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ABSTRACT 
We present GPUQP, a relational query engine that employs both 
CPUs and GPUs (Graphics Processing Units) for in-memory 
query co-processing. GPUs are commodity processors 
traditionally designed for graphics applications. Recent research 
has shown that they can accelerate some database operations 
orders of magnitude over CPUs.  So far, there has been little work 
on how GPUs can be programmed for heavy-duty database 
constructs, such as tree indexes and joins, and how well a full-
fledged GPU query co-processor performs in comparison with 
their CPU counterparts. In this work, we explore the design 
decisions in using GPUs for query co-processing using both a 
graphics API and a general purpose programming model. We then 
demonstrate the processing flows as well as the performance 
results of our methods.  

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – parallel databases, 
query processing, relational databases.  

General Terms 
Algorithms, Measurement, Performance, Design, Experimentation. 

Keywords 
Graphics Processing Units, Query Processing. 

1. INTRODUCTION 
A graphics processing unit (GPU) is an integral part of most 
computing devices including PCs, laptops, consoles and cell 
phones.  GPUs are highly specialized architectures designed for 
gaming applications, and can be regarded as massively parallel 
processors with 10x higher computation and 10x higher memory 
performance than CPUs [3]. For instance, the NVIDIA GeForce 
8800 GPU has over a hundred pixel program processors with an 
observed performance of 330 GFLOPS and a peak memory 
bandwidth of 86 GB/s. GPUs are also becoming increasingly 
programmable enabling them to perform many general purpose 
algorithms (GPGPU) an order of magnitude faster than CPUs. 
Moreover, GPUs are progressing at a rate faster than CPUs [3]. In 
this demonstration, we explore in-memory relational query co-
processing using GPUs to fully exploit their architectural features.      
There has been recent work on performing individual database 
tasks on GPUs, including spatial joins [9], selection and 
aggregation queries [6], stream processing [7], and sorting [5].  In 
these applications, the researchers carefully considered the 
features and limitations of GPUs with respect to the target 

operations, and designed algorithms to perform these operations 
efficiently.  In comparison, we take a holistic view of relational 
query processing and develop an in-memory query co-processor 
using the out-of-order execution capabilities of CPUs and 
efficient data-parallel processing capabilities of GPUs. In 
particular, we revisit GPU sorting, map the CPU version of a tree 
index to the GPU, and design new GPU join algorithms. 
In the following, we introduce the preliminaries for GPU query 
processing, give an overview of our system, present three specific 
techniques to show the flavor of GPU query processing, and 
describe our demonstration plan. 

2. PRELIMINARIES  
As the GPU is designed for graphics applications, the basic data 
structure in GPU programming is a 2D array, called a texture. An 
element of a texture, or a texel, contains four values, each of 
which corresponds to a color channel (R, G, B, and A). Textures 
are accessed during rendering passes, where a particular output 
texture is set as a render target, and one or multiple textures are 
used as input. During this rendering process, the GPU executes 
the same pixel program for each texel in parallel, which may 
contain arithmetic operations and texture fetches.  
Texture fetching can read data from arbitrary locations in a 
texture; however, writing to an output texture is mostly limited to 
fixed locations. As a result, the most common rendering method 
used in GPGPU is full-screen quadrilateral rendering, which 
renders a quadrilateral that covers the entire texture.  
Fortunately, there have emerged several hardware and software 
solutions to support data scattering, which allows a pixel program 
to modify the output position of a texel. In addition, general 
purpose programming models allow the database developer to use 
the GPU without any knowledge of computer graphics.  
In this work, we develop algorithms for query processing using 
both a graphics API (Microsoft DirectX) [1] and a general 
purpose computing framework (NVIDIA CUDA) [2]. The API 
can utilize specific graphics hardware features, such as blending, 
while the general purpose framework exposes the massively 
multi-threading parallelism, data scattering capability and fast 
inter-processor communication available in the hardware. 

3. SYSTEM OVERVIEW 
We handle relational operators including selection, projection, 
join, and aggregation.  The implementation alternatives include 
sorting, hashing, table scan, binary search, and tree index search. 
Figure 1 illustrates GPU query co-processing.  There are many 
interesting research issues in the interactions between the CPU 
and the GPU; in this paper, we focus on the GPU processing. 
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Figure 1: Illustration of GPU Query Co-Processing  

4. QUERY CO-PROCESSING 
In this section we describe our in-memory GPU algorithms for 
three common database operations, namely sorting, tree indexing, 
and joins.  We implemented algorithms using both DirectX and 
CUDA. In the following, we mainly describe our DirectX 
implementation since it better shows the traditional GPU features, 
and then briefly discuss the optimizations in CUDA. 

4.1 GPUSort 
Our GPUSort algorithm [5] is based on a bitonic sorting network.  
A bitonic sequence is a merger of two monotonic sequences. The 
algorithm proceeds in log2n stages for a sequence of n elements. 
In each stage i, it performs i steps in total, from step i to step 1, to 
merge two bitonic sequences of size 2i-1 each into a new bitonic 
sequence of size 2i. In each step, elements are compared in pairs, 
and the maximum or minimum of a pair is stored.  
In GPUSort, we store the array to be sorted in a 2D texture with 
four color channels. The pixel program compares pairs of 
elements in parallel, stores the minimum or maximum of each 
pair locally, and renders the array to another texture.  This process 
continues until the final texture is fully sorted.  The main 
advantage of this algorithm is its parallelism.  As a result, it 
performs orders of magnitude faster than optimized CPU-based 
sorting algorithms [5]. 
Similarly, the bitonic sorting network can be easily mapped to 
CUDA. Since CUDA exposes fast on-chip memory, which is 
shared among different processing engines, we can further 
optimize the algorithm. This optimization is accomplished by 
using the shared memory to sort all bitonic sequences whose sizes 
are small enough to fit in it. As a result, the number of device 
memory accesses is reduced, which further reduces the execution 
time of the sorting operation. 

4.2 GPU-CSSTree 
The B+-tree index is a pivotal access method for disk-resident 
databases, and the CSS-tree [8] is a static, in-memory, and cache-
sensitive variant. The main feature of a CSS-tree is that the tree 
nodes are physically aligned as an array without any pointers. 
Consequently, a search in the tree is performed via address 
arithmetic instead of pointer chasing. This array-based tree 
organization is suitable for the GPU; therefore, we implement it 
for GPUQP.  
A CSS-Tree can be efficiently constructed on the GPU taking a 
sorted relation as input. Suppose we have a sorted relation of 4N 
entries. We group them into 4-tuples and store them in a texel 

array data with the first four entries in the R, G, B, A channels of 
the first texel in ascending order, the next four in the second texel, 
and so on. Results we obtain from GPUSort will have 
automatically assumed this format. We then construct a GPU-
CSS-Tree with data representing the leaf nodes. The internal 
nodes, which constitute the directory structure are computed and 
stored in a separate array dir. The entire construction process is 
completed with just one rendering pass. Additionally, the address 
computation is purely scalar and therefore the four-channel 
calculation is easily vectorized to be processed with a single 
instruction sequence. 
While searching for a single key in such a tree offers little 
opportunity for parallel processing, multiple searches, for 
example, those in indexed nested-loop joins, fits extremely well in 
the GPU programming model.  The basic idea is to construct a 
texture for a group of keys to be searched and to perform a 
rendering pass when going down each level of the tree. Similar to 
tree construction, the calculation of the array indexes of the 
children nodes for search can be vectorized easily on the GPU.  
Furthermore, if the group of search keys is sorted, adjacent 
searches will go through similar paths and visit adjacent or even 
identical tree nodes, and thus improve the cache hit rate of the 
texture fetches. An interesting tradeoff is between this cache 
performance gain and the sorting cost of a group of unsorted 
search keys. 
Similarly, with CUDA we can also do the searches one level at a 
time in order to reduce the latency resulted from random accesses 
to the device memory. Furthermore, we can store the frequently 
accessed, higher level tree nodes in shared memory in order to 
significantly reduce device memory accesses. 

4.3 GPUJoin 
Traditionally, joins can be implemented via nested loops (NLJ), 
sort-merge (SMJ), or hashing (HJ) on the CPU.  In comparison, 
we propose a new GPU-based algorithm, called Min-Max Join 
(MMJ), to execute join operations efficiently. This MMJ method 
utilizes hashing, sorting, as well as GPU-specific features, such as 
scattering and min-max blending.  
MMJ assumes the join key, record ID, and other attributes of the 
two input tables S and T are stored in textures. The method 
outputs a texture containing the result of the join operation. The 
algorithm proceeds as follows: 
First, we sort the smaller table S by the join key. The resulting 
sorted table is S′. Next, we compute the range of the positions of 
S’ records in the texture for each join key value and store these 
ranges together with their join key values in an auxiliary texture R. 
This can be accomplished efficiently by using graphics hardware 
min-max blending, which is exposed to the API. The texture R 
can be indexed using a hash function on the join key value, and 
collisions can be detected in a subsequent pass and addressed by 
rehashing. 
Next, for each record in the larger table T, we look up R to see if 
there is a range of records from S’ that joins with this record. If 
there is a match, we output the potential range to a texture Q. Q is 
indexed by the record position in T. Next, we cluster the non-zero 
entries in Q. This can be accomplished with a bitonic sort.  
Finally, we sum the number of elements on each range in Q to be 
the number of the join result tuples, determine the position of 



each result tuple in the final result table, and populate the result 
table using scattering. 
This approach runs entirely on the GPU and takes advantage of 
hardware parallelism in all steps. It works for non-equijoins by 
modifying the method used to compute the range in Q. 
In CUDA, we do not have direct access to hardware min-max 
blending. However, due to the more flexible framework, we can 
more easily map traditional joins to the GPU as it can utilize the 
scatter and inter-process communication provided by CUDA. 
Especially, we will demonstrate the four traditional relational 
joins including indexed and non-indexed NLJ, SMJ and HJ on 
CUDA [4].  

5. PLAN FOR DEMONSTRATION 
We plan to give two types of demonstrations: (1) visualization of 
the processing flows of GPU algorithms in action, and (2) the 
runtime performance of these algorithms for different inputs.  The 
first type of demo is to allow the audience to learn the GPU work 
mechanisms visually and the second to compare the performance 
with CPU implementations. 
In the following, we describe the processing flow demos, since 
one of the interesting advantages of programming with graphics 
processors is that, regardless of the computation being performed, 
the results are readily available for visualization. In addition, we 
will comment on the differences in the processing flows of 
DirectX versus CUDA based implementations. 

GPUSort. Figure 2 demonstrates the progression of sorting data 
on the GPU. Each pixel stores four values, one in each color 
channel. The values start in a random sequence and are gradually 
arranged in a sorted order. We plan to show an interactive 
demonstration of this process, as well as the visualization of a 
GPU-based radix sort. 

 
Figure 2: Illustration of GPUSort 

GPU-CSSTreee. We will show interactively how the tree is 
arranged on the GPU and the process of performing multiple, 
parallel searches using the tree. More specifically, we will 
visualize the texture containing the tree and highlight the tree 
nodes as they are accessed in parallel. 

Joins. We will graphically show how each step of the join 
operation is performed on the GPU. In particular, we will focus 
on the visualization of how the data is scattered to arbitrary 
memory locations and how the data structures (textures) are 
populated by the GPU. 

Complex Queries. While the GPU algorithms of individual query 
operators are interesting to show, a complex relational query will 
bring together multiple query operators to produce the query 
results. As the highlight of this demo we will show the processing 
flows of GPUQP in answering complex queries, with emphasis on 
the inter-operator pipelining mechanisms in addition to the intra-
operator data parallelism.  For CUDA-based implementations, we 
will visualize their processing flows together with the massively 
multi-threaded, shared-memory multiprocessor architecture. 
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