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ABSTRACT
We design and implement FD-Buffer, a buffer manager for database
systems running on flash-based disks. Unlike magnetic disks, flash
media has an inherent read-write asymmetry: writes involve expen-
sive erase operations and as a result are usually much slower than
reads. Therefore, we address this asymmetry in FD-Buffer.

Specifically, we use the average I/O cost per page access as op-
posed to the traditional miss rate as the performance metric for a
buffer. We develop a new replacement policy in which we sepa-
rate clean and dirty pages into two pools. The size ratio of the two
pools is automatically adapted according to the read-write asymme-
try and the runtime workload. We evaluate FD-Buffer with trace-
driven simulations as well as experiments on real flash disks. Our
evaluation results show that our algorithm achieves up to 40% less
I/O cost in simulation and up to 33% improvement on the over-
all performance on commodity flash disks, in comparison with the
state-of-the-art flash-aware replacement policy.

1. INTRODUCTION
Flash disks have been widely used for mobile devices, embedded

systems, and server platforms (in the form of Solid State Drives,
SSDs) [10]. Compared with hard disks, flash disks have a myriad
of advantages: high random read performance, high reliability, low
power consumption, and so on. Moreover, they are expected to
have a sharp increase in the market. IDC [11] predicted that the
total flash disk volume will increase by 54.8% per year from 2008
to 2012. Gray also visioned that flash will be in place of hard disks,
and pointed out locality in the main memory will play the key role
in the overall performance [9]. Since buffer manager is the primary
component for capturing memory locality in database systems, this
paper studies the design of a buffer manager for database systems
running on flash disks.

Not all page accesses in a database system go to the disk. The
buffer pool keeps a set of recently accessed pages, and thus filters
some of the page access requests before they go to the disk. The
buffer management policy influences the sequence of requests that
access the disk. Traditionally, it is assumed that the costs for a page
read and a page write are uniform (which is mostly true for hard
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Flash disks Random reads Random writes
Intel X25-M SSD 4260 730
Mtron MSD-SATA3035 SSD 5673 143
Kingston SD4/8GB 538 4.5

Table 1: Performance comparison of random accesses on cur-
rent flash disks (page size: 8KB, unit: IOPS)

disks). Thus, the buffer miss rate, i.e., the ratio of page accesses
that need to go to the disk, is the main metric for evaluating the
effectiveness of a buffer manager, since optimizing this metric is
equivalent to optimizing the I/O performance. As a result, the goal
of traditional buffer management has been to minimize the buffer
miss rate. For example, the (off-line) miss-rate-optimal buffer re-
placement policy (called Belady’s algorithm [4]) selects the victim
page that will not be needed for the longest time in the future.

However, the uniform read-write cost assumption does not hold
any longer on flash disks. Flash disks have an inherent feature
of read-write asymmetry: their random write performance is much
lower than their random read performance due to the erase-before-
write limitation. As shown in Table 1, random writes can be over an
order of magnitude slower than random reads on current flash disks.
Even worse, a recent study [6] showed that this gap would further
increase 3.5-10X after the flash storage is fragmented.

This read-write asymmetry implies that evicting a dirty page has
a much higher cost than evicting a clean page, which affects the
design of buffer management policies in two fundamental aspects.
First, this results in inconsistency between minimizing the buffer
miss rate and optimizing the I/O performance: a lower miss rate
does not necessarily bring a higher I/O performance. As such, it
breaks the premise of minimizing the buffer miss rate. Second, the
buffer design needs to be aware of the interplay between the read-
write asymmetry and workload characteristics such as the ratio of
writes and their access locality. In some cases such as reads be-
ing dominant, the buffer may evict dirty pages to make room for
reads. In other cases, it is desirable to reduce the number of ran-
dom writes, without significantly increasing the number of misses
to other pages. For example, if the buffer replacement policy can
selectively keep some dirty pages with high update frequencies, the
overhead of writing these pages is significantly reduced.

Therefore, as opposed to the traditional use of miss rate as the
performance metric, we use the average I/O cost per buffer page
access to measure the effectiveness of the buffer management. We
note that under asymmetric read-write performance, Belady’s algo-
rithm is no longer cost-optimal (see Section 3 for details). In fact,
the average I/O cost is influenced by many factors such as the flash
disk characteristics and read/write patterns in the workload.

To reduce the I/O cost, we propose FD-Buffer, a buffer manage-
ment algorithm for flash disks. FD-Buffer divides the buffer pool
into two parts: one for clean pages and the other for dirty pages.



Unlike the existing policies such as CFLRU [28] and CFDC [27]
that highly depend on a specific existing replacement policy, each
pool of FD-Buffer is managed by an independent policy. This flexi-
bility enables FD-Buffer to integrate various traditional buffer man-
agement policies with little modification. The size ratio of the two
pools is dynamically adjusted based on the flash disk characteristics
and the runtime workload. A cost model is developed to determine
the optimal ratio, based on a stack-based model of predicting the
buffer miss rate of each pool.

We evaluate our algorithms with two complementary approaches:
trace-driven simulations and experiments on real flash disks. The
workloads contain publicly available benchmarks on transactional
processing such as TPC-C [31], as well as our synthetic workloads.
The results validate the accuracy of the cost model and the effec-
tiveness of FD-Buffer. It is shown that FD-Buffer achieves lower
I/O costs than LRU (Least Recently Used) with an improvement of
up to 21% and 50% on benchmarks and synthetic workloads, re-
spectively. It outperforms CFLRU [28] and CFDC [27], a recent
flash-aware algorithm, with an improvement of 17% and 40% on
benchmarks and synthetic workloads, respectively. Moreover, FD-
Buffer adapts well to the dynamics from workloads and flash disk
fragmentation. Experiments based on real flash disks show that FD-
Buffer is 70% and 33% faster than LRU and CFDC, respectively.

The rest of this paper proceeds as follows. The next section
briefly describes the background and related work, followed by the
problem definition in Section 3. Section 4 presents the FD-Buffer
algorithm. We present our evaluation results in Section 5, and con-
clude this paper in Section 6.

2. PRELIMINARIES AND RELATED WORK
In this section, we first give a brief introduction to flash disks and

flash-based databases. Next, we review the related work on buffer
management policies, followed by the buffer miss rate estimation.

2.1 Flash disks
Flash disks are non-volatile storage with unique characteristics.

Both reads and writes of flash disks are at the granularity of flash
pages. A typical size of flash page is between 512B to 2KB. Due
to the physical characteristics of flash memory, writes are only able
to change bits from 1 to 0. Thus, an erase operation that sets all
bits to 1 must be performed before rewriting. However, the unit
of erase operations is block, which typically contains 16-64 pages.
Moreover, the latency of an erase operation is far higher than a read
or a write. As a result, this erase-before-write limitation leads to
inferior write, especially random write performance and hence the
read-write asymmetry for flash disks. In addition, each flash block
can only be erased by a finite number of times before wearing out.

To emulate a traditional hard disk interface that has no erase oper-
ations, flash disks employ a firmware layer, called the flash transla-
tion layer (FTL), to implement page mapping for out-place updates,
garbage collection and wear leveling.

The internal structure of flash disks has been well studied [2].
More recently, a performance study was conducted to analyze the
system issues about flash disks [6]; and the uFLIP benchmark [5]
was proposed to understand the performance characteristics of flash
disks by evaluating the spatial and temporal correlations of flash I/O
patterns.

2.2 Flash-based Databases
Performance studies on flash-based databases have been conducted

in recent years. Lee et al. [17] show that several components and
operations of databases, such as logging, MVCC, and merge joins,
are naturally suitable for the I/O characteristics of flash disks. Ad-

ditionally, basic database constructs such as indexing and joins have
been studied on flash memories [24, 20]. Both studies conclude that
using SSDs provides better performance than using magnetic hard
disks for database applications.

On the other hand, the poor performance of random writes on
flash disks has received much attention from the database research
community. Specialized data structures and algorithms have been
designed to address this issue. Lee et al. [16] proposed the In-Page
Logging (IPL) to improve the update performance. Different from
the log file system, IPL appends the update logs into a special page
that is placed in the same erase block as the updated data pages in
order to minimize erase operations. Flash-aware tree indexes [18,
19, 1] have been proposed to address the read-write asymmetry with
lazy and batched updates. Tsirogiannis et al. [32] demonstrated that
the column-based layout within a page can leverage fast random
reads of flash disks to speed up different query operators. Chen
[7] proposed a synchronous logging solution by exploiting the fast
sequential writes of flash devices. Different from the above stud-
ies that developed flash-optimized data structures and algorithms
for query processing, this paper investigates flash-optimized buffer
management for expediting query processing in a database system.

2.3 Buffer Management Policies
Buffer management is an active research area in databases and

operating systems. As mentioned earlier, most algorithms have
been focused on minimizing the buffer miss rate. The theoretically
miss-rate-optimal replacement policy, known as Belady’s algorithm
[4], is to evict the page whose next use will occur farthest in the
future. Belady’s algorithm is an off-line algorithm that provides a
lower bound for the miss rate that any online policy could achieve.
The policy most widely used by commercial systems is LRU and its
variants [13, 26]. LRU always evicts the least recently used page.
2Q [13] is a clock-based approximation of LRU, supporting higher
concurrency. LRU-K [26] keeps track of the times of the last K
references for each page. It achieves a lower miss rate in database
systems by distinguishing frequent pages from infrequent ones.

Several previous studies have explored to partition the buffer pool
into two or multiple separate regions for different purposes. DB-
MIN [8] was proposed to allocate a separate buffer pool for each
query. In order to capture both recency and frequency, ARC [23]
and its clock-based approximation CAR [3] divide the buffer pool
into two parts: one region contains frequent pages, the other con-
tains recent pages. Different from these previous studies, we divide
the buffer pool into clean and dirty regions in order to optimize per-
formance for the asymmetric read-write speeds of flash disks.

Recently, there have been several proposals of buffer manage-
ment policies to address the read-write asymmetry of flash disks [28,
27]. FAB [12] and BPLRU [14] are two erase block-level buffer
management strategies. They are both designed for the small buffer
on embedded flash devices. The techniques used in these proposals
can be categorized into two: giving priority to choosing clean pages
as victims over dirty pages [28, 27, 21], and improving the locality
of writes [27, 14]. The first category of techniques is more rele-
vant to our study. CCF-LRU [21] considers the access frequency
for clean pages in their clean-page first policy.CFLRU (Clean-First
LRU) [28] maintains the LRU list into two regions, namely work-
ing region and clean-first region. The working region consists of the
most recently used pages that are placed at the header of the LRU
list, and the clean-first region is at the tail of the LRU list. Victims
are identified in the following preference: firstly clean pages in the
clean-first region, then dirty pages in the clean-first region and fi-
nally the working region. The working region size is a parameter in
CFLRU. Based on CFLRU, CFDC [27] further splits the clean-first



region into a clean queue and a dirty queue, and avoids scanning ex-
tra dirty pages in the clean-first region of CFLRU. In both studies,
compared with dirty pages, clean pages are always given a higher
priority for replacement. In contrast, the cost-based approach pro-
posed in this paper adaptively determines their priority based on the
running-time workload. Moreover, both of [28, 27] are designed for
specific algorithms such as LRU.

Write clustering has been considered an effective technique in
reducing the total cost [27, 29]. It combines multiple writes with
locality into a single write request to the flash disk. CFDC [27] fur-
ther enhances CFLRU by clustering dirty pages and evicting them
as a batch. Similar techniques are used in recently-evicted-first al-
gorithm [29].

2.4 Buffer Miss Rate Estimation
Mattson et al. [22] proposed a stack-based algorithm to estimate

the buffer miss rate for LRU and its variants on any buffer size. The
algorithm is done with a single-pass scan on the page references.
Kim et al. [15] reduces the computational overhead of the stack-
based algorithm. In the following, we briefly describe the stack-
based algorithm with LRU as an example. This algorithm will later
be extended to estimate the cost of two-pool management in our
proposed buffer replacement algorithm (Section 4).

Mattson’s algorithm is based on the inclusion property of buffers:
for any sequence of memory accesses, the contents of a buffer of
size k (pages) should be a subset of the contents of a buffer of size
k + 1 or larger. To estimate the buffer miss rate of LRU, Mattson’s
algorithm uses an LRU stack to store the accessed pages so that
the most recently accessed page is on the top of the stack. The
algorithm maintains the hit counters, Hit [1 , ...,∞], for calculating
the number of buffer misses.

Upon each page access, the algorithm searches the pages in the
stack. If the accessed page is in the stack as the ith element from
the top, the stack distance of the current page access is i. Otherwise,
its distance is ∞. The algorithm then moves the accessed page to
the top of the stack, and updates the hit counter corresponding to
the stack distance. That is, for a page access with stack distance i,
Hit[i] is increased by one. This reflects the fact that if the buffer
sizes are between 1 and i − 1 pages, this access will incur a page
miss. For buffer sizes larger than or equal to i, the access will result
in a page hit. Finally, after processing the entire access sequence
which accesses N distinct pages, the miss rate for the buffer with
M pages, P (M), is given by Eq. (1):

P (M) = 1−
∑M

i=1 Hit[i]∑N
i=1 Hit[i] + Hit[∞]

. (1)

3. PROBLEM DEFINITION
Since the buffer miss rate is not consistent with the I/O perfor-

mance due to the read-write asymmetry, we use the average I/O
cost as the primary metric. The cost model by definition quantifies
the costs of evicting a clean page and a dirty page.

We consider the average I/O cost per page access (the average
I/O cost in short) in the long run after the warm-up (i.e., after the
buffer is filled up). This excludes the cost of buffer misses during
the warm-up. Thus, the average I/O cost in our model includes two
parts: the cost of fetching a page from the flash disk upon a buffer
miss, and the cost of writing a page back to the flash disk upon
evicting a dirty page. Eq. (2) gives the average I/O cost:

Costio = Ptotal · Cread + Ptotal · Edirty · Cwrite, (2)

where Ptotal is the buffer miss rate, Edirty is the ratio of evicting a
dirty page in all the evictions, and Cread and Cwrite are the costs for
reading and writing a page from the flash disk, respectively. For

Belady [4] Alternative (FD-Buffer)
Request Buffer Hit? I/O op-

eration
Buffer Hit? I/O op-

eration
- [X, Y ] - - [X, Y ] - -
WA [A, X] Miss Read A [A, X] Miss Read A
WB [A, B] Miss Read B [B, X] Miss Read B,

Write A
RC [B, C] Miss Read C,

Write A
[B, C] Miss Read C

RD [C, D] Miss Read D,
Write B

[B, D] Miss Read D

RC [C, D] Hit – [B, C] Miss Read C
RD [C, D] Hit – [B, D] Miss Read D
RC [C, D] Hit – [B, C] Miss Read C
WB [B, C] Miss Read B [B, D] Hit –
RA [A, B] Miss Read A [B, A] Miss Read A
Summary – 6 misses,

3 hits
6 reads,
2 writes

– 8 misses,
1 hit

8 reads,
1 write

Table 2: Examples of Belady’s algorithm and FD-Buffer

simplicity, we assume each read operation on the flash disk has
a cost of Cread, and each write is a random write with a cost of
Cwrite. While this assumption does not take the access patterns of
reads and writes into account, our experiments on real SSDs justify
the effectiveness of this simple cost model (see Section 5 for more
details).

To quantify the read-write asymmetry of the flash disk, we further
define the asymmetry factor R = Cwrite

Cread
. Normalizing Eq. (2) by

Cread, we obtain the normalized average I/O cost in Eq. (3):

Cost′io = Ptotal · (1 + Edirty · R) (3)

This cost model is general on capturing both read-write symmetric
devices such as hard disks (where R = 1) and read-write asymmet-
ric devices such as flash disks (where R > 1). In the rest of the
paper, we assume R ≥ 1 to model both hard disks and flash disks.

Given an I/O request sequence S, a buffer management algorithm
A, a buffer with M pages, the asymmetry factor R, we denote the
normalized average I/O cost of A by Cost′io(A(S, M,R)). Our
definition of the cost-optimal buffer management algorithm is as
follows:

Definition A buffer management algorithm A is cost-optimal iff
for any other algorithm A′, and for any S, M and R values,
Cost′io(A(S, M,R)) ≤ Cost′io(A

′(S, M,R)).

This definition has two implications on the design of buffer man-
agement. First, the traditional miss-rate-optimized replacement poli-
cies are no longer cost-optimal. Table 2 gives an example to show
that Beledy’s algorithm [4] is not cost-optimal. In this example, the
buffer can accommodate two pages. The reference list consists of
nine page access requests. The working set contains four pages,
which is larger than the buffer size. Initially, after warm-up, the
buffer contains two clean pages X and Y . We compare the nor-
malized average I/O costs of Belady’s algorithm and an alternative
algorithm (our FD-Buffer algorithm in Section 4). According to
Eq. (3), they are 6

9
· (1+ 2

6
R) and 8

9
· (1+ 1

8
R), respectively. The R

value determines which algorithm is better. If R < 2, Beledy’s al-
gorithm wins. They have the same cost when R = 2. If R > 2, the
alternative algorithm wins, and the performance gap would enlarge
with increasing R.

Second, this definition suggests some guideline in the design of a
cost-optimal buffer management algorithm for flash disks. That is,
an ideal buffer management algorithm should minimize both Ptotal

and Edirty . In a fixed-size buffer, these two sub-goals may conflict
on certain workloads. For example, we need to put more buffer
space for dirty pages, in order to reduce Edirty . But this will in-
crease the buffer miss rate, when the dirty pages have a lower de-
gree of locality than the clean pages. Nevertheless, since reads of



flash disks are much faster than writes, it might be still beneficial to
reduce Edirty even at the cost of increased buffer miss rate. The key
issue is how to achieve a balance between these two sub-goals such
that the overall I/O performance is optimized.

4. FD-BUFFER
Our cost definition clearly indicates two design points for an

asymmetry-aware algorithm: (1) distinguish clean and dirty pages,
and (2) compare the locality of the two kinds of pages to make the
replacement decision. Based on these two points, we develop FD-
Buffer, a unified buffer management system that attempts to mini-
mize the average I/O cost on flash disks.

Without the knowledge of future references, FD-Buffer follows
the two design points closely. First, we divide the buffer pool into
two sub-pools, the clean pool for clean pages and the dirty pool
for dirty pages. The two pools are independent from each other,
with each being managed by a traditional buffer management policy
to adapt to the locality. This design allows us to utilize previous
research results on traditional buffer management policies with each
sub-pool. Second, the global localities of reads and writes on the
entire buffer pool are affected by the relative size of the clean pool
and the dirty pool. We dynamically adjust the size ratio of the two
sub-pools by comparing the localities of the two sub-pools. Since
the total size of the buffer pool is fixed, increasing the size of one
sub-pool will reduce misses on it but increase misses on the other
sub-pool.

4.1 Overview
FD-Buffer has three main components, including buffer man-

ager, cost estimator and policy advisor.
The buffer manager has the following four parameters < M , Mc,

Policyc, Policyd >: the total buffer pool size is M pages, the
size threshold of the clean pool is Mc pages, and the replacement
policies are Policyc and Policyd on the clean and the dirty pool,
respectively. The threshold for the dirty buffer size is Md = M −
Mc. In FD-buffer, Mc is the key parameter for adaptation to the
flash disk characteristics and the workload.

The cost estimator is responsible for estimating the cost for dif-
ferent Mc values, with runtime statistics and the flash disk profile as
input. The main statistics include the counters in stack-based cost
estimation. We use a light-weight method to collect these statistics
(Section 4.3). The profile for the flash disk includes the average
latency for reads and writes, and the asymmetry factor, which are
obtained through measurements at runtime. The reason for runtime
measurement as opposed to offline calibration is that these charac-
teristics of the flash disk may change dynamically over time [6].

The policy advisor is used to adaptively recommend the optimal
setting to the buffer manager. It determines the optimal setting
through choosing the clean pool ratio that minimizes the I/O cost
for FD-Buffer.

4.2 Replacement Algorithms in FD-Buffer
Each pool has an independent replacement policy. In principle,

we can use any replacement policy. In this study, we use LRU and
its variants for two reasons. First, they are widely used and evalu-
ated in the traditional buffer management. Second, their miss rate
predictions have been studied for long, which we can leverage for
cost estimation.

Our FD-buffer algorithm uses APIs including Lookup, Update,
Add, Remove, and GetVictim, as commonly used in other buffer al-
gorithms. Lookup is to locate a page in the pool and return the frame
that contains the page. Update is to update the book-keeping data
structure to record that the page is referenced. Add is to add a page

Algorithm 1 Reads and Writes on FD-Buffer.
Procedure: Read (Page p)
1: Frame v = C .Lookup(p);
2: if v 6= NULL then
3: C .Update(v);
4: else
5: v = D .Lookup(p);
6: if v 6= NULL then
7: D .Update(v);
8: else
9: v=FindVictimForClean (C, D). // Algorithm 2.

10: Fetch page p from the disk to frame v;
11: Return frame v;
Procedure: Write (Page p)
1: Frame v = C .Lookup(p);
2: if v 6= NULL then
3: C .Remove(v);
4: D .Add(v);
5: else
6: v = D .Lookup(p);
7: if v 6= NULL then
8: D .Update(v);
9: else

10: v=FindVictimForDirty (C, D). // Algorithm 2.
11: Fetch page p from the disk to frame v;
12: Return frame v;

frame to the pool, Remove is to remove a page frame from the pool,
and GetVictim is to get a victim frame for replacement. Take LRU
as an example. LRU maintains the metadata of all the page frames
in a queue according to their access recency, where the head is the
least recently used page frame. Initially, the queue consists of meta-
data of all unused page frames. Add is to add the metadata of a new
page frame to the tail of the queue. Remove is to remove the meta-
data of the page frame from the queue. Lookup is to locate a page
frame in the queue. Update is to move the metadata of the page to
the tail of the queue. GetVictim is to select the page frame at the
head of the queue as the victim.

Algorithm 1 illustrates our FD-Buffer algorithm. The entire buffer
pool is divided into the clean pool, C, and the dirty pool, D. Main-
taining the locality of each individual pool is the responsibility of
each replacement policy, whereas FD-buffer is in charge of adjust-
ing the sizes of both pools. We denote the number of frames in the
clean and the dirty pool to be |C| and |D|, respectively.

The sizes of the two pools, |C| and |D|, are dynamically adjusted
along with the reads and writes in FD-buffer. Specifically, FindVic-
timForClean and FindVictimForDirty select the victim page from
the clean or dirty pool by comparing the number of clean pages and
its threshold (Algorithm 2). When the sizes of the two pools are
adjusted, frames move between the two. A frame moves from the
clean pool to the dirty pool in two scenarios: (1) writing a page in
the clean pool, or (2) writing a page to a frame previously occupied
by a clean page. In contrast, a frame moves from the dirty pool
to the clean pool when reading a page to a frame originally occu-
pied by a dirty page. With this policy, |C| and |D| are dynamically
approaching Mc and Md respectively.

An example of running FD-Buffer is illustrated in Table 2. The
threshold size for the clean and dirty pools is one page each. Both
pools are managed by LRU. We represent the buffer with a tuple
[D, C], with the first frame belonging to the dirty pool, and the
second frame to the clean pool. Initially, D is empty and C contains
two clean pages. As WA comes, D grows to one page. The dirty
page B stays in the dirty pool for its next write, since no other writes
occur during the period. In this example, FD-Buffer can achieve a
lower cost than Belady’s algorithm.



Algorithm 2 Page evictions in FD-Buffer.
Procedure: FindVictimForClean(C, D)
1: if |D| > Md then
2: v = D .GetVictim();
3: D .Remove(v);
4: C .Add(v);
5: Write the page in frame v to the disk;
6: else
7: v = C .GetVictim();
8: Return frame v;

Procedure: FindVictimForDirty(C, D)
1: if |C| > Mc then
2: v = C .GetVictim();
3: C .Remove(v);
4: D .Add(v);
5: else
6: v = D .GetVictim();
7: Write the page in frame v to the disk;
8: Return frame v;

We analyze the average I/O cost of FD-Buffer based on the miss
rate. A buffer miss occurs in FD-Buffer when the miss occurs in
both the clean pool and the dirty pool. Given the miss rate of the
clean and the dirty pools, Pc and Pd, respectively, we can derive
Ptotal = Pc × Pd.

A dirty page is evicted when a write causes a miss in the dirty
pool. We denote this miss rate to be P w

d . Thus, Edirty = P w
d .

Substituting Ptotal and Edirty , we have the normalized average I/O
cost for FD-Buffer as expressed in Eq. (4).

Cost′io = Pc × Pd(1 + P w
d · R) (4)

4.3 Cost Estimation
In order to adapt the clean pool size to the flash disk characteris-

tics and the workload, we need to formulate how Pc, Pd, and P w
d

are influenced by different Mc and Md values. This leads us for
online estimation on Pc, Pd, and P w

d .
We estimate these miss rates using Mattson’s stack-based algo-

rithm [22]. Since the traditional Mattson’s stack algorithm only
works on computing the miss rate of the entire buffer, we extend
it to working on FD-Buffer with two pools. The extension is a non-
trivial task, since these two pools interact with each other. For ex-
ample, some page may exist in different pools at different periods
of time and the page miss rate of one pool is affected by the size of
the other pool.

To address these challenges, we have developed the Two-Stack
algorithm, and made two major extensions to Mattson’s stack-based
algorithm [22]. For ease of presentation, we use LRU as an example
to illustrate our algorithm.

First, Two-Stack uses two LRU stacks, CLRU and DLRU, for
the clean and dirty pools, respectively. Similar to the LRU stack
in Mattson’s algorithm, the CLRU and DLRU stacks store the ac-
cessed pages according to their access recency. According to our
FD-Buffer algorithm, the page in CLRU can be moved to DLRU
and vice versa. For example, a write access to a page in CLRU may
move the page to DLRU, since the page becomes dirty. However,
the page movement from DLRU to CLRU needs extra care. Con-
sider a case where a read access comes and the accessed page exists
in DLRU but not in CLRU. After the read access, the page may still
stay in DLRU if the read access is a hit in the dirty pool. Other-
wise, the read access results in a miss in the dirty pool, and the page
should be put into CLRU, since the read access will load the page
into the clean pool. Whether the access is a hit or a miss depends
on the pool size.

Algorithm 3 Handling a read in Two-Stack.
Procedure: ReadHandler (Page p)
1: if (p /∈ CLRU) ∧ (p /∈ DLRU) then
2: Hitrc [∞]++, Hitrd[∞]++;
3: Put p on top of CLRU as the entry ec;
4: PCondc[ec] = true;
5: if (p in CLRU at entry ec) ∧ (p /∈ DLRU) then
6: Let dc be the stack distance in CLRU;
7: Compute i so that if Mc ≥ i then (Mc ≥ dc) ∧ PCondc[ec];
8: Hitrc [i]++, Hitrd[∞]++;
9: Move entry ec to the top of CLRU as entry e′c;

10: PCondc[e′c] = true;
11: if (p /∈ CLRU) ∧ (p in DLRU at entry ed) then
12: Let dd be the stack distance in DLRU;
13: Hitrd[dd]++, Hitrc [∞]++;
14: Move entry ed to the top of DLRU as entry e′d;
15: PCondd[e′d] = (Md ≥ dd);
16: Copy entry e′d to the top of CLRU as entry ec;
17: PCondc[ec] = (Mc > M − dd);
18: if (p in CLRU at entry ec) ∧ (p in DLRU at entry ed) then
19: Let dc and dd be the stack distances in CLRU and DLRU, respec-

tively.
20: Compute i so that if Mc ≥ i then (Mc ≥ dc) ∧ PCondc[ec];
21: Compute j so that if Md ≥ j then (Md ≥ dd) ∧ PCondd[ed];
22: Hitrc [i]++, Hitrd[j]++;
23: Move entry ec to the top of CLRU as entry e′c;
24: PCondc[e′c] = (PCondc[ec] ∨Mc > M − dd);
25: Move entry ed to the top of DLRU as entry e′d;
26: PCondd[e′d] = (PCondd[ed] ∧Md ≥ dd);

…

pa Mc>M-d pa Md>=d

(read page pa)

…

…

d

CLRU DLRU

pa true

…

…
…

… …

d

page 
number

present 
condition

Figure 1: An example of Two-Stack simulation for page read
access

The second extension is to handle tricky cases on page movement
between two stacks. We store an auxiliary present condition for
each page in CLRU and DLRU stacks. The present condition states
that if this condition is satisfied, the last access to the page makes
it not only exist in the stack (either CLRU or DLRU) but also exist
in the pool that the stack simulates. It is typically represented by a
comparison between the stack distance and the pool size. We use
PCondc and PCondd to represent the present conditions for pages
in clean and dirty pools respectively.

Figure 1 shows an example on page movement from DLRU to
CLRU. Assume that the current page read exists only in DLRU and
its stack distance is d. If Md < d, the current read access is a
miss in the dirty pool, and the page will be moved to the top of
CLRU with the present condition Md < d. Since Mc + Md =
M , the present condition can also be expressed as Mc > M − d.
Denoting the top of CLRU to be e, we have PCondc[e] = (Mc >
M − d). If Md ≥ d, the current read access is a hit in the dirty
pool, and the page is moved to the top of the DLRU as the present
condition Md ≥ d. Denoting the top of DLRU to be e′, we have
PCondd[e′] = (Md ≥ d).

Algorithms 3 and 4 illustrate read and write handling in the Two-
Stack algorithm. Two-Stack considers the present conditions on
the two stacks. The algorithm maintains hit counters for CLRU



Algorithm 4 Handling a write in Two-Stack.
Procedure: WriteHandler (Page p)
1: if p in CLRU at entry ec then
2: Let dc be the stack distance in CLRU;
3: Compute i so that if Mc ≥ i then (Mc ≥ dc) ∧ PCondc[ec];
4: Hitwc [i]++;
5: Remove entry ec from CLRU;
6: if p /∈ CLRU then
7: Hitwc [∞]++;
8: if p in DLRU at entry ed then
9: Let dd be stack distance in DLRU;

10: Compute i so that if Md ≥ i then (Md ≥ dd) ∧ PCondd[ed];
11: Hitwd [i]++;
12: Move entry ed to the top of DLRU as entry e′d;
13: PCondd[e′d] = true;
14: if p /∈ DLRU then
15: Hitwd [∞]++;
16: Put p on the top of DLRU as entry e′′d ;
17: PCondd[e′′d ] = true;

and DLRU. It also distinguishes the hit counters for reads or writes,
since the computation of P w

d only depends on write accesses. Let
Hitr

c and Hitw
c be the hit counters for reads and writes in the clean

pool, respectively. Let Hitr
d and Hitw

d be the hit counters for reads
and writes in the dirty pool, respectively.

According to the definition of hit counters, after processing a
sequence of page references, Pc, Pd, and P w

d are calculated in
Eqs. (5)–(7).

Pc(Mc) = 1−
∑Mc

i=1(Hitrc [i] + Hitwc [i])∑n
i=1(Hitrc [i] + Hitwc [i]) + Hitrc [∞] + Hitwc [∞]

(5)

Pd(Md) = 1−
∑Md

i=1(Hitrd[i] + Hitwd [i])∑n
i=1(Hitrd[i] + Hitwd [i]) + Hitrd[∞] + Hitwd [∞]

(6)

P w
d (Md) = 1−

∑Md
i=1 Hitwd [i]∑n

i=1 Hitwd [i] + Hitwd [∞]
(7)

4.4 Policy Advisor
The design goal of the policy advisor is to predict the optimal

replacement policy for future references. Since workload predic-
tion is difficult and challenging in general, we use a simple window
based prediction method, where a window is defined as a prede-
fined number of consecutive page references. Denote the previous
window and the current window as Win and Win ′, respectively.
The current policy advisor is to decide the Mc value based on the
statistics collected from Win , and use this Mc value for Win ′.

Based on the hit counters in Win , we iterate Mc from one to
(M − 1), and use Eqs. (5)–(7) to calculate Pc, Pd, and P w

d values
for each Mc value. With Pc, Pd, and P w

d values, we use Eq. (4) to
calculate the normalized average I/O cost for the Mc value. Thus,
we obtain the optimal Mc value of Win to be the minimum average
I/O cost among the M estimated costs.

The window size is a tuning parameter for the policy advisor. Ide-
ally, it should balance the gain of adaptation on workload changes
and the overhead of running the policy advisor. If the window size
is too small, we run the policy advisor too often, and the computa-
tion overhead of the policy advisor is high. On the other hand, if
the window size is too large, the policy may not well adapt to work-
load changes. Thus, we determine the window size considering the
computation overhead of the policy advisor. The basic idea is to
limit the overhead to a threshold ratio of q of the total I/O time per-
formed on the window. Suppose the computation time of the cost
estimation in the policy advisor is Comp, and we set the window

database
size (GB)

#Reference
(millions)

Write
ratio

Description

TPCC 2.4 16.8 15.0% 20 warehouses
TPCB 2.2 12.7 3.5% 150 branches
TM1 2.4 10.2 4.6% 1 million subscribers

Synthetic 2.0 14.0 1–99% Reads and writes with Zipf
distributions.

Table 3: Specification on the traces in the experiment

size so that the total I/O time reaches Comp
q

. We have validated the
effectiveness of this simple method in our experiments.

5. EVALUATION
In this section, we evaluate our algorithms with trace-driven sim-

ulations as well as experiments on real flash disks.

5.1 Experimental Setup
We ran our experiments on a Windows workstation with an Intel

2.4GHz quad-core CPU, 4GB main memory, a 160GB 7200rpm
SATA magnetic hard disk, an SD card and two flash SSDs. The
hard disk is with 109 and 100 random reads and writes on 8KB
pages per second, respectively. The SD card is an 8GB Kingston
SD4, which represents low-end flash disks. The two SSDs are an
Mtron MSD-SATA3035 64GB and an Intel X25-M 80GB, which
represent high-end flash disks. They have different characteristics:
the Mtron uses block-level mapping in the FTL and contains SLC
flash memory, whereas the Intel one uses page-level mapping and
consists of MLC flash memory. The asymmetry factor values for the
hard disk, Kingston SD card, Intel and Mtron SSDs are 1.1, 121.3,
5.8 and 39.6 respectively.

Workloads. The workloads include publicly available bench-
marks, and our synthetic ones (Table 3). We use three benchmarks
on transactional processing, namely TM1 [25], TPC-B [30], and
TPC-C [31]. TM1 is a telecom workload benchmark, TPC-B sim-
ulating transactions on a hypothetical bank, and TPC-C for online
transaction processing. To get the traces on buffer page accesses, we
run the three benchmarks on PostgreSQL 8.4 with default settings,
e.g., the page size is 8KB. For each benchmark, we run a sufficient
period of time around 3 hours, including a 30 minutes warm-up pe-
riod. The number of clients is 20 for all benchmarks. We explicitly
configure the buffer size to be smaller than the database size in or-
der to exercise disk I/O operations. Moreover, the trace includes all
the accesses to the pages in the buffer, and the logging I/O is not
included in the trace.

While public benchmarks approximate workloads from the real
world, we do not have the full control of the workload characteris-
tics such as distributions, and the read/write ratio. Therefore, we
have generated synthetic traces with page accesses of reads and
writes conforming to Zipf distributions. The trace generation fol-
lows the setting (< αr , αw, w >), where w is the write ratio in the
trace, and αr and αw represent the α values in the Zipf distribution
for reads and writes, respectively. This allows us to examine the
impact of the skewness in reads and writes, which affects the work-
ing set size of reads and writes. The larger the α value, the more
skewed the Zipf distribution is and the smaller the working set is. If
the α value is zero, the distribution is uniform, and the working set
size is at maximum.

The synthetic traces have the same number of page accesses as
the one generated from TPC-C, using the first 1

6
of page accesses to

warm up the buffer, and the rest for performance evaluation.
In order to evaluate the performance impact of workload dynam-

ics, we simulate the dynamics in the read/write ratio. In particular,
we divide the TPC-C trace into epochs, and each epoch consists of
around 5 thousand page references. We dynamically changed the



write ratio w in these epochs by changing reads to writes in the
traces. We use two models for dynamics: (WM 1) wi = w0(1 +
i%), and (WM 2) wi = 0.95w0 ·(i mod 2)+w0 ·((i+1) mod 2),
where wi is the write ratio in the i+1th epoch of trace, and w0 is ob-
tained in the first epoch of the original TPC-C trace. The first model
simulates the case when write requests are becoming dominant in
the workload, and the second model simulates the case where the
workload periodically changes.

We have implemented a simulator and a buffer manager running
on SSDs and SD cards. Both implementations are driven by traces.

Implementation for simulation. The simulator models the be-
havior of a buffer manager on flash disks. It takes a trace as input
and accumulates the number of hits and misses according to the
replacement policy. The output is the average I/O cost on the trace.

In FD-Buffer, each of the two pools is managed by LRU. we
evaluate the effectiveness of FD-Buffer in comparison with LRU
and CFDC [27], as the representatives for traditional disk-based and
flash-based replacement policies, respectively. We use LRU as the
base for comparison, since LRU and its variants are the most widely
used replacement policies in traditional buffer managers. Since the
I/O cost of write clustering depends on complicated hardware con-
figurations such as disk caches and FTL implementations, we do not
implement write clustering in simulations, and evaluate the impact
of write clustering on the real flash disk only.

CFDC without write clustering is similar to CFLRU [28], with
smaller computation overhead achieved by splitting the clean-first
region into a clean queue and a dirty queue. Thus, we denote this
algorithm with “CFLRU(WRR)", where WRR is the ratio of the
working region in the total buffer size. In principle, this ratio could
be adapted to the workload and the flash disk. CFLRU [28] de-
signed for virtual memory relies on the operating system specific
information to make the adaptation. However, to the best of our
knowledge, there is no adaptive tuning on WRR for different work-
loads and flash disks in database systems. For example, CFDC stat-
ically sets this ratio to 0.5. Therefore, we also use the static WRR
in our experiments.

Simulations allow us to examine arbitrary values for the asym-
metry factor. A large asymmetry factor value may come from two
sources – either the inherent and static property of the device or the
dynamic fragmentation effect of the device. For instance, a hard
disk has an asymmetry factor value of approximately one, and a
low-end SSD may have a high asymmetry factor value. Further-
more, due to fragmentation, the asymmetry factor value may signif-
icantly increase on the same flash disk over time. In our simulations,
the value range for the asymmetry factor is 1–128 with 32 being the
default value. When we vary the value of the asymmetry factor, we
fix the read cost to be the read latency of the Mtron SSD (0.176
ms in our measurement), and increase the write cost linearly to the
asymmetry factor.

To evaluate the performance impact of fragmentation in long run-
ning scenarios, we simulate the dynamics in the asymmetry factor
in a similar way to workload dynamics. In particular, we use two
models for dynamics: (RM 1) Ri = R0 · (1 + i× 0.1), and (RM 2)
Ri = 0.95 · R0 · (i mod 2) + R0 · ((i + 1) mod 2), where Ri is
the asymmetry value when executing the i+1th epoch of trace, and
R0 is set as 32 by default. The first model simulates the increas-
ing asymmetry factor as the flash disk becomes fragmented, and
the second model simulates that the fragmented disk is periodically
cleaned (such as with the latest Trim command), and is restored to
the state with a relatively low asymmetry factor.

Implementation on flash disks. To evaluate FD-Buffer on real
flash disks, we implement a buffer manager on top of standard OS
file system facilities. The buffer manager takes a trace as input, and

TPC-C TPC-B TM1
w/ PR w/o PR w/ PR w/o PR w/ PR w/o PR

Pc 5.1% 186.9% 18.6% 108.3% 16.6% 59.7%
Pd 7.5% 8.2% 1.7% 2.0% 0.9% 1.0%
P w

d 4.6% 4.6% 17.5% 19.5% 3.6% 6.6%

Table 4: Miss rate estimation with and without present condi-
tions in FD-Buffer

performs I/O requests to the flash disk. Thus, we can obtain the
average response time for a buffer page request on the flash disk.
We also evaluate the write clustering technique for both FD-Buffer
and CFDC [27] on flash disks.

The indexes and tables for the benchmarks and synthetic work-
loads are stored in files in the file system. We set the page size to be
consistent with that in PostgreSQL (8K bytes).

For all the replacement policies, a page written in the buffer pool
is marked as dirty, and will be written to disk when it is evicted. To
avoid the interference between the virtual memory of the operating
system and our buffer manager, we disabled the buffering function-
ality of the operating system using Windows APIs.

We have made two optimizations to reduce the overhead of the
runtime overhead in FD-Buffer. First, we tune the q value for cal-
culating the window size and determine q = 3% so that the over-
head of cost estimation in the policy advisor does not exceed 3%.
Second, in order to improve the efficiency of our stack-based es-
timation, we have used an LRU stack for a sub-pool, and adopted
the group-based optimization in the previous study [15]. The ba-
sic idea of the optimization is to parition the pages by their access
recency into g groups G0, G1, ..., Gg−1, with each group consist-
ing of I pages. G0 consists of the most recently accessed pages.
The pages within a group Gk is approximately treated with equal
distances (k × I). Pointers to the pages are maintained in group
headers. Upon each page access, only the affected group headers
are scanned, instead of the affected pages. The group-based opti-
mization can greatly reduce the overhead with insignificant accu-
racy loss [15]. In our implementation, we use the group size of 64
pages, and the accuracy loss in the miss rate estimation is less than
5%.

In both simulations and real executions, we examine the impact
of buffer pool size. We vary Buffer_DB_Ratio (i.e., the ratio of
buffer pool size to the database size) with the range of 0.1%–6.25%
with 3.1% as the default value. Thus, our results are presented in
the default setting: Buffer_DB_Ratio=3.1% and R = 32, unless
specified otherwise.

5.2 Simulation Results
We first evaluate the effectiveness of our adaptation in FD-Buffer.

Next, we evaluate FD-Buffer in comparison with LRU and CFLRU.

5.2.1 Results on Benchmarks
Evaluating miss rate estimations. Table 4 shows the average

errors between estimations and measurements on Pc, Pd, and P w
d

values for the three benchmarks under default settings. The error is
defined to be e = |v−v′|

v
× 100%, where v and v′ are the measured

and the estimated values, respectively. We compare the estimations
with and without present conditions, denoted as “w/ PR" and “w/o
PR", respectively. The extension of present conditions significantly
reduces the average error. The improvement is the most significant
for Pc, since Pc is affected most by the page movement between
the two stacks in the Two-Stack algorithm. The average errors with
present conditions are less than 20%.

Effectiveness of adaptation. We examine the effectiveness of
the adaptation in comparison with the algorithms with static clean



 

(a) TPC-C
 

(b) TPC-B
 

(c) TM1

Figure 3: Average I/O cost of online algorithms on benchmarks.

 

Figure 2: The comparison of FD-Buffer and the best and worst
of FD-Buffer with static clean pool sizes.

pool sizes being (M−1) and 2i pages (0 ≤ i ≤ (log2 M−1)). Fig-
ure 2 compares their average I/O costs. FD-Buffer (with adaptation)
is comparable to or better than the best of static algorithms. Under
the default buffer setting, the average I/O cost of FD-Buffer is 9%
less than that of the best static algorithm on TPC-C, and is within
1% greater than those on TPC-B and TM1. The accurate miss rate
estimation contributes to the effectiveness of our adaptation. On the
other hand, the best static clean pool ratios are different, with 1.5%,
25% and 50% on TPC-C, TPC-B and TM1, respectively. More-
over, the gap between the best and the worst of the static algorithms
indicates the significant performance loss with wrong settings.

Overall comparison. Figure 3 shows the average I/O cost of on-
line algorithms on the three benchmarks, with the Buffer_DB_Ratio
varied. We also show CFLRU with different WRR values, i.e.,
0.25, 0.5 and 0.75. Note, the previous study [27] used 0.5. For all
of the three benchmarks, FD-Buffer is the best, CFLRU with a suit-
able setting is the second, and LRU is the worst. When the ratio
increases from 0.1% to 6.25%, the I/O cost of FD-Buffer decreases.
The improvement of FD-Buffer over LRU is up to 21%, 15%, 7%
on TPC-C, TPC-B and TM1 benchmarks, respectively, and the im-
provement over CFLRU(0.5) is up to 15%, 17%, and 7%, respec-
tively.

CFLRU can be worse than LRU (up to 18%) under an unsuitable
setting. However, the suitable setting for CFLRU varies with buffer
sizes and benchmarks. Among the three CFLRU variants, there is
not a clear winner for all the benchmarks and buffer sizes. Thus,
following the previous study [27], we use 0.5 as the suitable WRR
setting for CFLRU, and denote “CFLRU(0.5)" with “CFLRU" for
short in the rest of the experiments.

Varying R. Figure 4 shows the average I/O cost improvement
of FD-Buffer over LRU and CFLRU on TPC-C with R varied. As
the asymmetry factor value increases, the improvement over LRU
increases. The improvement over CFLRU slightly decreases and
then increases, between 7% and 13%. The improvement is more
significant when R is small, because reads and writes are at almost
the same cost, and the clean-first policy in CFLRU hurts its per-
formance. When R is large, the improvement of FD-Buffer over

 

Figure 4: The average I/O cost improvement of FD-Buffer over
LRU and CFLRU with R varied.

 

(a) Over LRU
 

(b) Over CFLRU

Figure 5: The average I/O cost improvement of FD-Buffer over
LRU and CFLRU.

CFLRU increases. More pages should be allocated to the dirty ones,
but the static working region ratio in CFLRU makes it contain fewer
dirty pages than FD-Buffer.

The decreasing clean pool sizes in FD-Buffer reveal the effective-
ness of the cost-based adaptation, since writes are becoming more
costly and the clean pool shrinks for holding more dirty pages in the
buffer. This indicates that our cost-based adaptation is adapted for
different flash disks, and also for the changing asymmetry factor on
the same flash disk.

5.2.2 Results on Synthetic Workloads
Varying read/write distributions. Figure 5 shows the average

I/O cost of FD-Buffer over LRU and CFLRU. Under all the com-
binations, FD-Buffer has a lower average I/O cost than both LRU
and CFLRU, with an improvement between 0.1% and 39% over
LRU, and between 0.1% and 13% over CFLRU. The trend of the
improvement is similar on both LRU and CFLRU. For a fixed αr ,
the improvement is a concave curve as αw increases. The perfor-
mance difference is due to the difference in the capability of captur-
ing write localities among the algorithms. For a fixed αw value, the
improvement becomes smaller as αr increases.

We further examine the average size ratio of clean pool in FD-
Buffer and find that the clean pool size adapts well to the read/write
localities (Figure 6). For a fixed αr , the clean pool ratio increases
as αw increases, since a larger clean pool size results in a smaller



 

Figure 6: The average ratio of clean pool in FD-Buffer.

 

(a) Over LRU
 

(b) Over CFLRU

Figure 7: The average I/O cost improvement of FD-Buffer over
LRU and CFLRU varying write ratios.

average I/O cost. For a fixed αw value, the clean pool ratio is a
concave curve. When αr is near zero, the read locality is low. Al-
locating pages to the clean pool does not significantly reduce the
read misses. When αr is near two, the read locality is so high that
a small number of pages is sufficient for achieving a low miss rate.
Between these two ends, a reasonable number of pages allocated to
the clean pool can minimize the cost.

Varying write ratios. Figure 7 shows the average I/O cost of
FD-Buffer over LRU and CFLRU with the write ratio varied. We fix
αr and αw to 0.4 and 1.2, respectively. Overall, the improvement
of FD-Buffer is 0.5–48% over LRU, and 0.5–18% over CFLRU.
The improvement is more significant for a high asymmetry factor
value. As the write ratio increases, the improvement on a fixed
asymmetry factor value is a concave curve. FD-Buffer achieves a
higher improvement on workloads with a mix of reads and writes
than those with reads or writes only.
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Figure 8: Average I/O cost of online algorithms under dynamic
workload.

Adaptation to workload dynamics. Figures 8(a) and 8(b) show
the average I/O cost of FD-Buffer (with adaptation), FD-Buffer
(with a best static clean pool ratio), LRU and CFLRU under the
workloads with dynamic models WM 1 and WM 2, respectively.
We can make the following observations: 1) the performance of
FD-Buffer(with adaptation) is comparable to that of the best static
FD-Buffer algorithm, which validates the effectiveness of our adap-
tation; 2) FD-Buffer(with adaptation) sufficiently outperforms LRU
and CFLRU by 12% and 11% on WM 1 respectively, and the im-
provements increase to 50% and 40% on WM 2. This is because
FD-Buffer can efficiently adapt to the workload by adjusting the
clean pool size, as shown in Figure 9. For example, if a workload
has a higher write ratio, more pages are allocated to hold the dirty
pages and hence more I/O cost savings are obtained.
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Figure 9: The average clean pool size of each epoch in FD-
Buffer under dynamic workload.
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Figure 10: Average I/O cost of online algorithms under dynamic
asymmetry factor.

5.2.3 Results on Asymmetry Factor Dynamics
Figures 10(a) and 10(b) show the average I/O cost of FD-Buffer(with

adaptation), FD-Buffer(with a best static clean pool ratio), LRU and
CFLRU under asymmetry factors with dynamic models RM 1 and
RM 2, respectively. We can observe that, the performance of FD-
Buffer (with adaptation) is comparable to or better than that of the
best static FD-Buffer algorithm. Furthermore, it outperforms LRU
and CFLRU by 38% and 33% on RM 1, respectively, and the im-
provements on RM 2 are 28% and 22%, respectively. The clean
pool size well adapts to the dynamics in the asymmetry factor, as
shown in Figure 11.

5.3 Results on Real Disks
Figure 12 shows the average time per page access of the replace-

ment policies on the three flash disks and the hard disk. The average
time per page access is given by the total execution time after warm-
up till the end of the trace divided by the number of buffer page
accesses. The performance comparison varies with the asymmetry
factor. On the hard disk (R = 1.1), FD-Buffer (without write clus-
tering) has little improvement (less than 1%) over LRU and CFLRU
on all three benchmarks. However, on the Intel SSD (R = 5.8), the
improvement of FD-Buffer becomes larger, with up to 9% faster
than LRU. Such an improvement continues to increase to 13% and
26% on the Mtron SSD (R = 39.6) and the SD card (R = 121.3),
respectively. Meanwhile, FD-Buffer outperforms CFLRU by up to
17% on these three flash disks. Two factors contribute to the perfor-
mance improvement of FD-Buffer. First, the grouping optimization
significantly reduces the computation overhead. Second, the reduc-
tion in the I/O cost is the major factor for improvement, which has
been demonstrated in simulations.

Furthermore, write clustering also helps to improve the perfor-
mance of FD-Buffer. As can be observed from the experiment re-
sults, with writing clustering, FD-Buffer achieves an improvement
of 5%∼67% (the improvement varies under different workloads and
hardwares), which enables FD-Buffer(with write clustering) to out-
perform CFDC by up to 33%.
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Figure 12: The average time per page access of FD-Buffer on benchmarks with three flash disks and the hard disk.
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Figure 11: The average clean pool size of each epoch in FD-
Buffer under dynamic asymmetry factor.

6. CONCLUSIONS
As flash disks have become competitive storage media for database

systems and they possess distinct hardware features from traditional
hard disks, there is an urgent need to re-visit the database manage-
ment techniques. This paper studies the buffer management for
flash-based databases, with a focus on addressing the read-write
asymmetry and workload dynamics. We have developed FD-Buffer
that automatically adapts to the flash disk characteristics and the
runtime workload. This automacity significantly reduces the own-
ership cost of database systems running on flash disks. Our trace-
driven experimental studies show that FD-Buffer outperforms both
LRU and a recent flash-aware algorithm. As for future work, we
are interested in further improving the efficiency of FD-Buffer with
other traditional replacement polices such as 2Q [13], and with
optimizations on write patterns to the flash disk. Moreover, we
are integrating our buffer management techniques into open-source
DBMSs such as PostgreSQL.
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