless
transmission unit, the battery, and the sensing data units.
A configuration contains the important units (in terms of
power consumption) of a sensor node and the parameters
for the power consumption estimation of the units. The
parameters starting with “pc” represent the unit power
consumption, e.g., “pcInstruction” of the processor stands
for power consumption per instruction. We define several
operations in a sensor node (not shown in Figure 7):
sensing (sampling), listening, sending (transmitting),
receiving, discarding, and processing. We estimate the
power consumption of a sensor node during a period of
time by summing up the power consumption of all
operations during that period. For each operation, the
power consumption is calculated using a linear battery
model [13]. Clearly, our sensor node model
accommodates a wide range of sensor nodes with various
hardware characteristics.

In Figure 8, we model a sensor network with the
canonical topology, the routing scheme, and the model
metrics. The canonical topology is represented as an
undirected graph with its k-ary spanning tree. The routing
scheme is responsible for building the spanning tree on
the graph. For instance, in the flooding scheme, we can
build the spanning tree by traversing the graph via
Breadth-First Search. Finally, the model metrics include
per-node metrics (the number of neighbors per node and
the number of children per node in the spanning tree) as
well as network-wide metrics (expansion, resilience, and

distortion). Note that a node’s neighborhood is
determined by the wireless signal transmission range in
the deployment whereas a node’s children are determined
by the routing tree. Since different routing schemes have
different power consumption characteristics, our sensor
network model aims to provide insights for designing
power-efficient routing schemes.

Figure 7: Sensor Node Package

Figure 8: Sensor Network Package

Figure 9: Sensor Database Package

In Figure 9, the sensor database model consists of the
data model, the query model, the query plans, the
workload model, and the model metrics. Our data model
is relational and our query model is TinySQL-style
extended SQL [11] with clauses specifying sampling rate

EPOCH and query lifetime LIFETIME. The query plans
describe the execution plans of queries with selection,
projection, and aggregation operators. The model metrics
include the number of tuples, the size of each tuple, and
the reduction factor of each operation (selection,
projection, or aggregation). A reduction factor is defined
as the ratio of the output data size to the input data size of
the operator. Finally, the workload model estimates
power consumption of the query workload in the sensor
network.

To estimate the power consumption of a query
workload, we consider both the local computation cost
and the network traffic cost, which depend on the
complexity of the handling and the volume of data
handled. We developed algorithms for estimating sensor
network lifetime in terms of power consumption in the
static deployment and dynamic deployment, respectively.
In the static deployment, the routing tree does not change
as long as the network topology does not change. In
contrast, the routing tree changes dynamically in the
dynamic deployment. The algorithms estimate the power
consumption for each node and identify the weak points in
the sensor network. A weak point is a node whose power
consumption is higher than others in the sensor network.

The algorithm for the static deployment works as
follows:

(1) Generate a k-ary spanning tree based on the
selected routing scheme. If it fails, the algorithm stops.

(2) Generate the query plan of the query workload
on the sensor network and estimate the reduction factors
for selection, projection and aggregation as needed.

(3) Estimate the power consumption of each node
for this query workload as time goes, and identify the
weakest point until it runs out of power.

(4) Remove the dead weak point from the network
and repeat the previous steps starting from step (1).

For the dynamic deployment, we modify the algorithm
for the static deployment by adding a time period round.
At the end of each round, even though no nodes have run
out of battery power, there is still a router reassignment
process. Similar to the algorithm for the static
deployment, the algorithm for the dynamic deployment
estimates the lifetime of the deployment until the sensor
network is disconnected.

3.3 Initial Validation Results

We validated our model using a typical sensor node
configuration, two representative routing schemes, and a
simple query workload. The sensor node configuration
followed the MICA2 [4] Motes hardware specification.
The two representative routing schemes we compared
were LEACH [8] and flooding (Figure 10). LEACH
identifies clusters of nodes and selects leader nodes of
clusters in a round-robin fashion for packet merging (or
called “partial aggregation” in networking terms, but not
the “aggregation” , e.g., SUM(), in database terms). The

query workload we tested was a simple aggregation
query: “ SELECT MAX(temperature), humidity FROM
sensors GROUP BY humidity EPOCH 30 seconds” .

The “sensors” virtual table had a schema of {humidity,
temperature, timestamp} with a fixed length of 4 bytes per
attribute. We assumed each packet contained a header of
20 bytes. With the temperature and humidity attributes in
the query result, each packet contained 28 bytes. We also
assumed that each sensor node covered a circular with a
radius of 20 feet. The average distance between a sensor
node and the sink node (Mote 0) was assumed to be 500
feet. We used LEACH’s assumption that the unit power
consumed in sending is proportional to the distance.

Figure 10: LEACH (left) versus Flooding (right)

Figure 11 shows the predicted average node lifetime in
a network of N (ranging from 6 to 24) nodes resulting
from our model. Our model predicts that LEACH results
in a five-fold improvement in power efficiency over
flooding whereas in the original LEACH paper this factor
was eight. One major reason for this difference is that we
considered the power consumption of database workloads
as well as that of individual sensor nodes in addition to
networking.

LEACH vs Flooding

0

1

2

3

4

5

6

6 12 18 24

N

N
od

e
Li

fe
 T

im
e(

m
o

nt
h

)

LEACH

Flooding

Figure 11: Predicted Average Node Lifetime

Since the number of nodes was small and there were at
most two hops in LEACH in our study, the effect of
database-style in-network aggregation (e.g., executing
MAX() at a leader node) was insignificant. We are
considering more complex and larger-scale cases for
validation, in which in-network aggregation makes a
difference [1][11][18].

3.4 Discussion

As shown in the preliminary results, our modeling can
estimate power consumption of query processing
workloads realistically using real-world factors such as
sensor node hardware configuration, representative
routing schemes, and typical queries in monitoring
applications. To further improve our model, we consider
the following three extensions:

(1) Extend the estimation of reduction factors for
power-aware query processing. For example, our data
analysis shows that patterns and correlations are common
in sensory data. If a query processor takes advantage of
these patterns and correlations and performs pattern-aware
or correlation-aware data acquisition, we can extend the
estimation method of reduction factors for these
techniques.

(2) Extend the estimation of the node neighborhood in
the sensor network model by considering the
synchronization characteristics of transmission. A
neighborhood of a node is a basic topology element in a
multi-hop networking environment; transmission between
nodes can be synchronous or asynchronous. We modeled
transmission to be synchronous as is commonly assumed
by existing work. To achieve a more accurate estimation,
we plan to cover asynchronous transmission as well.

(3) Extend the database workload model to handle
joins. Joins are a complex operation in sensor databases,
which involves factors such as where and how to perform
the join. The reduction factor alone seems to be
insufficient for modeling the power consumption
characteristics of a join operation.

4 Emulation for Query Processing

Modeling is useful for defining the problem space and
quantifying the effects of multiple factors, as shown in our
hierarchical power consumption model in Section 3.
Nevertheless, dynamic behaviors of programs, for
instance, parallel execution of query processing code on
multiple sensor nodes, are often hard to abstract and to
model. Under such situations, emulation is useful for
observing the execution process. In this section, we
present an emulator for sensor query processing.

4.1 Overview

Currently, it is difficult to study in-network query
processing on real sensor networks, not only because the
deployment is expensive and hard to maintain, but also
because the resource constraints in a sensor network limit
the collection of detailed statistics about the system’s
running status. Both simulation and emulation can ease
these problems, either by representing the logical views
and actions of the target system (simulation) or by
executing the code with the same control flow as that of
the target system (emulation).

We propose an emulation environment, VMN (Virtual
Mote Network), for studying sensor query processing. It
is a mix of simulation and emulation. We use TinyOS
[16] modules to emulate the application execution
environment in each VM (Virtual Mote). We simulate the
radio channel and the sensing units of each VM following
the MICA2 [4] hardware specification. The sensory data,
which is fed into the virtual sensing units as the input of
VMN, is generated from real-life data such as that
collected in our frog pond monitoring application (Section
2). Finally, the execution of query processing code on
each VM and the network topology are emulated on
networked PCs.

Our VMN is different from the two existing sensor
network simulators, TOSSIM [9] and EMStar [7], in that
VMN utilizes networked PCs to emulate networked motes
in parallel and has execution time and power consumption
models for query processing applications. Other
simulators such as ns-2 [12] and Sensorsim [13] or
emulators such as EMPOWER [19] lack the execution
environment of smart sensor nodes.

4.2 The Emulator

Our VMN (Figure 12) emulates a real network of MICA2
motes running TinyOS. PC 0 acts as the virtual base
station, which runs VM 0 to emulate the sink node (Mote
0) in the real sensor network and runs the real application
client (in this case, the TinyDB GUI) to communicate
with VM 0. Each of the PCs 1 to n emulates multiple
virtual motes except VM 0. Virtual motes communicate
with each other through the virtual channel, which is
implemented on top of the UDP (User Datagram Protocol)
on a LAN (Local Area Network) and simulates a real
radio channel with bit errors and delays.

PC 0

PC n

…

Application
Client

VMN
Manager

V
irtual C

hannel

Application
TinyOS
Virtual

Hardware

VMm

…

…

Application
TinyOS
Virtual

Hardware

VMm+1

Application
TinyOS
Virtual

Hardware

VMm+2

Application
TinyOS
Virtual

Hardware

VM0

Figure 12: Architecture of a VMN

Each VM (Figure 13) emulates a MICA2 mote
running TinyOS. We partition a VM into upper and the
lower layers. The upper layer includes (i) the application,
(ii) the senders and receivers of Active Messages (AM),
UART (Universal Asynchronous Receiver/Transmitter, or
RS232 serial communication) packets and radio packets,

and (iii) the VM manager for emulation control and
statistics collection on the node. The lower layer consists
of (i) various types of virtual sensors, the virtual UART
(for Mote 0 only), and the virtual RFM (Radio Frequency
Monolithic), (ii) the virtual drivers for (a), and (iii) the
virtual clock. This partitioning scheme identifies the
components that are pertinent to program execution and
then puts these components into the upper layer.

Virtual Mote
Application

Virtual Sensor
Driver

Active Message Sender / Receiver

Virtual
Temperature

Sensor

Virtual
Light

Sensor

Virtual
Clock

Virtual
RFM

Radio Packet
Sender /Receiver

TinyOS V
M

 M
anager

Virtual Radio
Driver

Virtual
UART

UART Packet
Sender /Receiver

Virtual
UART
Driver

Upper Layer

Lower
Layer

Figure 13: Architecture of a VM

Connecting multiple VMs, the virtual channel
simulates wireless network effects using three software
modules: the bit error module, the collision module and
the delay module (shown in Figure 14).

The bit error module uses an experiential radio signal
error data model to generate the bit error rate. The error
rate is defined as (the number of error bits received by the
receiver) / (the total number of bits sent by the sender).
The module maintains a table of two attributes, distance
and bit error rate, and generates bit errors randomly at a
rate that the table specifies.

The collision module simulates radio signal collision
by performing two operations: carrier sense and collision.
Both operations need information about the virtual time
(the time in the emulated world) and the data transmission
status of all VMs. This information is kept in the VMN
Manager.

In the carrier sense operation, the collision module
asks the network manager whether if a sending VM can
hear any VMs that are transmitting data. If so, the
sending VM waits a period of time whose length is
defined by the network protocols. In the collision
operation, the collision module destroys the current bit to
be sent on one of two conditions: (1) another VM is
transmitting and the sender of this current bit can hear that
transmitting VM, or (2) another VM is sending to the
same destination as this sender.

Finally, the transmission delay module adds a delay to
the virtual time of each packet to be sent.

Having described the three network effect modules,
we then describe the transmission process of data on a
virtual channel from/to a VM. When outgoing bits are
sent from the Virtual Radio Frequency Module (VRFM)

of the VM to the virtual channel, they pass through the
three modules and stay in a buffer for wrapping (in the
lower right corner of Figure 14). When all bits of a packet
arrive in the buffer, the virtual channel wraps them into a
packet and sends out the packet via UDP. When an
incoming UDP packet arrives at the virtual channel, it is
put into a queue (lower left of Figure 14) and is
decomposed into bits to be sent to the VRFM of the VM
via another buffer (on the left of Figure 14).

 To VRFM From VRFM Collision signal

to VRFM

Delay

Module

Bit error

Module

Collision

Module

Bits

Control messages To/From

Network Manager (NM)
UDP packet from other

VMs via LAN

UDP packet to other

VMs via LAN
Queue

Figure 14. Virtual Channel

Because VMs run simultaneously, synchronization is
needed to ensure that the messages and the operations of
VMs are in the same order with that of the target sensor
network. The synchronization procedure is as follows: at
the startup time, the network manager initializes its table
of network status information including the total number
of VMs n and the value of the virtual clock of each VM:
vt0, vt1… vtn-1. Whenever the VMs run for a predefined
interval, T, which is called the synchronization interval,
they pause and report to the network manager. After
every VM has reported to the network manager that its
virtual clock has advanced by T, the network manager
sends out a broadcast message to inform the VMs to
resume running. In addition, the UDP packets on the
virtual channel are put in a queue and sorted by their
virtual time in ascending order. With the queue and the
synchronization interval, the order of operations and
messages are ensured to be the same as that on the real
network.

4.3 Preliminary Evaluation Results

We have done preliminary evaluation of the VMN with a
small number of nodes running a simple query on TinyDB
and validated the results of running the query on real
MICA2 motes. The query was to report temperature
readings of all motes for every epoch of 960ms. This
short sampling rate was used to measure the electric
currents on real motes at a fine granularity, because the
HP 4155A oscilloscope we used was able to measure
electric currents at a scale of milliseconds for a period of
time of up to two seconds. The two seconds were
sufficient for studying the processing of the query because
we observed two epochs in each measurement.

We measured the power consumption of this query on
a 4-node real mote network using an oscilloscope (HP
4155A) during the query execution (Figure 15). We then
ran the query on a 4-node VMN and estimated the power
consumption of the query (Figure 16). In our power
consumption emulation, we divided the query execution
time into several power modes with different operations.
These operations are: “Sleeping” , “Processing” ,
“Listening” , “Sampling” and “Transmitting” . Two
different operations can occur in one mode, e.g.,
Processing & Transmitting. The measured electric current
in a mode was nearly constant (the range was within +/-
0.3 mA in our experiments).

Figure 15 shows our measurements of four power
modes during the query processing in the 4-node real
mote network, which were “Listening” , “Processing &
Transmitting” , “Processing & Listening” , and
“Sampling” . Because the sampling rate was short
(960ms), the motes did not run into sleeping. In other
experiments with a longer sampling rate (>10s), we
measured that the average current in sleeping was about
0.0162 mA. All of these results are consistent with the
data sheet of MICA2 Motes [4]. These results are also
similar to those reported by Madden et al. [11] except one
difference is that we did not get the “Snoozing” mode
with an average electric current of 4 mA. We are
investigating this issue further.

Figure 15: Measured Power Consumption of a MICA2
Mote

Figure 16 shows the estimated power consumption and
the estimated query execution time in the 4-node VMN.
Compared with the results in Figure 15, the error on query
execution time estimation was 1.4-1.34 = 0.06 seconds or
0.06/1.34 = 4.4%. We calculated the power consumption
by the sum of (current * running-time), because the
number of measurement points was different in the real
mote network than in the VMN. The sum of the real
measurement was 27.38 mA*seconds, and that of VMN
was 28.68 mA*seconds, which resulted in an error rate of
4.72%.

Figure 16: Estimated Power Consumption of a VM

5 Conclusion and Future Work

We have proposed a software framework, MEADOWS,
for modeling, emulation, and data analysis of wireless
sensor networks. We have reported a case study of real-
world data collection and analysis and proposed a
preliminary design of data analysis functions for detecting
patterns, outliers, and correlations. We have also
presented our initial work on a hierarchical power
consumption model for sensor databases and on a sensor
network emulator using networked PCs. We find that this
framework is useful for answering questions about sensor
query processing. In addition, the integration of
modeling, emulation, and data analysis creates synergy
for studying sensor query processing.

Our future work on MEADOWS include (1)
implementing our proposed data analysis functions and
using the results to cross-validate our modeling and
emulation work, (2) conducting more extensive and
complex case studies for our sensor database power
consumption model and extending the model, and (3)
increasing the scale of sensor network emulation and
adding node mobility emulation.

Acknowledgement

We collaborated with Pei Zheng at Arcadia University,
USA on sensor network emulation. The design of data
analysis functions was influenced by discussions with our
collaborators at Peking University, China. We thank Jeff
Naughton for his helpful comments on the paper.
Funding for this work was from Grants HKUST6158/03E,
HKUST6161/03E provided by the Hong Kong Research
Grants Council (RGC).

References

[1] Jonathan Beaver, Mohamed A. Sharaf, Alexandros
Labrinidis, and Panos K. Chrysanthis. Power-
Aware In-Network Query Processing for Sensor

���
���
���
���
���
�	�
��

���

� �������������	������ � ���������������	�

Running Time(second)

E
le

ct
ri

c
C

ur
re

nt
 (

m
A

)

Listening Processing &
Transmitting

Processing
& Listening

Sampling

���
��
���
��
��
���
��
�

�!�"	�#�"	�$�"	 #�"�% �&��"	�'��"�����"	
 Running Time(second)

E
st

im
at

ed
 E

le
ct

ri
c

C
ur

re
nt

 (
m

A
)

 .

Listening Processing &
Transmitting

Processing
& Listening

Sampling

Data. The 2nd Hellenic Data Management
Symposium, 2003.

[2] Philippe Bonnet, Johannes Gehrke, and Praveen
Seshadri. Towards Sensor Database Systems. The
2nd International Conference on Mobile Data
Management (MDM), 2001.

[3] Ugur Cetintemel, Andrew Flinders, and Ye Sun.
Power-Aware Data Dissemination in Wireless
Sensor Networks. The 3rd ACM International
Workshop on Data Engineering for Wireless and
Mobile Access, 2003.

[4] Crossbow Corp. http://www.xbow.com
[5] Amol Deshpande, Suman Nath, Phillip B.

Gibbons, and Srinivasan Seshan. Cache-and-Query
for Wide Area Sensor Network. SIGMOD
Conference 2003.

[6] Laura Marie Feeney. An Energy Consumption
Model for Performance Analysis of Routing
Protocols for Mobile Ad-hoc Networks. Mobile
Networks and Applications, 2001.

[7] Lewis Girod, Jeremy Elson, Alberto Cerpa,
Thanos Stathopoulos, Nithya Ramanathan, and
Deborah Estrin. EmStar: a Software Environment
for Developing and Deploying Wireless Sensor
Networks. USENIX 2004.

[8] Wendi Heinzelman, Anantha Chandrakasan, and
Hari Balakrishnan. Energy-fficient
Communication Protocol for Wireless Microsensor
Networks. The 33rd hawaii International
Conference on System Sciences, 2000.

[9] Philip Levis, Nelson Lee, Matt Welsh, David
Culler. TOSSIM: Accurate and Scalable

Simulation of Entire TinyOS Applications. The 1st
International Conference on Embedded Networked
Sensor Systems, 2003.

[10] Erran Li and Joseph Halpern. Mimimum-Energy
Mobile Wireless Networks Revisited. ICC 2001.

[11] Samuel Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. The Design of an
Acquisitional Query Processor for Sensor
Networks. SIGMOD Conference 2003.

[12] NS2. http://www.isi.edu/nsnam/ns/.

[13] Sung Park, Andreas SAvvides, and Mani B.
Srivstava. Sensorsim: A Simulation Framework
for Sensor Networks. MSWIM, 2000.

[14] Robert Szewczyk, Joseph Polastre, Alan
Mainwaring, and David Culler. Lessons from a
Sensor Network Expedition. In Proceedings of the
1st European Workshop on Wireless Sensor
Networks (EWSN), 2004.

[15] TinyDB. http://telegraph.cs.berkeley.edu/tinydb/.

[16] TinyOS. http://www.tinyos.net.

[17] Xlisten Program.
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos
-1.x/contrib/xbow/tools/src/xlisten/.

[18] Yong Yao and Johannes Gehrke. Query Processing
for Sensor Networks. CIDR 2003.

[19] Pei Zheng and Lionel M. Ni. EMPOWER: A
Network Emulator for Wireless and Wired
Networks. INFOCOM 2003.

