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Abstract 

In this position paper, we present MEADOWS, a 
software framework that we are building at 
HKUST (The Hong Kong University of Science 
and Technology) for modeling, emulation, and 
analysis of data of wireless sensor networks.  
This project is motivated by the unique need for 
intertwining modeling, emulation, and data 
analysis in studying sensor databases.  We 
describe our design of basic data analysis tools 
along with an initial case study on HKUST 
campus.  We also report our progress on 
modeling power consumption for sensor 
databases and on wireless sensor network 
emulation for query processing.  Additionally, 
we outline our future directions on MEADOWS 
for discussion and feedback at the workshop.  

1.  Introduction  

Sensor networks have created exciting opportunities for 
data management [2], especially for in-network query 
processing [1][5][11][18], because these networked sensor 
nodes form a large-scale, dynamic, and distributed 
database with each node acquiring, processing and 
transmitting data simultaneously.  However, studying in-
network sensor query processing is a challenging task due 
to the unique features of sensor networks.  These unique 
features include: (1) each sensor node has limited 
computation, communication, and storage capabilities as 
well as limited power supply; (2) sensory units and 
communication channels are lossy and error-prone; and 
(3) deployed sensor nodes are embedded in the physical 
world, scattered geographically, and often mobile.  To 
facilitate the study of sensor databases in general and in-

network query processing in specific, we propose 
MEADOWS, a software framework that we are building 
at HKUST (The Hong Kong University of Science and 
Technology) for modeling, emulation, and analysis of 
data of wireless sensor networks.   

Modeling, emulation, and data analysis for sensor 
networks is essential for studying in-network query 
processing systematically.  On one hand, studying query 
processing techniques in real sensor networks with real 
applications has been fruitful and has a high practical 
impact [11].  On the other hand, the tight integration of 
sensor networks with the physical world, the high 
uncertainty in sensory data, and the high deployment cost 
make it hard to produce general and complete results 
through field studies only.  Consequently, it is highly 
desirable to perform in-depth analysis of sensory data 
from field studies and to model and emulate sensor 
networks in controlled environments.   

Let us give a real-world example to illustrate the 
usefulness of MEADOWS.  This example is an 
experimental monitoring application that we deployed 
near a frog pond on HKUST campus in the spring of 
2004.  We used the MICA2 Motes made by Crossbow [4] 
for the sensor nodes and TinyDB [15] as well as other 
software running on the motes to collect sensory data.  In 
TinyDB, the data collection process is the execution of 
declarative, SQL-like queries, which eases application 
development and allows for performance optimization.  
However, answering some important questions about the 
query processor for the application is difficult or 
infeasible through a simple field study.  Specifically, 
some of these questions are as follows: 

(1) We have only ten sensor nodes available for the 
application.  How many do we really need and what 
geographical deployment topology do we use to observe 
important phenomena such as trends in temperature, 
humidity, and frog croaks around the frog pond? 

(2) If we collect sensor readings every 30 seconds, 
what is the status of power consumption at each node over 
time and when will the batteries run out? 
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(3) If we change the type of sensor nodes (e.g., CPU, 
radio channel, sensing units), the sensor network routing 
scheme, or the data collection queries, what are the 
resulting answers to questions (1) and (2)?  

In MEADOWS, we attempt to answer these questions 
through data analysis, modeling, and emulation.  We 
show that we can determine the number of sensor nodes 
needed and the geographical deployment scheme by 
performing data analysis (Section 2). We also show that 
we can realistically estimate power consumption in 
various scenarios by including real-world factors into 
modeling and emulation (Sections 3 and 4). In addition, 
the integration of data analysis, modeling, and emulation 
helps answer the questions better than merely employing 
one of these three approaches in isolation.  Our ultimate 
goal is to enable various studies on sensor databases and 
sensor query processing.  

To date, modeling, emulation, and data analysis of 
sensor networks for query processing is still at an early 
stage. Our work in MEADOWS is only an initial step in 
this direction.  In this early report, we present a case study 
of preliminary sensor network data analysis in Section 2, a 
hierarchical power consumption model for sensor 
databases in Section 3, and a sensor network emulator for 
query processing in Section 4.  We draw conclusions and 
list future directions in Section 5.  

2. Analysis of Sensor Network Data 

In this section, we focus on real-world sensory data and 
discuss a case study of collecting and analyzing the data 
from a small network of sensors deployed outdoors on the 
HKUST campus.  The purpose of this case study is to 
explore how data analysis can help answer questions 
about sensor query processors.  In addition, we aim to 
gain insights for data analysis tool design. 

2.1 Overview 

Analysis of real-world data provides a realistic basis for 
modeling and emulation.  Because sensor networks are 
designed to be tightly embedded in the physical world, 
collecting and analyzing real-world sensor network data is 
both challenging and worthwhile.  Even though there have 
been a few projects on outdoor deployment of sensor 
networks [14], we have not yet seen studies that answer 
questions about query processors.  Therefore, as a first 
step of our framework development, we conducted a field 
study with this specific goal in mind.  The scale of the 
study was small due to our resource limitation.  However, 
the study is sufficient for the purpose of producing an 
initial design of data analysis tools. 

The case study is the frog pond monitoring application 
we briefly described in the Introduction. The frog pond is 
located at the northeastern corner of the campus.  
Throughout the late spring, the frogs in the pond croak 
loudly all day long.  We chose the frog pond as it has this 
interesting phenomenon as well as other outdoor 

microclimate characteristics (e.g., close to the sea and two 
pagodas).  

We deployed a small number of sensor nodes in two 
groups near the frog pond.  We collected one-day of 
sensory data during four two-hour periods.  We pre-
processed the data by adding labels (e.g., timestamps) and 
converting data formats (e.g., from raw sensor readings to 
more human-friendly engineering units).  We analyzed the 
data by examining patterns, exceptions (outliers), and 
correlations.  Finally, we discuss our design of data 
analysis tools as well as the insights gained from the case 
study. 

2.2 The Case Study 

We deployed two groups of MICA2 motes in the two 
pagodas near the frog pond (Figures 1 and 2).  Mote 0’s of 
both groups were sink nodes connected with a laptop 
through a serial cable.  Group 1’s Motes 1-5 used the 
MTS310CA sensor boards, which detect temperature, 
light, noise level, acceleration and magnetic value.  
Group2’s Motes 1-2 used the MTS420CA weather sensor 
boards, which measure temperature, light, acceleration, 
humidity and barometric pressure.  We used TinyDB [15] 
to collect data from Group 1 and a modified Xlisten 
program from the TinyOS Sourceforge CVS directory 
[17] to collect data from Group 2, due to the applicability 
of the software to different types of sensor boards.  In 
addition, we logged battery voltage of both groups for 
data conversion and analysis. 

 

 

Figure 1: Deployment of Group 1 Motes 

It was a cloudy day and rained intermittently.  We 
collected data during the following four 2-hour periods: 
6:30-8:30, 12:30-14:30, 17:30-19:30, and 22:00-24:00. 
We set the sampling period of each reading to be 30 
seconds and collected thousands of readings per group.  
We show three figures (Figures 3-5) as representative 
examples. 

The noise readings of all sensor nodes in Group 1 
were similar at any point in time.  We picked two motes 



that differed most in the readings, Motes 1 and 5, shown 
in Figure 3.  These readings mainly captured frog croaks.  
They indicate that frogs croaked most actively in the early 
morning and least actively at noon time.  There is a gap of 
a few minutes in the morning readings, which was due to 
a crash of our data logging program and its subsequent 
recovery.   

 

Figure 2: Deployment of Group 2 Motes 
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Figure 3: Group 1 Noise Readings 

The humidity readings of Group 2 remained at the 
level of around 90% most of the time (Figure 4).  
Readings of abnormally high humidity (larger than 130%) 
at Mote 1 were detected in the early morning, because 
rain drops accidentally splashed onto Mote 1 when we 
took it out of a box and deployed it.  The water made the 
humidity sensor at Mote 1 malfunction and thus return 
abnormally high readings.  This kind of physical problem 
for motes is common and recoverable [14].  After being 
dried, the humidity sensor returned to normal operation.   

The temperature readings of the two groups varied 
slightly within each group (21-24°C in Group 1 and 21-
23°C in Group 2).  As illustrated in Figure 5, the 
temperature measured by Group 2 motes was often 
slightly higher than that measured by Group 1 motes 
(except around noontime), even though the two pagodas 
were close to each other (within 20 meters).  We think 
there are two possible reasons for this difference: (1) the 
temperature sensors of the two groups have different 

hardware characteristics since they are made by different 
companies, and (2) the microclimates in the two pagodas 
had a slight difference due to their different geographical 
locations. 
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Figure 4: Group 2 Humidity Readings 
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Figure 5: Temperature Readings of Two Groups 

2.3 Discussion 

From our data analysis, we suggest that the application 
only use one Mote per pagoda for a small-scale case study 
around the frog pond, since the readings within each 
group were similar and there were slight differences 
between the two groups that were deployed in different 
geographical locations (pagodas).  Moreover, if the 
application scenario changes and more questions about 
the query processor are asked, we need to have a set of 
general data analysis tools to answer these questions. 

Based on our experience with the frog pond case 
study, we propose the following three requirements for a 
sensory data analyzer. 

(1) The analyzer should have data acquisition 
functions that are fault-tolerant and adaptive, since the 
sensory data collection process determines the quality of 
sensory data.  The fault-tolerance requirement is because 
hardware malfunctioning is common in field studies, as 
we experienced.  It is thus desirable that a data collector is 
able to recover, to migrate the work from a failed node to 
a normal node, and to resume the work.  The adaptivity 
requirement is to take advantage of the patterns and 
regularities captured in sensor readings.  For instance, 



continuous quantities such as temperature can be 
measured with a sampling frequency adapted to the 
changes in the temperature readings in order to improve 
power efficiency while keeping the quality of sensory data 
unaffected.   

(2) The analyzer should have a set of basic functions 
for data pre-processing and post-processing operations.  
Data pre-processing is to further ensure the quality of the 
data for analysis.  Data post-processing is mainly for the 
presentation of analytical results.  For example, the 
function convert() converts sensor readings from raw 
ADC counts to human-friendly engineering units, the 
function calibrate() performs hardware-specific 
calibration of the readings, and the function plot() plots 
data points and curves following user-defined criteria for 
analytical summaries.   

(3) As the core of the analyzer, the sensory data 
analysis functions include pattern and outlier detection, 
and correlation of multiple sensory attributes or multiple 
sensor nodes.  We further discuss these two types of 
functions as follows: 

First, detecting patterns and outliers in single-node 
single-attribute sensory data is the basic analytical 
operation.  For instance, given the temperature readings of 
one sensor node, the basic analytical information about 
these readings must include a summary of the range, the 
trend, and the outliers of the data.  As a result of 
measuring natural phenomena, sensory data has inherent 
patterns as well as outliers.  Moreover, outliers are 
sometimes due to real events in the environments and 
sometimes due to system errors.  It is necessary to pay 
special attention to outlier analysis. 

Second, correlation analysis gives insight into sensory 
data, because each sensor node has multiple sensory 
attributes and multiple sensor nodes work concurrently in 
a geographical region.  The inherent correlations between 
natural phenomena as well as the temporal and spatial 
correlations of sensor nodes are useful for both sensor 
query processing and application deployment.  For 
example, when an application is detecting transient 
changes such as a sudden increase in the noise level, it can 
utilize the spatial correlation of a cluster of adjacent nodes 
to detect the noise with a high fidelity.  In other words, an 
increase in the detected noise level could be the result of a 
real event and/or a system error.  But if multiple nearby 
nodes report the same event, the probability of the change 
occurring as a result of a system error is much lower than 
that of it occurring as a result of a real event. 

In summary, analytical results from real-world sensory 
data, such as patterns, outliers, and correlations, can help 
answer questions about query processors as well as 
improve query processing.  In addition, data analysis can 
interact with modeling and emulation to better serve the 
purpose of studying query processing.  On one hand, 
analytical results serve as a realistic basis for modeling 
and emulation; on the other hand, modeling and emulation 
can be used for guiding and cross-validating data analysis. 

3 Modeling Power Consumption 

Having presented a case study of sensory data analysis, 
next we turn to modeling sensor databases.  Due to the 
short time period (eight hours) and resource constraints 
(no oscilloscope on site) of the field study, we were 
unable to obtain detailed power consumption statistics.  
Since power efficiency is a major issue in sensor query 
processing, we examine this issue through modeling and 
emulation.  

3.1 Overview 

Power efficiency is a major issue in sensor networks, 
since sensor nodes are battery-powered and it is difficult 
or infeasible to recharge deployed sensor nodes in 
practice.  There has been work on the power efficiency of 
sensor nodes [6][13], sensor networks [8][10], and senor 
query processing techniques [1][3][11][18].  However, it 
remains unclear how to evaluate systematically the power 
efficiency of sensor databases.  The main reason is that 
there are many intertwined factors that affect power 
consumption in a sensor database system: sensor node 
computation, wireless transmission, and various query 
processing techniques.  Therefore, we propose to 
represent these factors in a general model to study the 
power consumption of sensor databases. 

We group these factors into a three-level hierarchy 
(Figure 6): the sensor database, the sensor network, and 
the sensor node.  The sensor node model captures the 
power consumption characteristics of a single sensor node 
and provides a quantitative approach to estimate the 
power consumption of a single sensor node by the 
operations of the node.  The sensor network model groups 
the main factors in wireless communication that affect 
power consumption.  It adapts the quantitative approach 
provided by the sensor node model to a network 
environment.  The sensor database model formalizes the 
main factors of database workloads that affect power 
consumption in a sensor network and further improves the 
accuracy of power consumption estimation for database 
workloads.  

As a result, our hierarchical model can estimate the 
power consumption of a sensor query processing 
workload in a unified and general way.  We can 
instantiate each level of model with specific real-world 
factors and realistically estimate power consumption of 
query workloads.  For instance, we can use the MICA2 
hardware specification for the sensor node, a typical 
network routing scheme for the sensor network, and a 
monitoring query used in our frog pond application for the 
database workload.   

In the remainder of this modeling section, we use 
UML (Unified Modeling Language) style illustrations for 
modeling (Figures 6-9).  A big box with a small square on 
top represents a package, e.g., “Sensor Database Model” .  
A package can contain other packages.  A dashed line 



with an arrow stands for the “uses”  relationship.  A solid 
line with an arrow stands for the “has”  relationship. 
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Figure 6: Model Hierarchy 

3.2 The Model 

We show our hierarchical power consumption model in 
Figures 7, 8, and 9 and describe them briefly.  For brevity, 
all formulas are omitted and will be available in a 
technical report. 

In Figure 7, we represent the configuration of a smart 
sensor node as a package of six types of units: the 
processor, the RAM, the flash memory, the wireless 
transmission unit, the battery, and the sensing data units.  
A configuration contains the important units (in terms of 
power consumption) of a sensor node and the parameters 
for the power consumption estimation of the units.  The 
parameters starting with “pc”  represent the unit power 
consumption, e.g., “pcInstruction”  of the processor stands 
for power consumption per instruction.  We define several 
operations in a sensor node (not shown in Figure 7): 
sensing (sampling), listening, sending (transmitting), 
receiving, discarding, and processing.  We estimate the 
power consumption of a sensor node during a period of 
time by summing up the power consumption of all 
operations during that period.  For each operation, the 
power consumption is calculated using a linear battery 
model [13].  Clearly, our sensor node model 
accommodates a wide range of sensor nodes with various 
hardware characteristics. 

In Figure 8, we model a sensor network with the 
canonical topology, the routing scheme, and the model 
metrics.  The canonical topology is represented as an 
undirected graph with its k-ary spanning tree.  The routing 
scheme is responsible for building the spanning tree on 
the graph.  For instance, in the flooding scheme, we can 
build the spanning tree by traversing the graph via 
Breadth-First Search.  Finally, the model metrics include 
per-node metrics (the number of neighbors per node and 
the number of children per node in the spanning tree) as 
well as network-wide metrics (expansion, resilience, and 

distortion).  Note that a node’s neighborhood is 
determined by the wireless signal transmission range in 
the deployment whereas a node’s children are determined 
by the routing tree.  Since different routing schemes have 
different power consumption characteristics, our sensor 
network model aims to provide insights for designing 
power-efficient routing schemes. 

 

 

Figure 7: Sensor Node Package 

 

 

Figure 8: Sensor Network Package 

 

 

Figure 9: Sensor Database Package 

In Figure 9, the sensor database model consists of the 
data model, the query model, the query plans, the 
workload model, and the model metrics.  Our data model 
is relational and our query model is TinySQL-style 
extended SQL [11] with clauses specifying sampling rate 



EPOCH and query lifetime LIFETIME. The query plans 
describe the execution plans of queries with selection, 
projection, and aggregation operators.  The model metrics 
include the number of tuples, the size of each tuple, and 
the reduction factor of each operation (selection, 
projection, or aggregation).  A reduction factor is defined 
as the ratio of the output data size to the input data size of 
the operator.  Finally, the workload model estimates 
power consumption of the query workload in the sensor 
network.   

To estimate the power consumption of a query 
workload, we consider both the local computation cost 
and the network traffic cost, which depend on the 
complexity of the handling and the volume of data 
handled.  We developed algorithms for estimating sensor 
network lifetime in terms of power consumption in the 
static deployment and dynamic deployment, respectively.  
In the static deployment, the routing tree does not change 
as long as the network topology does not change.  In 
contrast, the routing tree changes dynamically in the 
dynamic deployment.  The algorithms estimate the power 
consumption for each node and identify the weak points in 
the sensor network.  A weak point is a node whose power 
consumption is higher than others in the sensor network.  

The algorithm for the static deployment works as 
follows: 

(1) Generate a k-ary spanning tree based on the 
selected routing scheme.  If it fails, the algorithm stops. 

(2) Generate the query plan of the query workload 
on the sensor network and estimate the reduction factors 
for selection, projection and aggregation as needed. 

(3) Estimate the power consumption of each node 
for this query workload as time goes, and identify the 
weakest point until it runs out of power. 

(4) Remove the dead weak point from the network 
and repeat the previous steps starting from step (1). 

For the dynamic deployment, we modify the algorithm 
for the static deployment by adding a time period round. 
At the end of each round, even though no nodes have run 
out of battery power, there is still a router reassignment 
process. Similar to the algorithm for the static 
deployment, the algorithm for the dynamic deployment 
estimates the lifetime of the deployment until the sensor 
network is disconnected. 

3.3 Initial Validation Results 

We validated our model using a typical sensor node 
configuration, two representative routing schemes, and a 
simple query workload.  The sensor node configuration 
followed the MICA2 [4] Motes hardware specification.  
The two representative routing schemes we compared 
were LEACH [8] and flooding (Figure 10).  LEACH 
identifies clusters of nodes and selects leader nodes of 
clusters in a round-robin fashion for packet merging (or 
called “partial aggregation”  in networking terms, but not 
the “aggregation” , e.g., SUM(), in database terms). The 

query workload we tested was a simple aggregation 
query: “ SELECT MAX(temperature), humidity FROM 
sensors GROUP BY humidity EPOCH 30 seconds” . 

The “sensors”  virtual table had a schema of {humidity, 
temperature, timestamp} with a fixed length of 4 bytes per 
attribute.  We assumed each packet contained a header of 
20 bytes.  With the temperature and humidity attributes in 
the query result, each packet contained 28 bytes.  We also 
assumed that each sensor node covered a circular with a 
radius of 20 feet.  The average distance between a sensor 
node and the sink node (Mote 0) was assumed to be 500 
feet.  We used LEACH’s assumption that the unit power 
consumed in sending is proportional to the distance.  

 

  

Figure 10: LEACH (left) versus Flooding (right) 

Figure 11 shows the predicted average node lifetime in 
a network of N (ranging from 6 to 24) nodes resulting 
from our model.  Our model predicts that LEACH results 
in a five-fold improvement in power efficiency over 
flooding whereas in the original LEACH paper this factor 
was eight.  One major reason for this difference is that we 
considered the power consumption of database workloads 
as well as that of individual sensor nodes in addition to 
networking.   
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Figure 11: Predicted Average Node Lifetime 

Since the number of nodes was small and there were at 
most two hops in LEACH in our study, the effect of 
database-style in-network aggregation (e.g., executing 
MAX() at a leader node) was insignificant.  We are 
considering more complex and larger-scale cases for 
validation, in which in-network aggregation makes a 
difference [1][11][18].   



3.4 Discussion 

As shown in the preliminary results, our modeling can 
estimate power consumption of query processing 
workloads realistically using real-world factors such as 
sensor node hardware configuration, representative 
routing schemes, and typical queries in monitoring 
applications.  To further improve our model, we consider 
the following three extensions: 

(1) Extend the estimation of reduction factors for 
power-aware query processing.  For example, our data 
analysis shows that patterns and correlations are common 
in sensory data.  If a query processor takes advantage of 
these patterns and correlations and performs pattern-aware 
or correlation-aware data acquisition, we can extend the 
estimation method of reduction factors for these 
techniques. 

(2) Extend the estimation of the node neighborhood in 
the sensor network model by considering the 
synchronization characteristics of transmission.  A 
neighborhood of a node is a basic topology element in a 
multi-hop networking environment; transmission between 
nodes can be synchronous or asynchronous.  We modeled 
transmission to be synchronous as is commonly assumed 
by existing work.  To achieve a more accurate estimation, 
we plan to cover asynchronous transmission as well.  

(3) Extend the database workload model to handle 
joins.  Joins are a complex operation in sensor databases, 
which involves factors such as where and how to perform 
the join.  The reduction factor alone seems to be 
insufficient for modeling the power consumption 
characteristics of a join operation.   

4 Emulation for Query Processing 

Modeling is useful for defining the problem space and 
quantifying the effects of multiple factors, as shown in our 
hierarchical power consumption model in Section 3.  
Nevertheless, dynamic behaviors of programs, for 
instance, parallel execution of query processing code on 
multiple sensor nodes, are often hard to abstract and to 
model.  Under such situations, emulation is useful for 
observing the execution process.  In this section, we 
present an emulator for sensor query processing. 

4.1 Overview 

Currently, it is difficult to study in-network query 
processing on real sensor networks, not only because the 
deployment is expensive and hard to maintain, but also 
because the resource constraints in a sensor network limit 
the collection of detailed statistics about the system’s 
running status. Both simulation and emulation can ease 
these problems, either by representing the logical views 
and actions of the target system (simulation) or by 
executing the code with the same control flow as that of 
the target system (emulation). 

We propose an emulation environment, VMN (Virtual 
Mote Network), for studying sensor query processing.  It 
is a mix of simulation and emulation.  We use TinyOS 
[16] modules to emulate the application execution 
environment in each VM (Virtual Mote).  We simulate the 
radio channel and the sensing units of each VM following 
the MICA2 [4] hardware specification.  The sensory data, 
which is fed into the virtual sensing units as the input of 
VMN, is generated from real-life data such as that 
collected in our frog pond monitoring application (Section 
2).  Finally, the execution of query processing code on 
each VM and the network topology are emulated on 
networked PCs.   

Our VMN is different from the two existing sensor 
network simulators, TOSSIM [9] and EMStar [7], in that 
VMN utilizes networked PCs to emulate networked motes 
in parallel and has execution time and power consumption 
models for query processing applications.  Other 
simulators such as ns-2 [12] and Sensorsim [13] or 
emulators such as EMPOWER [19] lack the execution 
environment of smart sensor nodes.  

4.2 The Emulator 

Our VMN (Figure 12) emulates a real network of MICA2 
motes running TinyOS.  PC 0 acts as the virtual base 
station, which runs VM 0 to emulate the sink node (Mote 
0) in the real sensor network and runs the real application 
client (in this case, the TinyDB GUI) to communicate 
with VM 0. Each of the PCs 1 to n emulates multiple 
virtual motes except VM 0.  Virtual motes communicate 
with each other through the virtual channel, which is 
implemented on top of the UDP (User Datagram Protocol) 
on a LAN (Local Area Network) and simulates a real 
radio channel with bit errors and delays. 
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Figure 12: Architecture of a VMN 

Each VM (Figure 13) emulates a MICA2 mote 
running TinyOS.  We partition a VM into upper and the 
lower layers.  The upper layer includes (i) the application, 
(ii) the senders and receivers of Active Messages (AM), 
UART (Universal Asynchronous Receiver/Transmitter, or 
RS232 serial communication) packets and radio packets, 



and (iii) the VM manager for emulation control and 
statistics collection on the node.  The lower layer consists 
of (i) various types of virtual sensors, the virtual UART 
(for Mote 0 only), and the virtual RFM (Radio Frequency 
Monolithic), (ii) the virtual drivers for (a), and (iii) the 
virtual clock.  This partitioning scheme identifies the 
components that are pertinent to program execution and 
then puts these components into the upper layer.   
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Figure 13: Architecture of a VM 

Connecting multiple VMs, the virtual channel 
simulates wireless network effects using three software 
modules: the bit error module, the collision module and 
the delay module (shown in Figure 14).  

The bit error module uses an experiential radio signal 
error data model to generate the bit error rate.  The error 
rate is defined as (the number of error bits received by the 
receiver) / (the total number of bits sent by the sender).  
The module maintains a table of two attributes, distance 
and bit error rate, and generates bit errors randomly at a 
rate that the table specifies. 

The collision module simulates radio signal collision 
by performing two operations: carrier sense and collision.  
Both operations need information about the virtual time 
(the time in the emulated world) and the data transmission 
status of all VMs.  This information is kept in the VMN 
Manager.  

In the carrier sense operation, the collision module 
asks the network manager whether if a sending VM can 
hear any VMs that are transmitting data.  If so, the 
sending VM waits a period of time whose length is 
defined by the network protocols. In the collision 
operation, the collision module destroys the current bit to 
be sent on one of two conditions: (1) another VM is 
transmitting and the sender of this current bit can hear that 
transmitting VM, or (2) another VM is sending to the 
same destination as this sender.  

Finally, the transmission delay module adds a delay to 
the virtual time of each packet to be sent. 

Having described the three network effect modules, 
we then describe the transmission process of data on a 
virtual channel from/to a VM. When outgoing bits are 
sent from the Virtual Radio Frequency Module (VRFM) 

of the VM to the virtual channel, they pass through the 
three modules and stay in a buffer for wrapping (in the 
lower right corner of Figure 14). When all bits of a packet 
arrive in the buffer, the virtual channel wraps them into a 
packet and sends out the packet via UDP.  When an 
incoming UDP packet arrives at the virtual channel, it is 
put into a queue (lower left of Figure 14) and is 
decomposed into bits to be sent to the VRFM of the VM 
via another buffer (on the left of Figure 14). 
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Figure 14. Virtual Channel 

Because VMs run simultaneously, synchronization is 
needed to ensure that the messages and the operations of 
VMs are in the same order with that of the target sensor 
network. The synchronization procedure is as follows: at 
the startup time, the network manager initializes its table 
of network status information including the total number 
of VMs n and the value of the virtual clock of each VM: 
vt0, vt1… vtn-1.  Whenever the VMs run for a predefined 
interval, T, which is called the synchronization interval, 
they pause and report to the network manager.  After 
every VM has reported to the network manager that its 
virtual clock has advanced by T, the network manager 
sends out a broadcast message to inform the VMs to 
resume running.  In addition, the UDP packets on the 
virtual channel are put in a queue and sorted by their 
virtual time in ascending order.  With the queue and the 
synchronization interval, the order of operations and 
messages are ensured to be the same as that on the real 
network. 

4.3 Preliminary Evaluation Results 

We have done preliminary evaluation of the VMN with a 
small number of nodes running a simple query on TinyDB 
and validated the results of running the query on real 
MICA2 motes.  The query was to report temperature 
readings of all motes for every epoch of 960ms.  This 
short sampling rate was used to measure the electric 
currents on real motes at a fine granularity, because the 
HP 4155A oscilloscope we used was able to measure 
electric currents at a scale of milliseconds for a period of 
time of up to two seconds. The two seconds were 
sufficient for studying the processing of the query because 
we observed two epochs in each measurement.   



We measured the power consumption of this query on 
a 4-node real mote network using an oscilloscope (HP 
4155A) during the query execution (Figure 15).  We then 
ran the query on a 4-node VMN and estimated the power 
consumption of the query (Figure 16).  In our power 
consumption emulation, we divided the query execution 
time into several power modes with different operations. 
These operations are: “Sleeping” , “Processing” , 
“Listening” , “Sampling”  and “Transmitting” . Two 
different operations can occur in one mode, e.g., 
Processing & Transmitting. The measured electric current 
in a mode was nearly constant (the range was within +/- 
0.3 mA in our experiments).   

Figure 15 shows our measurements of four power 
modes during the query processing in the 4-node real 
mote network, which were “Listening” , “Processing & 
Transmitting” , “Processing &  Listening” , and 
“Sampling” . Because the sampling rate was short 
(960ms), the motes did not run into sleeping.  In other 
experiments with a longer sampling rate (>10s), we 
measured that the average current in sleeping was about 
0.0162 mA. All of these results are consistent with the 
data sheet of MICA2 Motes [4].  These results are also 
similar to those reported by Madden et al. [11] except one 
difference is that we did not get the “Snoozing”  mode 
with an average electric current of 4 mA.  We are 
investigating this issue further.  

 

Figure 15: Measured Power Consumption of a MICA2 
Mote 

Figure 16 shows the estimated power consumption and 
the estimated query execution time in the 4-node VMN.  
Compared with the results in Figure 15, the error on query 
execution time estimation was 1.4-1.34 = 0.06 seconds or 
0.06/1.34 = 4.4%.  We calculated the power consumption 
by the sum of (current *  running-time), because the 
number of measurement points was different in the real 
mote network than in the VMN.  The sum of the real 
measurement was 27.38 mA*seconds, and that of VMN 
was 28.68 mA*seconds, which resulted in an error rate of 
4.72%.  

 

Figure 16: Estimated Power Consumption of a VM 

5 Conclusion and Future Work 

We have proposed a software framework, MEADOWS, 
for modeling, emulation, and data analysis of wireless 
sensor networks.  We have reported a case study of real-
world data collection and analysis and proposed a 
preliminary design of data analysis functions for detecting 
patterns, outliers, and correlations.  We have also 
presented our initial work on a hierarchical power 
consumption model for sensor databases and on a sensor 
network emulator using networked PCs.  We find that this 
framework is useful for answering questions about sensor 
query processing.  In addition, the integration of 
modeling, emulation, and data analysis creates synergy 
for studying sensor query processing. 

Our future work on MEADOWS include (1) 
implementing our proposed data analysis functions and 
using the results to cross-validate our modeling and 
emulation work, (2) conducting more extensive and 
complex case studies for our sensor database power 
consumption model and extending the model, and (3) 
increasing the scale of sensor network emulation and 
adding node mobility emulation. 
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