
GPUQP: Query Co-Processing Using Graphics Processors

Rui Fang, Bingsheng He, Mian Lu, Ke Yang, Naga K. Govindaraju∗, Qiong Luo, Pedro V. Sander
{rayfang, saven, mianlu, keyang, luo, psander}@cse.ust.hk nagag@microsoft.com
The Hong Kong University of Science and Technology ∗Microsoft Corporation

http://www.cse.ust.hk/gpuqp

ABSTRACT
We present GPUQP, a relational query engine that employs both
CPUs and GPUs (Graphics Processing Units) for in-memory
query co-processing. GPUs are commodity processors
traditionally designed for graphics applications. Recent research
has shown that they can accelerate some database operations
orders of magnitude over CPUs. So far, there has been little work
on how GPUs can be programmed for heavy-duty database
constructs, such as tree indexes and joins, and how well a full-
fledged GPU query co-processor performs in comparison with
their CPU counterparts. In this work, we explore the design
decisions in using GPUs for query co-processing using both a
graphics API and a general purpose programming model. We then
demonstrate the processing flows as well as the performance
results of our methods.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – parallel databases,
query processing, relational databases.

General Terms
Algorithms, Measurement, Performance, Design, Experimentation.

Keywords
Graphics Processing Units, Query Processing.

1. INTRODUCTION
A graphics processing unit (GPU) is an integral part of most
computing devices including PCs, laptops, consoles and cell
phones. GPUs are highly specialized architectures designed for
gaming applications, and can be regarded as massively parallel
processors with 10x higher computation and 10x higher memory
performance than CPUs [3]. For instance, the NVIDIA GeForce
8800 GPU has over a hundred pixel program processors with an
observed performance of 330 GFLOPS and a peak memory
bandwidth of 86 GB/s. GPUs are also becoming increasingly
programmable enabling them to perform many general purpose
algorithms (GPGPU) an order of magnitude faster than CPUs.
Moreover, GPUs are progressing at a rate faster than CPUs [3]. In
this demonstration, we explore in-memory relational query co-
processing using GPUs to fully exploit their architectural features.
There has been recent work on performing individual database
tasks on GPUs, including spatial joins [9], selection and
aggregation queries [6], stream processing [7], and sorting [5]. In
these applications, the researchers carefully considered the
features and limitations of GPUs with respect to the target

operations, and designed algorithms to perform these operations
efficiently. In comparison, we take a holistic view of relational
query processing and develop an in-memory query co-processor
using the out-of-order execution capabilities of CPUs and
efficient data-parallel processing capabilities of GPUs. In
particular, we revisit GPU sorting, map the CPU version of a tree
index to the GPU, and design new GPU join algorithms.
In the following, we introduce the preliminaries for GPU query
processing, give an overview of our system, present three specific
techniques to show the flavor of GPU query processing, and
describe our demonstration plan.

2. PRELIMINARIES
As the GPU is designed for graphics applications, the basic data
structure in GPU programming is a 2D array, called a texture. An
element of a texture, or a texel, contains four values, each of
which corresponds to a color channel (R, G, B, and A). Textures
are accessed during rendering passes, where a particular output
texture is set as a render target, and one or multiple textures are
used as input. During this rendering process, the GPU executes
the same pixel program for each texel in parallel, which may
contain arithmetic operations and texture fetches.
Texture fetching can read data from arbitrary locations in a
texture; however, writing to an output texture is mostly limited to
fixed locations. As a result, the most common rendering method
used in GPGPU is full-screen quadrilateral rendering, which
renders a quadrilateral that covers the entire texture.
Fortunately, there have emerged several hardware and software
solutions to support data scattering, which allows a pixel program
to modify the output position of a texel. In addition, general
purpose programming models allow the database developer to use
the GPU without any knowledge of computer graphics.
In this work, we develop algorithms for query processing using
both a graphics API (Microsoft DirectX) [1] and a general
purpose computing framework (NVIDIA CUDA) [2]. The API
can utilize specific graphics hardware features, such as blending,
while the general purpose framework exposes the massively
multi-threading parallelism, data scattering capability and fast
inter-processor communication available in the hardware.

3. SYSTEM OVERVIEW
We handle relational operators including selection, projection,
join, and aggregation. The implementation alternatives include
sorting, hashing, table scan, binary search, and tree index search.
Figure 1 illustrates GPU query co-processing. There are many
interesting research issues in the interactions between the CPU
and the GPU; in this paper, we focus on the GPU processing.

Copyright is held by the author/owner(s).
SIGMOD’07, June 11–14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

CPU

Main Memory

GPU

Device Memory

Tables

Indexes

σ joinπ aggr.

Textures

Pixel
programs σ

joinπ
aggr.

Bus

… … …
…

Figure 1: Illustration of GPU Query Co-Processing

4. QUERY CO-PROCESSING
In this section we describe our in-memory GPU algorithms for
three common database operations, namely sorting, tree indexing,
and joins. We implemented algorithms using both DirectX and
CUDA. In the following, we mainly describe our DirectX
implementation since it better shows the traditional GPU features,
and then briefly discuss the optimizations in CUDA.

4.1 GPUSort
Our GPUSort algorithm [5] is based on a bitonic sorting network.
A bitonic sequence is a merger of two monotonic sequences. The
algorithm proceeds in log2n stages for a sequence of n elements.
In each stage i, it performs i steps in total, from step i to step 1, to
merge two bitonic sequences of size 2i-1 each into a new bitonic
sequence of size 2i. In each step, elements are compared in pairs,
and the maximum or minimum of a pair is stored.
In GPUSort, we store the array to be sorted in a 2D texture with
four color channels. The pixel program compares pairs of
elements in parallel, stores the minimum or maximum of each
pair locally, and renders the array to another texture. This process
continues until the final texture is fully sorted. The main
advantage of this algorithm is its parallelism. As a result, it
performs orders of magnitude faster than optimized CPU-based
sorting algorithms [5].
Similarly, the bitonic sorting network can be easily mapped to
CUDA. Since CUDA exposes fast on-chip memory, which is
shared among different processing engines, we can further
optimize the algorithm. This optimization is accomplished by
using the shared memory to sort all bitonic sequences whose sizes
are small enough to fit in it. As a result, the number of device
memory accesses is reduced, which further reduces the execution
time of the sorting operation.

4.2 GPU-CSSTree
The B+-tree index is a pivotal access method for disk-resident
databases, and the CSS-tree [8] is a static, in-memory, and cache-
sensitive variant. The main feature of a CSS-tree is that the tree
nodes are physically aligned as an array without any pointers.
Consequently, a search in the tree is performed via address
arithmetic instead of pointer chasing. This array-based tree
organization is suitable for the GPU; therefore, we implement it
for GPUQP.
A CSS-Tree can be efficiently constructed on the GPU taking a
sorted relation as input. Suppose we have a sorted relation of 4N
entries. We group them into 4-tuples and store them in a texel

array data with the first four entries in the R, G, B, A channels of
the first texel in ascending order, the next four in the second texel,
and so on. Results we obtain from GPUSort will have
automatically assumed this format. We then construct a GPU-
CSS-Tree with data representing the leaf nodes. The internal
nodes, which constitute the directory structure are computed and
stored in a separate array dir. The entire construction process is
completed with just one rendering pass. Additionally, the address
computation is purely scalar and therefore the four-channel
calculation is easily vectorized to be processed with a single
instruction sequence.
While searching for a single key in such a tree offers little
opportunity for parallel processing, multiple searches, for
example, those in indexed nested-loop joins, fits extremely well in
the GPU programming model. The basic idea is to construct a
texture for a group of keys to be searched and to perform a
rendering pass when going down each level of the tree. Similar to
tree construction, the calculation of the array indexes of the
children nodes for search can be vectorized easily on the GPU.
Furthermore, if the group of search keys is sorted, adjacent
searches will go through similar paths and visit adjacent or even
identical tree nodes, and thus improve the cache hit rate of the
texture fetches. An interesting tradeoff is between this cache
performance gain and the sorting cost of a group of unsorted
search keys.
Similarly, with CUDA we can also do the searches one level at a
time in order to reduce the latency resulted from random accesses
to the device memory. Furthermore, we can store the frequently
accessed, higher level tree nodes in shared memory in order to
significantly reduce device memory accesses.

4.3 GPUJoin
Traditionally, joins can be implemented via nested loops (NLJ),
sort-merge (SMJ), or hashing (HJ) on the CPU. In comparison,
we propose a new GPU-based algorithm, called Min-Max Join
(MMJ), to execute join operations efficiently. This MMJ method
utilizes hashing, sorting, as well as GPU-specific features, such as
scattering and min-max blending.
MMJ assumes the join key, record ID, and other attributes of the
two input tables S and T are stored in textures. The method
outputs a texture containing the result of the join operation. The
algorithm proceeds as follows:
First, we sort the smaller table S by the join key. The resulting
sorted table is S′. Next, we compute the range of the positions of
S’ records in the texture for each join key value and store these
ranges together with their join key values in an auxiliary texture R.
This can be accomplished efficiently by using graphics hardware
min-max blending, which is exposed to the API. The texture R
can be indexed using a hash function on the join key value, and
collisions can be detected in a subsequent pass and addressed by
rehashing.
Next, for each record in the larger table T, we look up R to see if
there is a range of records from S’ that joins with this record. If
there is a match, we output the potential range to a texture Q. Q is
indexed by the record position in T. Next, we cluster the non-zero
entries in Q. This can be accomplished with a bitonic sort.
Finally, we sum the number of elements on each range in Q to be
the number of the join result tuples, determine the position of

each result tuple in the final result table, and populate the result
table using scattering.
This approach runs entirely on the GPU and takes advantage of
hardware parallelism in all steps. It works for non-equijoins by
modifying the method used to compute the range in Q.
In CUDA, we do not have direct access to hardware min-max
blending. However, due to the more flexible framework, we can
more easily map traditional joins to the GPU as it can utilize the
scatter and inter-process communication provided by CUDA.
Especially, we will demonstrate the four traditional relational
joins including indexed and non-indexed NLJ, SMJ and HJ on
CUDA [4].

5. PLAN FOR DEMONSTRATION
We plan to give two types of demonstrations: (1) visualization of
the processing flows of GPU algorithms in action, and (2) the
runtime performance of these algorithms for different inputs. The
first type of demo is to allow the audience to learn the GPU work
mechanisms visually and the second to compare the performance
with CPU implementations.
In the following, we describe the processing flow demos, since
one of the interesting advantages of programming with graphics
processors is that, regardless of the computation being performed,
the results are readily available for visualization. In addition, we
will comment on the differences in the processing flows of
DirectX versus CUDA based implementations.

GPUSort. Figure 2 demonstrates the progression of sorting data
on the GPU. Each pixel stores four values, one in each color
channel. The values start in a random sequence and are gradually
arranged in a sorted order. We plan to show an interactive
demonstration of this process, as well as the visualization of a
GPU-based radix sort.

Figure 2: Illustration of GPUSort

GPU-CSSTreee. We will show interactively how the tree is
arranged on the GPU and the process of performing multiple,
parallel searches using the tree. More specifically, we will
visualize the texture containing the tree and highlight the tree
nodes as they are accessed in parallel.

Joins. We will graphically show how each step of the join
operation is performed on the GPU. In particular, we will focus
on the visualization of how the data is scattered to arbitrary
memory locations and how the data structures (textures) are
populated by the GPU.

Complex Queries. While the GPU algorithms of individual query
operators are interesting to show, a complex relational query will
bring together multiple query operators to produce the query
results. As the highlight of this demo we will show the processing
flows of GPUQP in answering complex queries, with emphasis on
the inter-operator pipelining mechanisms in addition to the intra-
operator data parallelism. For CUDA-based implementations, we
will visualize their processing flows together with the massively
multi-threaded, shared-memory multiprocessor architecture.

6. ACKNOWLEDGMENTS
We thank Jim Gray of Microsoft Research for his comments on
our work.

7. REFERENCES
[1] Microsoft DirectX,

http://www.microsoft.com/windows/directx/default.mspx.
[2] NVIDIA CUDA (Compute Unified Device Architecture),

http://developer.nvidia.com/object/cuda.html.
[3] Anastassia Ailamaki, Naga K. Govindaraju, Stavros

Harizopoulos, and Dinesh Manocha. Query Co-Processing
on Commodity Processors. Tutorial. VLDB 2006: 1267.

[4] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K.
Govindaraju, Qiong Luo and Pedro V. Sander. Relational
Joins on Graphics Processors. Technical Report, Department
of Computer Science and Engineering, HKUST, March 2007.

[5] Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh
Manocha. GPUTeraSort: High Performance Graphics Co-
processor Sorting for Large Database Management.
SIGMOD 2006: 325-336.

[6] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming C.
Lin, and Dinesh Manocha. Fast Computation of Database
Operations using Graphics Processors. SIGMOD, 2004:215-
226.

[7] Naga K. Govindaraju, Nikunj Raghuvanshi, and Dinesh
Manocha. Fast and Approximate Stream Mining of Quantiles
and Frequencies Using Graphics Processors. SIGMOD,
2005:611-622.

[8] Jun Rao and Kenneth A. Ross. Cache Conscious Indexing
for Decision-Support in Main Memory. VLDB 1999: 78-89.

[9] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi.
Hardware Acceleration for Spatial Selections and Joins.
SIGMOD 2003:455-466.

http://developer.nvidia.com/object/cuda.html

	1. INTRODUCTION
	2. PRELIMINARIES
	3. SYSTEM OVERVIEW
	4. QUERY CO-PROCESSING
	4.1 GPUSort
	4.2 GPU-CSSTree
	4.3 GPUJoin

	5. PLAN FOR DEMONSTRATION
	

	6. ACKNOWLEDGMENTS
	7. REFERENCES

