
Large Graph Processing in the Cloud

Rishan Chen†‡ Xuetian Weng†‡

†Peking University
{crs,wengxt}@pku.edu.cn

Bingsheng He‡ Mao Yang‡

‡Microsoft Research Asia
{savenhe,maoyang}@microsoft.com

ABSTRACT
As the study of graphs, such as web and social graphs, becomes
increasingly popular, the requirements of efficiency and program-
ming flexibility of large graph processing tasks challenge existing
tools. We propose to demonstrate Surfer, a large graph process-
ing engine designed to execute in the cloud. Surfer provides two
basic primitives for programmers – MapReduce and propagation.
MapReduce, originally developed by Google, processes different
key-value pairs in parallel, and propagation is an iterative compu-
tational pattern that transfers information along the edges from a
vertex to its neighbors in the graph. These two primitives are com-
plementary in graph processing. MapReduce is suitable for pro-
cessing flat data structures, such as vertex-oriented tasks, and prop-
agation is optimized for edge-oriented tasks on partitioned graphs.

To further improve the programmability of large graph process-
ing, Surfer consists of a small set of high level building blocks that
use these two primitives. Developers may also construct custom
building blocks. Surfer further provides a GUI (Graphical User
Interface) using which developers can visually create large graph
processing tasks. Surfer transforms a task into an execution plan
composed of MapReduce and propagation operations. It then au-
tomatically applies various optimizations to improve the efficiency
of distributed execution. Surfer also provides a visualization tool
to monitor the detailed execution dynamics of the execution plan
to show the interesting tradeoffs between MapReduce and propa-
gation. We demonstrate our system in two ways: first, we demo
the ease-of-programming features of the system; second, we show
the efficiency of the system with a series of applications on a social
network. We find that Surfer is simple to use and is highly efficient
for large graph-based tasks.

Categories and Subject Descriptors
C.2.4 [Computer-communication networks]: Distributed systems—
Distributed databases; H.2.4 [Database Management]: Systems—
Graph Processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIDMOD’10 June 6–11, 2010, Indianapolis, Indiana, USA
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

General Terms
Algorithms, Measurement, Performance

Keywords
Graph processing, distributed systems, MapReduce, propagation

1. INTRODUCTION
Large graph processing has become popular for various appli-

cations such as for studying web and social networks [6, 7, 11].
Most processing tasks are batch tasks in which vertices and edges
of the entire graph are accessed. Examples include PageRank [10],
reverse link web graph, two-hop friend list, social network influ-
ence analysis [12] and recommender systems [1]. Due to diversity
of user requirements, these tasks tend to be highly customized with
various user-defined code. We have developed Surfer, a large graph
engine that automatically runs on a large number of machines in
the cloud, and enables users to efficiently and conveniently develop
such large graph processing tasks.

We began by investigating whether the popular MapReduce [3]
algorithm is sufficient for supporting large graph processing tasks.
The data model in MapReduce is flat, making it ideal for handling
the vertex oriented tasks on a large graph e.g. filtering the vertices
with a certain degree. However, we found that the obliviousness of
MapReduce to the graph structure leads to huge network traffic in
edge-oriented tasks, creating a bottleneck in the system. For exam-
ple, if we want to compute the two-hop friend list for each account
in the MSN social networks, every vertex must first send its friends
to each of its neighbors, then each vertex combines the friends lists
of its neighbors. Implemented with MapReduce, this operation re-
sults in huge network traffic due to the flat key-value data model
which does not reflect the intrinsic structure of the graph.

In analyzing the edge-oriented tasks we observed access patterns
in which information is transferred along each edge from a vertex
to its neighbors in the graph. The two-hop friend list computation is
an example of this pattern. Another example is PageRank – in each
iteration, the rank of a page is partially given to its outgoing pages
along the links, and then the target page combines all the awarded
partial ranks.

We introduce the graph propagation primitive to make these pat-
terns more intuitive to specify and easier to support by the task en-
gine. To use graph propagation, the user defines two functions –
transfer and combine . Transfer is used to export information
from a vertex to its neighbors, while combine is used to aggregate
the received information at a vertex. This primitive is easily par-
allelized across multiple machines. We adopt the graph partition-
ing algorithm [8, 9] to divide the large graph into many partitions
of similar sizes. Each machine may hold a number of graph par-

1123

titions, and perform propagation locally before coordinating with
other machines. Since the number of edges that span across ma-
chines is a good indicator on the amount of network traffic during
the transfer stage, it should be minimized through the graph par-
titioning. Thus, propagation performs computation on the parti-
tioned graph, and exploits the locality of graph partitions.

The graph propagation primitive is insufficient on its own. For
example, it is non-trivial to express a vertex-oriented operation,
such as filtering of vertices, using propagation alone. We found that
a combination of MapReduce and propagation is necessary to ef-
fectively express and to efficiently compute most graph based tasks.

Supporting both MapReduce and propagation, the Surfer system
consists of a job scheduler, a job manager, and many slave nodes.
The job scheduler maintains the cluster membership and coordi-
nates resource scheduling. The job manager takes a user’s job as
input, performs transformation and optimization on the job, and
executes the job by dispatching the corresponding tasks to slave
nodes. The slave nodes store graph partitions and execute the tasks
assigned to them by the job manager.

Our system demonstration will show how users develop large
graph processing programs using Surfer. It will also highlight in-
trinsic optimizations and execution dynamics within the system
through visualization. Our demo makes the case that Surfer pro-
vides users with the necessary intuition to understand complex com-
putations on large graphs. Our demo is organized into three parts:

• Demonstrating a drag-and-drop GUI for developing the log-
ical execution plan for large graph processing. The GUI al-
lows users to develop their own customized high-level log-
ical operations, and to use these operations to construct an
execution plan.

• Visualizing the transformation and optimization processes
that convert a logical execution into a physical plan. This
reveals the underlying mechanism of Surfer on the job man-
ager node.

• Visualizing the resource utilization and execution progress.
The visualization helps users to monitor the execution dy-
namics, such as whether the resources are under-utilized, how
the plan is executed on multiple machines, and to identify po-
tential performance bottlenecks.

Throughout the demonstration, we show that (1) the drag-and-
drop GUI improves the programmability of large graph processing,
and (2) query optimizations are effective in reducing redundancy,
improving computation efficiency and storage locality.

2. SYSTEM OVERVIEW
We first briefly introduce the propagation primitive and the Surfer

architecture. Next, we describe our visualization tool for job con-
struction, optimization and execution.

2.1 Propagation
Surfer provides the propagation primitive to facilitate developers

to implement their custom logics. To use graph propagation, the de-
veloper defines two functions – transfer and combine . Transfer
is used to export data from a vertex to its neighbors, while combine
is for processing the received data at a vertex.

Iterative propagation is to transfer the information of each vertex
to its neighbor vertices iteratively. At each iteration, the informa-
tion transfer is occurred along all the edges. This information flow
consists of the basic pattern on traversing the graph in parallel. A
lot of common graph applications and algorithms, such as PageR-
ank and two-hop friend list, are expressible with this primitive.

Figure 1: The system architecture of Surfer

Function transfer defines how the information is transferred
along an edge, and combine defines how the information from its
neighbors is combined at each vertex. In particular, transfer takes
a pair of a vertex and a value as input, and outputs pairs of a (neigh-
bor) vertex and a value each. combine takes the pair of a vertex and
all the values associated with the vertex generated in transfer , and
outputs a pair of a node and a value. The signatures of these two
functions are as follows.

transfer : (v, v′) → (v′, value), where v′ is v’s neighbor.
combine: (v, bag of value) → (v, value′).

Both user-defined functions are operations on vertices and edges.
Surfer executes an iteration of propagation in two steps: 1) the
Transfer stage: Surfer calls transfer on each vertex and its neigh-
bor vertices, and generates the intermediate results; 2) the Combine
stage: Surfer calls combine on the intermediate results generated
in the Transfer stage.

2.2 Surfer
Figure 1 shows the system architecture of Surfer. Surfer takes

jobs from the user as input, and automatically executes each job
across multiple machines.

Surfer has five major components, namely a plan transformer, a
plan optimizer, a code generator, a plan executor and an execution
monitor. These components are responsible for the five steps in a
task execution.
Step 1. The plan transformer transforms a task into a DAG (Di-
rected Acyclic Graph). Each DAG node represents an occurrence
of MapReduce or graph propagation.
Step 2. The plan optimizer applies various optimization rules to
the logical plan. We adopt optimization rules from databases to re-
duce the intermediate data size. The optimization rules include 1)
removing unnecessary nodes, 2) identifying common computation
nodes, and 3) reordering nodes.
Step 3. The optimized logical plan is transformed into a physical
plan. Each node in the physical plan can either be a MapReduce
or a propagation operation. The optimizer chooses to use MapRe-
duce for vertex-oriented tasks, and propagation otherwise. The op-
timizer further adopts physical optimization techniques [5], such as
pipelined execution for multiple DAG nodes.
Step 4. After the plan is optimized, the code generator generates
the executable for a distributed execution.
Step 5. The plan executor performs the execution on the slave
nodes. During the execution, the execution monitor records the
resource utilization and estimates the execution progress of the job.
The optimizations in Steps 2 and 3 are rooted in traditional database
query optimizations. While database optimization techniques are

1124

Figure 2: The main execution flow window

effective on SQL-like systems [2, 4], they need to be revisited in
the context of graph processing.

A catalog is used to store the execution dynamics produced by
the execution monitor. For example, the selectivities of filtering
conditions are stored to help estimate the cost when the same filter-
ing conditions are used.

The large graph are partitioned, and are evenly stored in the slave
nodes. Since graphs in the real world are usually sparse, we choose
adjacency lists as our storage model for efficiency, in contrast with
the matrix format in PEGASUS [7].

Additionally, Surfer provides jobs with fault tolerance to ma-
chine failure. Whenever a machine crashes, the task is restarted on
another machine. For large graph processing jobs, this is an impor-
tant feature as many weeks worth of computation may be lost due
to a job failure.

2.3 Visualization tools
The visualization tool is a graphical user interface (GUI) that

facilitates users to develop their tasks, and dynamically displays the
runtime performance and the state of task execution in the system.
The GUI is implemented in C#.

Figure 2 illustrates how a graph processing task is constructed
with the GUI.

Job construction. To further improve the programmability of
graph processing, Surfer integrates high-level building blocks such
as Select and Process. These building blocks can be applied
to vertices, edges, and custom constructs specified by the developer.

In the GUI, to add a building block to the current logical query
plan, developers need to simply 1) select the input type for the
building block, and 2) drag the corresponding building block into
the correct position as a logical node, and then input the necessary
information such as user-defined functions. The user can further
link two logical nodes according to their data dependency. Users
may also input their custom code to execute on the logical node in
the editor below.

Optimization. After users finish setting up the logical nodes,
the logical plan is generated, and the optimized logical plan is built
as well.

Execution. The visualization tool in Surfer shows the execution
dynamics per machine or per task. Figure 3 shows a screen shot of

(a) MapReduce-Degree Count

(b) Propagation-Degree Count

(c) MapReduce-Two Hop

(d) Propagation-Two Hop

Figure 4: Screen shots: Network traffic of degree count and
two-hop friend list computation

visualizing execution dynamics of a Transfer stage in a propagation
operation.

The visualization tool allows users to select the stage they want
to investigate in three panels. Panel 1 shows task execution on each
machine. From the task execution dynamics, users can determine
whether the system works well, for example, whether a certain task
is stuck on a machine. Panel 2 at the bottom displays the network
traffic between machines. Panel 3 on the right monitors resource
of a specific machine, such as CPU, memory, disk IO and network
IO.

3. DEMONSTRATION
We use the visual tool to perform some case studies in large-

graph processing.

3.1 Demo setup
We have two approaches for showing our demonstration. One is

to run Surfer on a real cluster of 32 nodes, and show our demo via
remote desktop in Windows; the other is that we will set up a virtual
cluster on a PC consisting of five virtual machines. The former
approach is our preferred approach, and the latter is for backup in

1125

Figure 3: Visualizing the execution dynamics

case where the network connection from the demo place to our data
center does not work during the demonstration.

Each node in our cluster consists of one Intel Quad CPU, with
8 GB RAM and two SATA disks. The data set is a portion of the
anonymized MSN social graph. The total data set size is 120GB
with around 500 million vertices and 30 billion edges.

In our demonstration, we will also demonstrate a number of com-
mon social network applications. Two examples are “degree count"
that is a vertex-oriented task for calculating the number of vertex
neighbors in the network, and “two-hop friend list" that is an edge-
oriented task for collecting the neighbors’ neighbors of each per-
son.

3.2 Runtime performance results
In our demonstration, we will show the runtime performance re-

sults of Surfer. An example snapshot is shown in Figure 3, where
the execution dynamics of two-hop friends are visualized.

Additionally, our demonstration will compare the performance
of constructing the same applications using our two different prim-
itives (MapReduce or Propagation). As an example, Figure 4 shows
some screen shots of the two example applications using MapRe-
duce and propagation. Since propagation takes advantage of par-
titioned graph structure and avoids unnecessarily data partitioning,
its network traffic is much smaller than MapReduce in the two-
hop friend list computation. We also find that the network traffic
is almost the same for the two primitives in the degree count cal-
culation. MapReduce has a lower loading time (the result is not
shown). The visualization tool clearly demonstrates the interesting
tradeoffs in the all-to-all network traffic between the two types of
tasks with MapReduce and propagation.

Acknowledgement
We would like to thank Bo Peng, as well as the anonymous review-
ers, for their insightful comments.

4. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation

of recommender systems: A survey of the state-of-the-art

and possible extensions. IEEE Trans. on Knowl. and Data
Eng., 17(6):734–749, 2005.

[2] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: easy and efficient parallel
processing of massive data sets. Proc. VLDB Endow., 1(2),
2008.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[4] B. He, M. Yang, Z. Guo, R. Chen, W. Lin, B. Su, H. Wang,
and L. Zhou. Wave computing in the cloud. In HotOS, 2009.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. SIGOPS Oper. Syst. Rev., 41(3):59–72, 2007.

[6] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and
J. Leskovec. HADI: Fast diameter estimation and mining in
massive graphs with hadoop. Technical Report
CMU-ML-08-117, Carnegie Mellon University, 2008.

[7] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A
peta-scale graph mining system - implementation and
observations. In ICDM, 2009.

[8] G. Karypis and V. Kumar. Parallel multilevel k-way
partitioning scheme for irregular graphs. In Supercomputing
’96: Proceedings of the 1996 ACM/IEEE conference on
Supercomputing, page 35, Washington, DC, USA, 1996.
IEEE Computer Society.

[9] G. Karypis and V. Kumar. A parallel algorithm for multilevel
graph partitioning and sparse matrix ordering. J. Parallel
Distrib. Comput., 48(1):71–95, 1998.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, November
1999.

[11] Pregel in Google.
http://googleresearch.blogspot.com/2009/06/large-scale-
graph-computing-at-google.html.

[12] H. T. Welser, E. Gleave, D. Fisher, and M. Smith. Visualizing
the signatures of social roles in online discussion groups. The
Journal of Social Structure, 2(8), 2007.

1126

