
Flag Commit: Supporting Efficient Transaction
Recovery in Flash-Based DBMSs

Sai Tung On, Jianliang Xu, Senior Member, IEEE,

Byron Choi, Member, IEEE, Haibo Hu, and Bingsheng He

Abstract—Owing to recent advances in semiconductor technologies, flash disks have been a competitive alternative to traditional

magnetic disks as external storage media. In this paper, we study how transaction recovery can be efficiently supported in database

management systems (DBMSs) running on SLC flash disks. Inspired by the classical shadow-paging approach, we propose a new

commit scheme, called flagcommit, to exploit the unique characteristics of flash disks such as fast random read access, out-place

updating, and partial page programming. To minimize the need of writing log records, we embed the transaction status into flash pages

through a chain of commit flags. Based on flagcommit, we develop two recovery protocols, namely commit-based flag commit (CFC)

and abort-based flag commit (AFC), to meet different performance needs. They are flexible to support no-force buffer management and

fine-grained concurrency control. Our performance evaluation based on the TPC-C benchmark shows that both CFC and AFC

outperform the state-of-the-art recovery protocols.

Index Terms—Flash memory, database, transaction recovery.

Ç

1 INTRODUCTION

FLASH disks (or simply flashes) have been becoming
increasingly popular to serve as external storage media

in portable devices, as well as new-generation laptops and
enterprise servers, thanks to their fast random access, low
power consumption, high shock resistance, small dimen-
sions, and lightweight [20]. In particular, single-level-cell
(SLC) flashes are known to be ideal for such enterprise
applications as OLTP and databases that require the highest
read/write performance and reliability [1], [7]. There has
been a stream of recent research on flash-based DBMSs [9],
[18], [25], [29], [32], [37]. In this paper, we contribute to
flash-based DBMSs by investigating how transaction recov-
ery can take advantage of the unique characteristics of SLC

flashes to improve performance.1

Transaction recovery, as an inseparable part of DBMSs,
enforces atomicity and durability of transactions, among
others [21]. In brief, atomicity ensures that for each
transaction, either all or none of its actions are performed,

and durability guarantees that the data written by com-
mitted transactions persists even in the event of a system
failure. There are two predominant approaches to support
transaction recovery for DBMSs operating on magnetic
disks, namely write ahead logging (WAL) [22], [31] and
shadow paging [21], [35]. Both approaches have been
implemented in real systems. In WAL, in-place updating is
used. Updates to data pages can be performed only after
they have been logged, which guarantees the ability to undo
the updates during transaction rollback or system restart.
Furthermore, the log records are forced to stable storage
(e.g., disk) before a commit is completed, which ensures the
ability to redo the updates during system restart. In
addition to normal update logs, WAL writes some special
log records, such as compensation and commit protocol-
related records, to record significant events during transac-
tion processing. In general, writes are frequent in WAL,
especially with short transactions. Even worse, when there
is a rollback, WAL may require many undo operations if the
updated pages have been flushed to the disk. Therefore,
WAL may not be preferable on flash disks, where write
operations are more expensive than read operations.

In comparison, shadow paging handles updates by out-
place updating. In shadow paging, data pages are accessed
through a page mapping table, which maps page IDs to disk
addresses. When a transaction wants to update a page, it
allocates a shadow page elsewhere on the disk, performs the
update on the shadow page, and then changes the current
mapping of the page. Only when the transaction commits,
the current mapping is flushed to the disk and becomes
persistent. Otherwise, if the transaction is aborted, we can
simply discard the shadow page and the current page
mapping. As such, the total number of writes in shadow
paging is often smaller than that in WAL.

Shadow paging has not been as popular as WAL for
magnetic disk-based DBMSs because of several performance
issues, which however no longer exist for flash disks. First,

1624 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 9, SEPTEMBER 2012

. S.T. On, J. Xu, B. Choi, and H. Hu are with the Department of Computer
Science, Hong Kong Baptist University, Kowloon Tong, KLN, Hong Kong.
E-mail: {ston, xujl, bchoi, haibo}@comp.hkbu.edu.hk.

. B. He is with the School of Computer Engineering, Nanyang Technological
University, Nanyang Avenue, Singapore 639798.
E-mail: bshe@ntu.edu.sg.

Manuscript received 26 Feb. 2010; revised 19 May 2010; accepted 3 May
2011; published online 26 May 2011.
Recommended for acceptance by N. Bruno.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-02-0116.
Digital Object Identifier no. 10.1109/TKDE.2011.122.

1. There are two types of flash chips: single-level-cell and multilevel-cell
(MLC) chips. SLC chips store one bit in each memory cell whereas MLC chips
can store two or more bits in each cell. The two types of flash chips tend to
target on different applications due to their performance differences in the
access time and lifetime. In contrast to SLC flashes, MLC flashes are more
suited for read-intensive applications such as web or video serving [1]. In
this paper, we focus on SLC flashes for DBMS applications and hereafter refer
to SLC flashes simply as flashes for brevity.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

maintaining the page mapping table is an indispensable
function of flash disks, rather than an overhead. Second, the
high commit overhead of flushing the current page mapping
can be alleviated by embedding the mapping in the shadow
page. Third, shadow pages may be scattered on a flash disk.
Since flashes support fast random read access, this does not
cause a performance problem. Last, shadow paging may
result in obsolete pages which can be handled by garbage
collection of flashes without additional work. These render
shadow paging an appealing solution to supporting
efficient transaction recovery on flash disks.

Recently, Prabhakaran et al. [34] have developed a
shadow-paging-based scheme, called cyclic commit, for
flash-based file systems. They establish a cyclic linked list
among all shadow pages of a committed transaction. By
determining the existence of such a list during recovery, the
file system can determine whether a transaction has been
committed or not. Two protocols were derived from this idea,
i.e., simple cyclic commit (SCC) and back pointer cyclic
commit (BPCC). However, as we investigate in this paper,
adapting these two protocols to flash-based DBMSs suffers
from several deficiencies. First, to form a cyclic linked list,
both protocols require the current shadow page of a
transaction to be buffered until the arrival of the next shadow
page. Second, to maintain data consistency, SCC requires
frequent erasures of uncommitted pages and BPCC requires a
complicated garbage collection mechanism that leaves many
obsolete pages irreclaimable (see Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2011.122, for
more details). Moreover, these two protocols do not consider
buffering and fine-grained concurrency control support,
which are common concerns of DBMSs.

In this paper, we address these issues by proposing a
new shadow-paging-based flagcommit scheme for effi-
cient transaction recovery in flash-based DBMSs. It is well
known that flashes have an erase-before-write limitation—in
general, a page must be erased before it can be overwritten.
Nevertheless, an often overlooked feature is partial page

programming, which allows a flash page to be programmed/
updated a few times before an erasure becomes mandatory,
as long as the update is a change from bits “1” to bits “0”
[15], [38].2 In flagcommit, we exploit this partial page
programming feature to keep track of the transaction status.
Specifically, flagcommit stores a flag about the transac-
tion status in each shadow page. Since flags can be updated
in place once, transaction commit processing is accom-
plished by an update of some flag. This results in fewer
erasure operations than SCC and BPCC as well as a simpler
garbage collection mechanism compared to BPCC.

We develop two transaction recovery protocols based on
the idea of flagcommit, namely commit-based flag commit

(CFC) and abort-based flag commit (AFC). They differ in the
semantics of flags, the times when flags are set or updated,
and the actions of garbage collection. Consequently, they
exhibit different performance behaviors and suit different

workloads. On the whole, the contributions of this paper are
summarized as follows:

. We propose shadow-paging-based flagcommit

that supports efficient transaction recovery in flash-
based DBMSs. To the best of our knowledge, this is
the first work on transaction recovery management
for flash-based DBMSs.

. We develop two transaction recovery protocols
based on flagcommit. For each protocol, the
algorithms for normal transaction processing, gar-
bage collection, and recovery are presented.

. We extend our protocols to general DBMS scenarios
where no-force buffer management and fine-grained
concurrency control are supported.

. We conduct an extensive performance evaluation of
our proposed protocols. The results show that they
outperform the existing shadow-paging-based pro-
tocols by up to 47 percent and outperform the WAL-
based protocol by up to 83 percent in terms of the
transaction throughput.

Organization. The rest of this paper is organized as follows:
Section 2 introduces the background of our research,
including the flash characteristics and the flash translation
layer (FTL). Section 3 presents flagcommit, two flag
commit protocols, and their implementation issues. Section 4
discusses how to extend the flag commit protocols to no-
force buffer management and fine-grained concurrency
control. We present the performance evaluation results of
flagcommit in Section 5. In Section 6, we give a survey on
flash-aware data management techniques. Finally, we con-
clude this paper and discuss future directions in Section 7.

2 BACKGROUND

In this section, we describe the relevant characteristics of
SLC flashes as well as the flash translation layer.

2.1 Flash Characteristics

Like magnetic disks, flashes are nonvolatile storage. As
illustrated in the lower part of Fig. 1, a flash disk consists of
a number of flash memory chips. A flash memory chip is

ON ET AL.: FLAG COMMIT: SUPPORTING EFFICIENT TRANSACTION RECOVERY IN FLASH-BASED DBMSS 1625

Fig. 1. Flash-based system architecture.

2. Note that partial page programming is not supported in MLC flashes.
We discuss the extension and challenge of applying flagcommit to MLC

flashes in Section 7.

organized in many blocks, and each block is composed of a
fixed number of pages. As of 2010, a typical page size is
2Kþ 64 bytes, where the 2K bytes constitute the data area
and the 64 bytes constitute the spare area. The spare area
often stores metadata such as the error correction code
(ECC) and logical block address (LBA). A typical block size
is 128Kþ 4K bytes (i.e., 64 pages). Erasure operations must
be performed at the block level, while read and write
operations are performed at the page level.

Flashes possess a number of unique I/O characteristics
[12], [19], [36]. First, without involving any mechanical
components, the seek time is negligible in accessing a flash
page. Hence, random access is efficiently supported.
Second, flashes are subject to an erase-before-write constraint.
Writing (or programming) a page involves clearing bits
from “1” to “0”; SLC flashes allow partial page program-
ming, that is, a flash page can be (re)-programmed a few
times without performing an erasure operation [15], [38].3

However, the only way to set bits (i.e., from “0” to “1”) is to
erase the whole block where the page resides. Third, each
block can survive only a limited number of erasure
operations (typically, 10,000-100,000 times). Thus, to ad-
dress the erase-before-write constraint and achieve wear
leveling, out-place updating is often supported through the
use of a software layer called flash translation layer [23].

In addition, some flash memories enforce a sequential
ordering for the writes within a single flash block (e.g., [6]),
with the objective to reduce the effect of internal write
disturbance. Since this is not a fundamental constraint of flash
memories, this restriction is not considered when we present
our proposed protocols in the next few sections. We shall
discuss in detail the impact of this restriction on the design
and performance of the proposed protocols in Appendix C
which can be found online in the supplemental materials.

2.2 Flash Translation Layer

As illustrated in the middle part of Fig. 1, FTL, residing
between the flash disk and high-level applications, provides
an interface to read flash pages and support transactional
operations (page writes, commit, abort, and recovery). The
core of FTL is to support mapping between logical and
physical page addresses. As shown in Fig. 2, a direct
mapping table recording the mappings from LBAs to physical
addresses is maintained in memory to speed up read access;
an inverse mapping table is stored as metadata in the spare
areas of flash pages, which is used to rebuild the direct

mapping table at boot time. By maintaining the mappings,
out-place updating can be readily implemented on FTL.
Note that each out-place update leaves an obsolete page on
the flash. FTL maintains a list of free blocks and has a
garbage collection module to reclaim obsolete pages. Speci-
fically, upon being triggered, this module selects a block
(e.g., based on the number of obsolete pages), copies valid
pages to some free block, erases the selected block, and puts
it to the free block list. To lengthen the lifetime of flashes,
FTL also supports wear leveling techniques to spread writes/
erasures uniformly across the entire disk space.

3 BASIC FLAG COMMIT PROTOCOLS

Recall that transaction recovery guarantees the atomicity
and durability properties of transactions in the face of
system failures. For this purpose, we need to keep track of
the updates made to the database as well as the transaction
status, so that we can undo the updates of aborted/in-
progress transactions and redo the updates of committed
transactions during system recovery. To do so, shadow
paging performs out-place updating and logs the transac-
tion status (i.e., aborted or committed) during normal
processing [21]. This section proposes a new flagcommit

scheme based on the shadow-paging approach, inspired by
the cyclic commit scheme [34].

The basic idea is to use shadow pages to keep track of
the updates. Meanwhile, we encode the transaction status
and update history in shadow pages to support undo/
redo actions. In contrast to the prior cyclic commit
scheme (detailed in Appendix A, which can be found
online in the supplemental materials), flagcommit stores
in each shadow page a link pointing to the preceding
shadow page that belongs to the same transaction, then a
chain of commit flags (or simply flags) is used to maintain
the transaction status. Fig. 3 shows an example of
flagcommit, where we have three shadow pages P2,
P3, and P6 updated by a transaction. The TRUE or
FALSE value in each page indicates the flag of the page.
Specifically, flagcommit stores a flag in the spare area
of each shadow page, which can be locally updated at
least once (through partial page programming) without a
block erasure. flagcommit determines whether a trans-
action is committed or not by checking the flag chain of
the corresponding shadow pages. In addition, flagcom-
mit stores in each shadow page a page version number
and the ID of the transaction that updated the page.
Combining these with the links of shadow pages,
flagcommit can determine the update history of
transactions and subsequently the redo/undo actions
during recovery.

In DBMSs, a buffer pool is typically used to cache the
frequently accessed disk pages of the database. The buffer
management policy has an impact on the transaction
recovery mechanism. If a steal policy is used, a page updated
by a transaction is allowed to be flushed to the disk before the

1626 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 9, SEPTEMBER 2012

3. In today’s flash memory chips, partial page programming is usually
supported at the level of a byte or a word [4], [5].

Fig. 2. FTL mapping table.

Fig. 3. Chained commit flags in CFC.

transaction commits. This is not allowed in a no-steal policy.
On the other hand, if a force policy is used, a transaction is not
allowed to commit until all pages updated by it are flushed to
the disk. In contrast, a no-force policy allows a transaction to
commit at any time. To optimize system performance, steal
and no-force policies are adopted by most DBMSs. However,
steal implies that some undo work may have to be performed
during normal or restart rollback, while no-force implies that
some redo work may have to be performed during recovery.
In this section, we present two basic flagcommit protocols,
CFC and AFC, that work with steal and force polices, where
logging is not needed at all. We also assume that a page-level
concurrency control protocol is in place to handle update
conflicts. We shall discuss how to extend them to support no-
force buffer policy and record-level concurrency control in
the next section.

For ease of exposition, in the rest of this section, we
assume a write-through buffer: each shadow page, after
updating, is immediately flushed to the flash disk. This is
not a requirement of flagcommit. With a write-back buffer,
the flagcommit protocols remain almost the same except
that a shadow page is not created on the flash disk until the
page is evicted from the buffer pool or the corresponding
transaction commits.

3.1 Commit-Based Flag Commit

Commit-based flag protocol uses flags to indicate a
committed transaction, as shown in Fig. 3. The commit flags
in all shadow pages are initially set to FALSE during the
execution of a transaction (Fig. 3a). When the transaction
commits, the commit flag of the last shadow page (i.e., P6) is
updated to TRUE, as shown in Fig. 3b.

Definition 3.1. In CFC, a transaction is committed if and only
if there is at least one of its shadow pages whose commit flag
is TRUE.

Definition 3.2. In CFC, a page is committed if the transaction
that updated the page has committed.

For example, consider Fig. 3 again. In the case of Fig. 3a,
no commit flag is TRUE. Hence, the transaction is not
committed. In the case of Fig. 3b, the commit flag of P6 is
TRUE. Hence, the transaction is committed, and in this case,
P2, P3, and P6 are all committed pages.

In-memory tables. To realize CFC, several tables should be
maintained in memory (shown in the left-hand side of Fig. 4):

. Transaction table. The transaction table maintains the
status for each transaction (i.e., in progress, com-
mitted, or aborted). In the actual implementation, we
only need to store the transaction status of in-progress
and aborted transactions. A transaction missing from
the transaction table implies the transaction is
committed. For each in-progress and aborted transac-
tion, it also keeps track of the number of shadow
pages (NPage) and the last shadow page (LastPage) in
runtime. The purpose of keeping NPage is as follows:
once all shadow pages of a transaction are reclaimed,
its corresponding entry can be removed from the
transaction table. The benefit of maintaining LastPage
is twofolded. First, an in-progress transaction can
easily identify its last shadow page to set the link in

the current page. Second, for a to-be-committed
transaction, we can directly identify the latest shadow
page to set the commit flag.

. Dirty page table. The dirty page table keeps track of
the physical block address (PBA) of the last physical
page (LastPBA) for each dirty page updated by an in-
progress transaction. This is necessary for restoring
the original data in the event of a rollback. A dirty
page entry will be removed from the table once the
corresponding transaction is committed or aborted.

. Direct mapping table. The direct mapping table
maintains the up-to-date logical-to-physical address
mapping for each page.

Page format on flash disk. The right-hand side of Fig. 4

shows the format of CFC pages on the flash disk. As

discussed in Section 2.1, a flash page consists of a data area

and a spare area. In CFC, the contents of a spare area include

the following fields:

1. LBA represents the logical page ID;
2. Version # is the number of times the logical page has

been updated;
3. XID stores the ID of the transaction that caused the

latest update of the page;
4. Link points to the preceding shadow page of the

same transaction (NULL if it is the first page), by
which all shadow pages of a transaction are chained
together; and

5. Commit Flag is a bit value indicating whether the
transaction is committed (TRUE) or not (FALSE).

In the actual implementation, we use bit “0” to represent

TRUE and bit “1” to represent FALSE. Hence, FALSE can be

reprogrammed to TRUE through partial programming.
Next, we detail the normal transaction processing,

garbage collection, and recovery for the CFC protocol.

3.1.1 Normal Processing

To describe how CFC processes a transaction, we present

the detailed steps of updating a page, transaction commit,

and transaction abort:

ON ET AL.: FLAG COMMIT: SUPPORTING EFFICIENT TRANSACTION RECOVERY IN FLASH-BASED DBMSS 1627

Fig. 4. CFC under normal execution.

. Update. When a transaction T updates a (logical)
page P , CFC performs the following four steps:

1. A shadow page P 0 is created on the flash disk.
Fill in the LBA, Version #, Link, XID, and Commit
Flag (with an initial value of FALSE) fields in the
spare area of P 0.

2. In the transaction table, the NPage value of T is
incremented by one, and the LastPage of T is
updated to P 0.

3. P is added to the dirty page table.
4. In the direct mapping table, P is mapped to P 0.4

. Commit. When a transaction T commits, CFC identi-
fies the LastPage of T from the transaction table and
updates the Commit Flag of LastPage to TRUE. Then, T
is removed from the transaction table (implying a
“committed” status). Next, the updated pages of T
are removed from the dirty page table, and their last
physical pages are marked as obsolete.

. Abort. If a transaction T aborts, CFC will undo the
updates caused by T . CFC marks the pages updated
by T as obsolete. It then locates the last physical pages
of the updated pages by checking the dirty page table,
and restores them by updating the corresponding
mapping entries in the direct mapping table.

Example 3.1. Consider a new transaction T1 which updates

pages P2, P3, and P6, in sequence, over a database snapshot

shown in Fig. 2.5 In Fig. 4, when the first page P2 (originally

stored in (1,2)) is updated, the following is performed:

1. P2 is written to a shadow page (0,1). On the
shadow page (0,1), the metadata is filled in, where
Version # is incremented over the last version # of
P2, Link ¼ NULL, and Commit Flag ¼ FALSE.

2. A new entry is added to the transaction table to
record NPage and LastPage of T1 (i.e., 1 and (0,1),
respectively).

3. P2 is added to the dirty page table to record its
LastPBA (1,2).

4. The direct mapping of P2 is updated to (0,1)
accordingly.

Next, when P3 (originally stored in (0,0)) is updated, a
shadow page (0,2) is created. Its Link is set to (0,1). Other
metadata of (0,2) is also filled in accordingly. In the
transaction table, NPage of T1 becomes 2 and LastPage of
T1 becomes (0,2). P3 is added to the dirty page table.
Afterwards, when P6 (originally stored in (1,0)) is
updated to the shadow page (1,1), its Link is set to (0,2),
NPage and LastPage of T1 in the transaction table become
3 and (1,1), and P6 is added to the dirty page table. The
above steps give us the data structures shown in Fig. 4.

Finally, if T1 commits, we locate its LastPage (1,1) and
update its Commit Flag to TRUE. In addition, T1 is
removed from the transaction table, and P2, P3, and P6
are removed from the dirty page table. Otherwise, if T1
eventually aborts, no action is performed on the flash

disk, but the last physical addresses of P2, P3, and P6 will
be restored (so as to “undo” the changes) in the direct
mapping table.

3.1.2 Garbage Collection

When the amount of free space on the flash disk becomes

lower than some preset threshold, garbage collection is

triggered to reclaim the space occupied by obsolete pages.

In the CFC protocol, a page can be reclaimed if: 1) the page

is uncommitted; or 2) the page is committed but already

out-of-date (i.e., there exists another newer committed

version of the page). Obviously, a committed page with

only newer uncommitted versions cannot be reclaimed. Note

that after an uncommitted page is reclaimed, the NPage

value of its corresponding transaction is decremented by

one in the transaction table.
Reclaiming uncommitted pages is trivial. Here, we focus

on the actions required by reclaiming an out-of-date

committed page P . There are two possible cases:

. Case 1. P ’s Commit Flag is TRUE. As P holds the
commit flag, we should move this flag to P ’s
preceding page (via Link) before reclaiming P , in
order to ensure that one commit flag still exists for
the committed transaction (Definition 3.1). This is
done by updating the commit flag of the preceding
page. For instance, Fig. 5a shows that the commit
flag of P1 is moved to P7 when P1 is reclaimed.

. Case 2. P ’s Commit Flag is FALSE. In this case, P may
be in the middle of the shadow-page chain. Once P
is reclaimed, the chain will be split into two
subchains. Thus, we maintain a commit flag in each
subchain, as illustrated in Fig. 5b. These two
subchains would then be treated like two transac-
tions. For example, when P7 is reclaimed, a commit
flag is added to P4.6 By doing so, the recovery
procedure (to be discussed shortly) is simplified.
Moreover, the transactions trivially conform to
Definition 3.1—there is at least one commit flag for
each committed transaction. In Fig. 5b, suppose we
do not set the commit flag for P4 before erasing P7,
then if P1 is reclaimed later, there would be no
commit flag for this transaction. Enforcing a commit
flag for each subchain can address this issue.

It is worth noting that, unlike the cyclic commit scheme

[34] which uses logical addresses as next-link pointers,

physical addresses are used in our protocol to maintain the

1628 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 9, SEPTEMBER 2012

4. We here assume an immediate-update (cf. deferred-update) strategy, as
implemented in most DBMSs [11].

5. For a better illustration, an animated demo for this example is
available at: http://www.comp.hkbu.edu.hk/~db/flash/cfc.ppt.

6. In the implementation, the commit flag should be added to P4 before
P7 is to be reclaimed. Otherwise, if the system fails right after P7 is
reclaimed, we cannot add the commit flag to P4.

Fig. 5. CFC garbage collection.

chain structure. The benefit is that we no longer need to
keep page version numbers in the direct mapping table,
which saves memory space. However, using physical
addresses as Link pointers brings a new minor issue. The
chain may be broken due to a reallocation of some physical
pages (during garbage collection, all valid pages in a block
will be relocated before the block is reclaimed). To handle
this issue, we require a slight modification of garbage
collection—when a page is relocated, its commit flag must
be set to TRUE if the corresponding transaction has been
committed. Thus, even though the original chain is broken
into more than one subchain, there is at least one TRUE flag
for each subchain of a committed transaction.

3.1.3 Recovery

After a normal shutdown or system failure, a recovery
procedure is invoked when the system restarts. It recovers
the last committed version for each page and rebuilds the
direct mapping table.

The recovery procedure works by scanning the physical
flash pages as follows: LetS denote the set of nonempty pages
and R denote the set of pages that are backward pointed by
some page in S. Both S andR can be obtained by a scan of the
spare areas of all physical pages.7 Obviously, S �R, denoted
by U , is the set of head pages for the commit-flag chains (e.g.,
P4 andP1 in the right part of Fig. 5b). Whether a transaction is
committed or not can be judged by the commit flag of the
corresponding head page in U . Thus, we divide U into two
sets: Uþ for the pages with TRUE flags and U� for the pages
with FALSE flags. By recursively following the link in each
page of Uþ, we obtain the whole set of committed pages, Sþ,
which is formally defined as follows:

Sþ ¼ Uþ [fp 2 S j 9u 2 Uþ; there is a path from u to pg:

After the set of committed pages Sþ is obtained, the
recovery procedure identifies the committed page with the
largest version number for each logical page, and builds
the direct mapping table accordingly. The time complexity
of the CFC recovery is OðnÞ (n is the number of flash
pages), because each flash page is visited at most twice.

There is a subtle issue for discussion. Recall that due to the
use of physical Link pointers, a shadow-page chain could be
broken into more than one subchain during garbage
collection (their head pages are traced by the transaction
table). If this happens before a transaction commits, then at
the time of transaction commit, we should set the commit flag
to TRUE for the head pages of all the subchains. Once this is
successfully done, each subchain of the transaction has one
TRUE flag, consistently indicating the transaction is com-
mitted. However, if the system fails during this process of
setting commit flags, it may leave the transaction status

inconsistent: some subchains of the transaction are com-
mitted while some others are not. Since such cases can be
observed only after a system failure, the correctness of our
protocol preserves for normal system running. Yet, the
recovery procedure triggered by a system failure should
handle such cases. We consider a transaction with incon-
sistent status as aborted. After Uþ and U� are obtained, the
recovery procedure takes an extra step: if a head page in Uþ,
e.g., P , shares the same transaction ID with some head
page(s) in U�, P will be removed from Uþ.

3.2 Abort-Based Flag Commit

During garbage collection of CFC, Fig. 5 shows that commit
flags may need to be moved or added for committed
transactions. This would incur significant overhead if most
transactions are committed. In this section, we present an
alternative abort-based flag commit protocol that updates
the flags of aborted transactions during garbage collection.
This might be preferable since more transactions are
committed than aborted in practice.

Definition 3.3. In AFC, a transaction is committed if and only
if no commit flag of its shadow pages is set to FALSE.

AFC adopts almost the same page format as CFC except
that in AFC, there are two bits in a Commit Flag (to be
explained later). Different from CFC, the commit flags of all
shadow pages except the first page (e.g., P2 in Fig. 6a) are
initially set to TRUE. Note that we have to initialize the
commit flag of the first page to FALSE, because otherwise if
the system fails right after it is written to the flash disk, the
transaction would be judged as committed when the system
restarts. When the transaction commits, the commit flag of
the first page is changed to TRUE. As such, a transaction is
considered committed if no FALSE flag is found in the flag
chain (Definition 3.3). Thus, even if the chain may be later
split into several subchains, there is no FALSE flag in each
subchain. As a result, no extra maintenance is needed for
committed transactions during garbage collection. On the
other hand, AFC needs to take extra actions to maintain the
FALSE flags for aborted transactions. The process is similar
to that of CFC except that we now maintain the FALSE flag
instead of the TRUE flag. AFC has a special requirement that
keeps track of the last shadow page for an aborted
transaction before the first page is reclaimed. This is to
ensure that AFC can quickly find an appropriate page to
hold the FALSE flag during garbage collection.

Example 3.2. An example of AFC is shown in Fig. 7a, where
the FALSE flag is moved to P1 after P5 is reclaimed.
Another example is shown in Fig. 7b, where a FALSE
flag is added to P1 when P4 is reclaimed.

ON ET AL.: FLAG COMMIT: SUPPORTING EFFICIENT TRANSACTION RECOVERY IN FLASH-BASED DBMSS 1629

7. In order to reduce the recovery time, one alternative is to duplicate the
metadata of the pages within a block into the last free page (called per-block
summary page), when the block is about to be filled up [34]. In this way, we
only need to read the summery pages for those filled blocks.

Fig. 6. Chained commit flags in AFC.

Fig. 7. AFC garbage collection.

The AFC recovery protocol differs from the CFC protocol
in how they identify committed pages in U . While CFC

identifies committed pages by the presence of a TRUE flag,
AFC does by the absence of a FALSE flag. However, CFC

would have a better recovery performance than AFC.
During the recovery, for each chain of a committed
transaction, CFC needs to traverse the chain if and only if
the head page has a TRUE commit flag. In contrast, to
identify committed pages, AFC requires to examine every
flag in the chain to check the nonexistence of a FALSE flag,
thereby incurring more page reads.

As mentioned, we define Commit Flag of AFC to be a two-
bit value. In AFC, an initial TRUE value may need to be
changed to FALSE, and vice versa. As such, in flash-based
implementation, we use bits “10” and “11” to represent
initial TRUE and FALSE values, respectively. They can be
changed to “00” (also representing FALSE) and “10”
(representing TRUE) through partial programming.

3.3 A Discussion of CFC and AFC

CFC and AFC may differ in their running performance. In
this section, we give a brief analysis of these two protocols.
To simplify the analysis, we ignore the effect of buffering,
that is, every page read/write request incurs a page access
on the disk. Let � denote the transaction abort ratio, �
denote the average number of page reads in a transaction, �
denote the average number of page writes in a transaction,
and � denote the average number of blocks reclaimed by
garbage collection when allocating a new flash page. We
use k to represent the average number of nonempty pages
in a block, and Cr; Cw; Cbit, and Ce to represent the costs of
reading a page, writing a page, reprogramming a page, and
reclaiming a block, respectively.

The average I/O cost for the CFC commit protocol is

C ¼ �Cr þ �Cw þ ð1� �ÞCbit þ ��kð1� �ÞCbit þ ��Ce;

where the first three terms are the costs of reading
involved pages, outputting shadow pages, and setting
commit flags, the fourth item is the cost of extra actions
taken during garbage collection, and the last item is the
cost of reclaiming blocks.

Similarly, the average I/O cost for the AFC protocol is

C0 ¼ �Cr þ �Cw þ ð1� �ÞCbit þ ��k�Cbit þ ��Ce:

By comparing C and C0, CFC and AFC differ only in the
cost of garbage collection, which is ��kð1� �ÞCbit versus
��k�Cbit. As such, AFC is expected to outperform CFC for
normal cases when the abort ratio is less than 50 percent. On
the other hand, CFC is preferred to AFC when the abort ratio
is high or when the transaction recovery time is concerned
(as discussed in the last section).

In addition, they also differ in some other aspects. First,
AFC requires two flag bits while CFC only needs one bit,

which results in different space usages. Second, in CFC,
when a transaction commits, if the last shadow page of a
transaction is buffered, the commit flag can be updated in
main memory and then flushed to the disk. Hence, a page-
reprogramming operation is saved. On the other hand, in
AFC, when a transaction commits, we must first set the flag
of the first shadow page to FALSE, and then change this flag
to TRUE after all shadow pages are flushed to the disk.
Thus, a page-reprogramming operation is mandatory to
record the commit status. Table 1 summarizes the differ-
ences of these two protocols as well as the prior SCC and
BPCC protocols [34]. We shall compare their performance
through experiments in Section 5.

3.4 Block-Based Flag Technique

In the proposed CFC/AFC protocols, page reprogramming
is needed to update the commit flag of the preceding
shadow page when reclaiming a committed/uncommitted
page in garbage collection. However, there are some
special cases where such page-reprogramming operations
can be saved. For example, if the preceding shadow page
happens to reside in the same block to be reclaimed, we
can update the commit flag for free when it is moved into
the new block. This motivates us to propose a block-based
flag technique. In the interest of space, the following
discussion focuses on the CFC protocol as the case for the
AFC protocol is similar.

We define a cluster as a group of linked shadow pages
within the same block. The basic idea is to organize the
shadow pages of a transaction by a chained list of clusters
(cf. a chained list of individual pages in the original design).
Fig. 8b shows a committed transaction with the block-based
flag technique. The shadow pages P1 � P7 are divided into
two clusters (i.e., P2, P3, P5, and P7 form a cluster, while
P1, P4, and P6 form another cluster), and these two clusters
are linked via P2:Link. In the following, we use an example
to illustrate how the block-based flag technique would help
to save page-reprogramming operations.

Example 3.3. Fig. 9 shows the block contents after BlockA in
Fig. 8 is reclaimed. Without the block-based flag technique,
once BlockA is reclaimed, to preserve the CFC protocol,
two page-reprogramming operations are required to
update the commit flags of P1 and P6 (see Fig. 9a).
However, with the block-based flag technique, we just
need to update the commit flag and Link of the valid page
P5 and then move it to the new block (see Fig. 9b). In this
way, no page-reprogramming operation is needed.

1630 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 9, SEPTEMBER 2012

TABLE 1
Comparison of Shadow-Paging Protocols

Fig. 8. Chained commit flags in CFC w/o and w/ block-based technique.

Note that the block-based flag technique is not
implemented without cost. It might impair the effect of
buffering of CFC (discussed at the end of Section 3.3): if
the last shadow page is not placed on a head cluster (i.e.,
a cluster not pointed by any other clusters), then at the
time of transaction commit, a page-reprogramming opera-
tion is still needed even if this page is buffered. For
example, in Fig. 8b, if the last page P7 is placed on
BlockB instead of BlockA, when committing, a page-
reprogramming operation would be required to set a
TRUE flag on P5 regardless whether P7 is buffered.
Nevertheless, we expect such overhead will not outweigh
the benefit gained.

The recovery procedure is similar to that of the original
CFC protocol except that we now perform the recovery on
the granularity of clusters instead of individual shadow
pages. Specifically, for each head cluster, if there is any
shadow page holding a TRUE flag, then by starting to
traverse the chain from such a cluster, we can identify all
committed pages.

4 ADVANCED flagcommit PROTOCOLS

In this section, we discuss how to extend the basic
flagcommit protocols to support no-force buffer manage-
ment and record-level concurrency control, which are
commonly adopted in today’s DBMSs.

4.1 Supporting No-Force Buffer Management

With a no-force buffer policy, shadow pages are not
necessarily forced to the stable storage when a transaction
commits. This improves the transaction response time and
system throughput. However, in this case, while using
shadow pages solely can still support undo work of aborted
and in-progress transactions, it is not able to redo committed
transactions in the event of failures [21]. Thus, following [21],
we combine the basic flagcommit protocols with a redo
log. In the following, we present a redo logging scheme
adapted from the well-known recovery protocols [31], [35].
Yet the flagcommit protocols are not restricted to this; they
may incorporate other logging schemes. The extended
flagcommit protocols work as follows:

. Before updates to data are performed, redo log
records are created and buffered (in a log buffer).
The redo log record has the following format:

hXID;PID;RID; Opcode;Data; PrevLNi,8 where
XID is the transaction ID, PID is the page number,
and RID is the record ID in the same page, Opcode
represents the operation type (insert, delete, or
update), Data stores the detailed operation informa-
tion (e.g., the update content), and PrevLN points to
the previous log record generated by the same
transaction. In the implementation, the log buffer
can be indexed using hashing to facilitate the search
on XID.

. When a shadow page is swapped out from main
memory, we follow cfc/afc protocols to write it to
the flash disk (including writing the metadata area
and updating the mapping table etc.), and remove
its corresponding log records from the log buffer
since the update information can now be captured
by the disk page.

. When a transaction commits, if some pages updated
by it are still cached in main memory, we append a
commit log record to the log buffer and force all
buffered log records to the flash disk. Otherwise, the
commit log record is not needed. In both cases, we
then apply cfc/afc protocols to enforce a transac-
tion commit for those on-disk pages.

. When a transaction aborts, we rollback its updated
pages that are still in main memory and remove all
its log records from the log buffer. For those pages
updated only by this transaction since they were
read from the disk, they can be simply discarded to
save rollback overhead. The shadow pages that have
already been flushed to the flash disk do not indicate
a transaction commit, according to cfc/afc proto-
cols. Hence, no extra action is needed to handle
those pages.

4.2 Supporting Record-Level Concurrency Control

Record-level concurrency control allows multiple transac-
tions to update a single page at the same time. To achieve
this, we associate a set of metadata attributes with each
updated record, instead of each shadow page. More specifi-
cally, each transaction writes the new value of a record to the
flash page as a pending record, which is associated with the
metadata in the form of hRID;Link;XID;CommitFlagi,
where RID identifies the pending record in the page, Link
points to the page where the preceding pending record of
transaction XID resides, and Commit Flag indicates the
transaction status. Fig. 10 illustrates an extended page format
that holds two pending records, followed by a record-level
CFC example shown in Fig. 11. Let Pi be the ith version of
page P . In this example, the transaction T1 updating r1, r2,
and r5 and the transaction T2 updating r3 and r4 are allowed
to update pages Q1 and R1 concurrently. The status of each
transaction is encoded by its corresponding flag chain, which
implies that T1 is committed and T2 is not (yet).

ON ET AL.: FLAG COMMIT: SUPPORTING EFFICIENT TRANSACTION RECOVERY IN FLASH-BASED DBMSS 1631

Fig. 9. Garbage collection in CFC w/o and w/ block-based technique.

Fig. 10. Extended page format.

8. A physiological logging scheme [28] is adopted. Each log record keeps
track of the update on a single page. For an update that involves multiple
pages, it is decomposed into multiple miniupdates such that each
miniupdate is confined to a single page.

4.3 Putting All Together

To work with record-level concurrency control, the ex-
tended flagcommit protocols in Section 4.1 are slightly
changed for normal processing. The operations are now on
the granularity of a pending record (and its associated
metadata), rather than on a shadow page. Take Fig. 11 as an
example. When the transaction T3 updating r6 and r7 is
committed, the commit flag of r7 on page Q2 is updated to
TRUE. Suppose that Q2 is already flushed to the disk but P2

is still cached in main memory, a commit log record will be
appended to the log buffer and all log records preceding it
(including the redo log record for r6) will be forced to the
disk. Meanwhile, the metadata of r6 can be safely removed
from the buffered copy. Otherwise, if both P2 and Q2 are
already flushed to the disk, there is no need to write any log
record. In addition, the abort logic is slightly different. For
example, when the transaction T2 updating r3 and r4 is
aborted, the pages holding these pending records will be
discarded from main memory unless there exists a
committed record (e.g., page Q1 holding a committed
record r2). In this case, r3 is marked as invalid and can be
restored later by reading the current content from the disk.
Algorithms 1 and 2 summarize the procedures of proces-
sing a record update and transaction commit/abort under
record-level concurrency control and no-force buffer policy.

Algorithm 1. Updating a Record in Extended flagcommit

Procedure: Update (Transaction T , Record r)

1: Let P be the page containing r;
2: if (concurrency control allows T to update r) and

(# updates on p � max_c) then

3: if P is not found in the buffer pool then

4: if the buffer pool is full then

5: Select a victim page V and evict it from the

pool;

6: if V is a dirty page then

7: Follow basic flagcommit to write V to the
disk;

8: if any log record of V is still cached then

9: Remove the log record from the log buffer;

10: Read P from the flash disk and put it into the

buffer pool;

11: Create a log record for this update in the log buffer;

12: Update r on P ;

13: if the log buffer is full then

14: Force all log records in the log buffer to the flash

disk;

15: else

16: Block this update until other transactions release the

resources;

Algorithm 2. Commit/Abort Logic in Extended
flagcommit

Procedure: Commit (Transaction T)

1: if some of T ’s pending records are still in the buffer

pool then

2: Append a commit log record to the log buffer;

3: Force all log records in the log buffer to the flash

disk;

4: Apply basic flagcommit to record the commit status
in the on-disk pages of T , and mark obsolete pages for

garbage collection

Procedure: Abort (Transaction T)

1: for each pending record r of T in the buffer pool do

2: Let P be the page containing r;

3: if 9 r0 2 P , r0 is committed but not yet written to the

disk then

4: Mark r as invalid; // r will be restored on access
later

5: else

6: Discard P from the buffer pool;

7: Remove T ’s corresponding log records from the log

buffer, and mark obsolete pages for garbage collection;

We remark that there is a limit on the number of
concurrent transactions allowed to update a page. Since
every transaction may need to write metadata and change
the commit flags in the flash page, the number of
concurrent transactions should not exceed max_c, i.e., the
maximum number of partial programming operations or
the maximum number of pending records allowed in a flash
page, whichever is lower. The effect of max_c will be
examined in Section 5.3.1.

Over time, the committed records of a logical page may
scatter over multiple physical pages of different version
numbers. For example, the committed records of the logical
page R in Fig. 11 are distributed on R0 and R1. To save disk
space, the latest page content can be obtained by merging
those versions. To facilitate this merging process, we add an
additional backward link Back to the spare area of a flash
page. Before writing a new version Pv of a logical page P , a
pointer pointing to the last version of P will be added (i.e.,
Pv:Back ¼ Pv�1).

Garbage collection. A logical page P may be related to a set
of physical pages fP1; . . . ; Png, each with a different version
number. Under the extended protocol, a page Pv can be
reclaimed when one of the following two conditions is
satisfied: 1) all pending records of Pv are aborted; or 2) for
any committed pending record r in Pv, there exists a page
Pi, where the version number of Pi is greater than that of Pv
and r is already committed in Pi (i.e., the page content of Pv
is totally out-of-date). For example, P0 in Fig. 11 can be
reclaimed, as for the committed record of P0, an updated/
duplicated committed version can always be found in P1.
Similar to the basic CFC/AFC protocol, before Pv is
reclaimed, the garbage collection process might need to
move the commit flags to the preceding pending pages (see
Sections 3.1 and 3.2).

Recovery. Although the committed records of a logical
page may scatter over multiple flash pages, the recovery
procedure only needs to identify the highest version of the

1632 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 9, SEPTEMBER 2012

Fig. 11. An example of record-level CFC protocol.

page which has at least one committed record. In particular,
the committed records can be determined by scanning the
redo log and the Version #, Link, and Commit Flag information
stored in flash pages. Once we have identified the pages with
such records, the direct mapping table is built by following
the basic CFC/AFC recovery protocol. Finally, we perform
the redo actions according to the redo log.

To speed up the recovery procedure during system
restart, the system periodically performs fuzzy checkpoint-
ing [11]. It involves the following three steps: 1) the buffer
pool is scanned to get a list of dirty pages; 2) instead of
forcing these dirty pages to the flash disk, their page IDs are
simply noted, and they are subsequently written to the disk
(in the background) during normal processing; 3) a special
log record hcheckpointi is written to indicate the end of the
checkpointing. The next checkpoint is not taken until all
dirty pages noted at the previous checkpoint have been
written. Note that processing new transactions is allowed
when the checkpointing is in progress. After the check-
pointing, the log records before the second-to-last
hcheckpointi can be discarded, because all updates recorded
by these logs must have been written to the flash disk.
Therefore, during recovery, only the log records that belong
to a committed transaction and appear after the second-to-
last checkpoint need to be redone. Algorithm 3 summarizes
the recovery procedure.

Algorithm 3. Recovery Logic in Extended flagcommit

Procedure: Recovery ()

1: Scan the redo log and apply basic flagcommit to

identify the set of committed records S;

2: for each committed record r 2 S do

3: P be the page containing r and P 0 the current

mapped page in the direct mapping table;
4: if P 0 ¼ NULL or P 0.Version < P .Version then

5: P 0 ¼ P ;

6: Perform redo actions according to the log records that

appear after the second-to-last checkpoint;

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
flagcommit protocols (CFC and AFC) based on the TPC-C

benchmark [8]. We first describe the experiment setup and
then compare the CFC and AFC protocols to the cyclic commit
protocols and the WAL-based commit protocol.

5.1 Experiment Setup

As with [34], we employ the trace-driven SSD simulator,
which is a modified version of the DiskSim [10], [13], for
our performance study. We configured the simulator to
emulate a 32 GB SSD with eight fully connected 4 GB flash
packages and used the I/O settings specified in the data
sheet [6]. For garbage collection, the simulator has
implemented a wear-aware policy [10]. Similar to [34],
10 percent of the flash blocks were reserved for handling
garbage collection, and the threshold to trigger the garbage
collection was set to 5 percent.

We implemented the basic CFC and AFC protocols with
block-based flag technique and their extensions in the
simulator. For performance comparison, we also implemen-
ted the cyclic commit protocols SCC and BPCC [34], and the

traditional WAL-based commit protocol [31]. For each
protocol, we employed the Strict Two-Phase Locking (2PL)
protocol to detect and resolve access conflicts: a wait-for
graph of transactions is maintained, and deadlock detection
is performed each time a transaction is blocked. If a deadlock
is discovered, the youngest transaction in the deadlock is
chosen as the victim and restarted after a random backoff
time. The system has an LRU-based buffer pool to cache
previously accessed disk pages. We remark that SCC and
BPCC protocols require the last shadow page of each in-
progress transaction to be resident in the buffer pool. The
performance was evaluated based on the TPC-C benchmark,
which represents an online transaction processing workload.
To get the workload trace, we executed TPC-C transactions
(generated by DBT-2 [2]) on PostgreSQL 8.4 [3] and recorded
their data access requests. In the generator, we set the client
number to 50 and the number of data warehouses to 20. We
configure the buffer pool size to be smaller than the database
size in order to exercise disk I/O operations. As each TPC-C

transaction accesses less than 50 pages on average, the
default buffer pool size (512 pages) is able to hold about
20 percent of our TPC-C working set (i.e., 50 concurrent
transactions�50 pages/transaction¼ 2;500 pages). For a fair
comparison, the buffer pool excludes the memory space
needed for holding the associated data structures (e.g., the
direct mapping table) for each protocol. For other system
parameters, the logical page size was set to 8 KB; the log
record size was set to 50 bytes; the transaction abort ratio was
set to 5 percent by default; and the cost of partial
programming was set to be the same as that of a page write.
We summarize the default parameter settings in Table 2.

We conducted our simulation study on a desktop
computer running Windows XP SP2 with an Intel Quad
2.4 GHz CPU. We measured the transaction throughput (i.e.,
the average number of committed transactions per second),
transaction execution time (i.e., the average elapsed time
between transaction start and end), commit response time
(the average latency between the time the commit com-
mand is issued and the time the transaction is completed),
recovery cost, and garbage collection overhead. In the
measurement, we ignored the CPU cost since the I/O cost
of accessing flash pages dominates the overall performance.
For each simulation run, a 30-minute TPC-C trace was used
to warm up the SSD simulator and the buffer pool, then a 4-
hour TPC-C trace was used for the evaluation. This
arrangement ensures that the measurement reflects the
long-term, stable performance of the simulated system.

ON ET AL.: FLAG COMMIT: SUPPORTING EFFICIENT TRANSACTION RECOVERY IN FLASH-BASED DBMSS 1633

TABLE 2
Default Parameter Settings

5.2 Comparison with Cyclic Commit Protocols

In this section, we compare the proposed CFC and AFC

protocols with the prior SCC and BPCC protocols. For a fair
comparison, we configure the system with the same settings
as SCC and BPCC presumed (i.e., force buffer management
and page-level concurrency control).

As shown in Fig. 12a, AFC outperforms BPCC and SCC by
35 and 110 percent, respectively, in terms of the transaction
throughput, while CFC achieves a slightly smaller improve-
ment, i.e., 24 and 94 percent. Meanwhile, a similar
performance trend is observed in Fig. 12b in terms of the
transaction execution time. To gain more insight, we further
measure their garbage collection overhead and plot the
results in Fig. 13a. We also plot the ratio of garbage
collection cost to the total execution cost for each protocol in
the figure. As shown, AFC requires 13, 34, and 58 percent
less time for garbage collection than CFC, BPCC, and SCC,
respectively. This can be explained as follows: SCC has to
explicitly reclaim uncommitted pages, which causes addi-
tional garbage collection activities and, hence, severely
deteriorates its performance. Similarly, BPCC has to keep
some obsolete pages, which incurs additional cost to move
obsolete pages to new blocks during garbage collection.
Worse still, as fewer pages can be reclaimed, garbage
collection is triggered more frequently. From Fig. 13a, we
can observe that the ratio of garbage collection cost to the
total execution cost is over 35 and 55 percent for BPCC and
SCC, respectively. On the other hand, AFC only maintains a
flag for each aborted transaction and incurs little overhead
at a low abort ratio (5 percent in the default setting). CFC

maintains a commit flag for each committed transaction,
which is a bit more costly when the abort ratio is low.

Fig. 13b shows the recovery performance results. For
each protocol, we plot its time to recover the last committed
version for each logical page during system restart. From
the figure, we can see that AFC has a much longer recovery

time than CFC, BPCC, and SCC. The main reason is that AFC

needs many read accesses to traverse through each flag
chain and decide the status of a shadow page. In contrast,
CFC traverses a chain only if the head page/cluster holds a
TRUE commit flag, thereby achieving comparable recovery
performance to BPCC and SCC.

Next, we evaluate the four protocols with different
transaction abort ratios (�). Fig. 14a shows the transaction
throughput results when � is varied from 1 to 50 percent (by
simulating the commit/rollback commands in the traces).
We also plot the average garbage collection overhead per
committed transaction in Fig. 14b. From these results, we
can make the following observations. First, the transaction
throughput decreases with � for all protocols except CFC.
This is because, when � increases, more transactions are
aborted, and hence more I/Os are wasted. As a result, the
overall transaction throughput decreases in general. On the
other hand, with a higher �, CFC would save more partial
programming operations. Therefore, its throughput is
slightly increased when � changes from 1 to 20 percent.
Second, the improvement of the flag commit protocols over
the cyclic commit protocols becomes more significant as �
increases. In particular, the performance gap between CFC

and BPCC (SCC) increases from 12 to 47 percent (from 77 to
153 percent) when we increase � from 1 to 50 percent. The
reason is as follows: With a high �, more uncommitted
pages exist on the flash disk. As a result, for BPCC and SCC

protocols, the average garbage collection overhead in-
creases rapidly (see Fig. 14b)—when � is increased from 1
to 50 percent, the garbage collection overhead of BPCC is
increased by 38 percent, while that of SCC is even increased
by 72 percent. Third, the performance gap between AFC and
CFC decreases when � becomes higher, and CFC outper-
forms AFC when � is greater than 15 percent. This crossing
point is smaller than the one predicted by our cost analysis
because of the effect of buffering (as discussed at the end of
Section 3.3) and a better use of the block-based flag
technique (Section 3.4).

Finally, we compare the memory space requirement
(holding associated data structures) of each protocol and
summarize the results in Table 3. As shown in the table,
compared with BPCC and SCC, CFC, and AFC save 0:4 �
3:2 MB memory space. This can be explained as follows:
the CFC and AFC protocols use physical addresses to
maintain the chain structure so that the size of the direct
mapping table is minimized (as discussed at the end of
Section 3.1.2); moreover, the BPCC and SCC protocols need
to keep track of uncommitted pages, which also requires
extra memory space.

1634 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 9, SEPTEMBER 2012

Fig. 12. Transaction throughput and execution time.

Fig. 13. Garbage collection overhead and recovery cost.

Fig. 14. Impact of transaction abort ratio �.

5.3 Evaluation of Advanced flagcommit Protocols

Now, we evaluate the performance of the extended
flagcommit protocols with no-force buffer management
and record-level concurrency control, denote as CFC_ex and
AFC_ex. We compare them to the WAL-based commit
protocol. Here, the cyclic commit protocols are not included
for comparison, as they are designed for file systems and it
is not clear in [34] how they can be extended to support the
no-force buffer policy and record-level concurrency control.

5.3.1 Impact of Partial Programming Level

We first investigate how the maximum partial program-
ming level (max_c) would affect the concurrency control and
the performance of the extended flagcommit protocols.9

Fig. 15a shows the transaction throughput of CFC_ex and
AFC_ex under different values of max_c. For a better
understanding of the performance, we also measure the
transaction restart ratio (i.e., the average number of times
that a transaction has to restart before a successful commit)
(see Fig. 15b). The throughput of CFC_ex and AFC_ex is
improved by 13 percent when we increase max_c from 2 to 3.
This can be explained as follows: With a higher max_c, more
transactions are allowed to update a page at the same time.
As a result, the chance of access conflicts is reduced and,
hence, fewer transaction restarts are needed (as shown in
Fig. 15b, the restart ratio is reduced by nearly 40 percent
when max_c varies from 2 to 3). This leads to a higher
transaction throughput. However, the performance of
CFC_ex and AFC_ex slightly drops when max_c exceeds 3.
This is due to the following reasons. First, as shown in
Fig. 15b, the transaction restart ratio does not decrease much
when we further increase max_c. Second, with more
concurrent updates, the committed records of a logical page
are more likely to scatter over multiple physical pages. As a
consequence, the cost of reading the latest page content
becomes more expensive. Third, as more commit flags
coexist on a flash page, in the course of garbage collection,
more partial programming operations are required to
preserve the protocols. These results imply that a partial
programming level of 2 or 3 is good enough to support
record-level concurrency control for the TPC-C workload.
We set max_c at 3 in the rest evaluation of the CFC_ex and
AFC_ex protocols.

5.3.2 Comparison with the WAL-Based Commit Protocol

We now compare the performance of flagcommit to the
WAL-based commit protocol, and investigate the perfor-
mance effect of extending flagcommit to support the

no-force buffer policy and record-level concurrency
control. Fig. 16 shows the transaction throughput and
the commit response time of the basic CFC/AFC protocols,
the extended CFC_ex/AFC_ex protocols, and the WAL-
based commit protocol, under the default system setting.

Several observations are obtained from these results.
First, by supporting the no-force buffer management policy
and record-level concurrency control, we achieve 64 and
53 percent improvement in the transaction throughput, and
68 and 67 percent improvement in the commit response
time for CFC and AFC, respectively. This is because with
record-level concurrency control, the transaction restarts in
CFC_ex and AFC_ex are greatly reduced, which conse-
quently increases the transaction throughput, and with the
no-force policy, committing a transaction only involves
appending a commit log record and forcing the buffered log
records to the flash disk (rather than forcing all its shadow
pages), and thereby further improving the transaction
throughput and shortening the commit response time.
Second, CFC_ex and AFC_ex outperform WAL by 49 and
51 percent, respectively, in terms of the transaction
throughput. This can be explained as follows: When a
transaction aborts or restarts, WAL has an overhead of
rollbacking the pages previously updated by this transac-
tion, which involves getting these pages and their corre-
sponding undo log records into the buffer pool, and
restoring the contents of these pages according to the undo
log records. In contrast, when a transaction rollbacks,
CFC_ex and AFC_ex only need to remove the corresponding
log records and discard (or invalidate) its shadow pages in
the buffer pool. Furthermore, WAL requires writing more

ON ET AL.: FLAG COMMIT: SUPPORTING EFFICIENT TRANSACTION RECOVERY IN FLASH-BASED DBMSS 1635

TABLE 3
Memory Usage for Holding Data Structures

Fig. 15. Impact of the partial programming level (max_c).

Fig. 16. Transaction throughput and commit response time.

9. Note that in practice the maximum partial programming level is
usually up to 4-8 times on each flash page. The maximum number of
concurrent transactions is also constrained by the size of the spare area of a
flash page. In the experiment, we assume that there is always enough space
for holding pending records.

log records (i.e., undo logs for aborted/restarted transac-
tions and special logs such as transaction start/end and
compensation records) than CFC_ex and AFC_ex during
normal processing. Also, in WAL, before any updated page
can be written back to the disk, its corresponding log
records need to be forced to the disk if they are still
buffered, while CFC_ex and AFC_ex only need to remove
the corresponding log records from the log buffer. As a
consequence, the number of log pages generated in WAL is
larger than that in CFC_ex and AFC_ex (Fig. 17a). This
makes its garbage collection overhead much higher than
that of CFC_ex and AFC_ex (Fig. 17b).

5.3.3 Impact of Transaction Size

In this set of experiments, we study how the transaction size
(i.e., the number of pages written by a transaction) would
affect the performance of the commit protocols. Fig. 18
compares the throughput and the average garbage collec-
tion overhead per transaction for transactions of different
sizes. This is done by splitting the original trace of
transactions into two subtraces, according to the number
of pages each transaction writes (denoted by �). In specific,
one subtrace is for short transactions (� � 10), and the other
is for long transactions (� > 10). From Fig. 18a, we observe
that the performance improvement of CFC_ex and AFC_ex
over the WAL-based commit protocol is higher with short
transactions. For example, CFC_ex outperforms WAL by
46 percent for long transactions, and such improvement
increases to 64 percent for short transactions. The reason is
as follows: For a short transaction, as it is more likely that all
of its shadow pages have already been written back to the
flash disk before it is committed, an overhead of appending
a commit log record and forcing log records to the flash disk
can be eliminated. This makes the advantage of CFC_ex and
AFC_ex over WAL more obvious. In addition, recall that
WAL incurs additional write operations when rollbacking
those aborted pages already written to the flash disk, which
consequently triggers more garbage collection activities.
Such overhead is more significant for short transactions. As
we can observe from Fig. 18b, CFC_ex and AFC_ex require
72-73 percent less time of garbage collection than WAL for
long transactions, and 84-85 percent less time for short
transactions.

5.3.4 Impact of Buffer Pool Size

In this section, we evaluate the impact of buffer pool size.
Fig. 19a shows the transaction throughput of CFC_ex,
AFC_ex, and WAL under various buffer pool sizes. To

investigate the rationale behind the performance, we also
measure their garbage collection overheads and plot the
results in Fig. 19b. From these results, several observations
can be made. First, the transaction throughput increases for
all protocols when the buffer pool size is varied from 256 to
4,096 pages. This is because, with a larger buffer pool, the
write and read hit ratios of the buffer pool are improved, and
thus more I/O savings can be achieved. Second, the
performance gap between AFC_ex and CFC_ex decreases as
the buffer pool size increases, and they finally converge
when the buffer pool grows larger than 2,048 pages. The
reason is that, the bigger the buffer pool, the more the partial
programming operations performed in main memory. As
the performance of AFC_ex and CFC_ex differs in the number
of partial programming operations, such a performance gap
becomes smaller when the buffer pool size increases. Third,
the improvement of AFC_ex and CFC_ex over WAL becomes
more significant as the buffer pool size increases. In
particular, the performance gap between CFC_ex/AFC_ex
and WAL increases from 24/34 to 83 percent when we
increase the buffer pool size from 256 to 4,096 pages. CFC_ex
and AFC_ex benefit from a larger buffer pool in the following
aspects. As discussed before, with a larger buffer pool,
updating commit flags is more likely to be performed in
main memory and thus more partial programming opera-
tions can be eliminated. Moreover, with a larger buffer pool,
multiple updates issued to a logical page are more likely to
be written on the same flash page and, hence, fewer versions
of a logical page would coexist on the flash disk. Subse-
quently, fewer read operations are required when retrieving
the latest content of a page. In addition, with fewer page
versions, the cost of copying valid pages during each
garbage collection is reduced. Meanwhile, each garbage
collection process will reclaim relatively more obsolete pages
and therefore less garbage collection activities are triggered.

1636 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 9, SEPTEMBER 2012

Fig. 17. Space overhead and garbage collection overhead. Fig. 18. Impact of transaction size �.

Fig. 19. Impact of buffer pool size.

As we can observe from Fig. 19b, the garbage collection
overhead of CFC_ex and AFC_ex is decreased by 71 and
61 percent, respectively, when the buffer pool size is
increased from 256 to 4,096 pages. In contrast, the garbage
collection cost of WAL is reduced by 41 percent only, as it
fails to benefit from the above aspects.

6 RELATED WORK

There has been a stream of research on flash-aware data
access techniques. Early work attempted to emulate the
interfaces of traditional magnetic disks. This requires shield-
ing certain unique drawbacks of flash chips from applica-
tions. For example, Kawaguchi et al. [23] proposed a flash
translation layer to support transparent access to flash chips.
As a result, conventional disk-based algorithms and access
methods can work on flash disks without any modifications.
Garbage collection mechanisms and wear-leveling techni-
ques have been extensively investigated [16], [17].

Recently, the characteristics of flash disks have been
exploited to enhance the performance of file systems and
database systems from various aspects [19], [20], [27].
Several log-based storage mechanisms have been suggested
to optimize write operations. Concerning flash-based
DBMSs, Lee and Moon [26] presented a novel design of
data logging called in-page logging (IPL). The idea is to log
changes made to a data page in a reserved area of the flash
block, instead of updating the page directly. When the log
area is full, the change logs are merged to their data pages.
Koltsidas and Viglas [25] suggested adding flash disks to
the storage layer of a database system and investigated how
to place pages based on their workloads. Chen [18]
proposed FlashLogging for synchronous logging based on
the observation that flash devices support sequential writes
well. Nath and Gibbons [32] studied the problem of how to
maintain very large random samples on flash storage. In
addition, new buffer management algorithms (e.g., [24],
[33]) have been proposed for flash devices. Flash-aware
indexing and query processing techniques have also been
intensively studied (e.g., [9], [29], [30], [37], [40], [41]).

In contrast, not much work has been done on flash-aware
transaction management, especially for database systems.
Besides the cyclic commit scheme [34], other related work
includes [39] and [14]. In [39], Wu et al. proposed a fast
recovery scheme for flash-based file systems, which commits
log records into a special check region in order to avoid
scanning the entire flash storage during recovery. Byun [14]
proposed a new locking scheme called flash-two-phase-
locking (F2PL) for concurrency control in a flash-based
DBMS. F2PL achieves a high transaction performance by
efficiently handling slow write/erasure operations in lock
management processes. However, the problem of transac-
tion recovery for flash-based DBMSs has not been studied in
the literature. This study is an attempt to fill this void.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed two novel flagcommit
protocols, namely CFC and AFC, for flash-based DBMSs. Our
main idea exploits the fast random read access, out-place
updating, per-page metadata, and partial page program-
ming feature of flashes to optimize the performance of

transaction processing and recovery. CFC and AFC ensure
the atomicity and durability properties of transactions by
using shadow pages and commit flags stored in these pages,
which minimizes the need of writing explicit log records.
CFC is designed to support fast recovery while AFC aims to
achieve the highest transaction performance under a low
transaction abort ratio. Both protocols support no-force
buffer management and fine-grained concurrency control.
Our performance evaluation based on the TPC-C benchmark
shows that both CFC and AFC outperform the state-of-the-art
recovery protocols.

As for future work, we plan to extend the proposed
flagcommit protocols to MLC flashes and other NVRAM
storage technologies (e.g., PCM). While they still can exploit
fast random access performance of these storage devices,
new questions open up. In particular, as MLC flashes do not
support partial page programming, updating commit flags
might involve out-place updating and thus becomes more
expensive. Hence, advanced techniques to reduce the
frequency of flag updating should be further explored.
On the other hand, for PCM technology, as it allows
overwriting data without incurring any erasure operation,
the flagcommit protocols can work on it without any
modification, as long as we reserve some space on a page as
“spare area.” Nevertheless, further research should be
carried out to minimize the extra overhead caused by the
flagcommit protocols (e.g., the maintenance of page
mapping table and garbage collection). We also plan to
implement the proposed commit protocols on real flashes
where we can have access to the FTL.

ACKNOWLEDGMENTS

The authors are grateful to the editor and the anonymous

reviewers for their constructive comments that significantly

improved the quality of this paper. This work was

supported by the Research Grants Council of Hong Kong

(Grants 210808 and 211510), Hong Kong Baptist University

(FRG2/09-10/054), and Natural Science Foundation of

China (Grant 60833005). Jianliang Xu is the corresponding

author.

REFERENCES

[1] Intel Information Technology, “Solid-State Drives in the Enter-
prise: A Proof of Concept,” http://download.intel.com/it/pdf/
Solid_state_drives_in_Enterprise.pdf, 2009.

[2] OSDL Database Test 2, http://osdldbt.sourceforge.net, 2012.
[3] PostgreSQL, “The World’s Most Advanced Open Source Data-

base,” http://www.postgresql.org/, 2012.
[4] STMicroelectronics NAND01G-B, http://pdf1.alldatasheet.com/

datasheet-pdf/view/131762/STMICROELECTRONICS/
NAND01G-B.html, 2012.

[5] Hynix HY27US08281A, http://pdf1.alldatasheet.com/datasheet-
pdf/view/170158/HYNIX/HY27US08281A.html, 2012.

[6] Samsung K9XXG08UXA, http://www.samsung.com/Products,
2012.

[7] Super Talent Technology, “SLC vs. MLC: An Analysis of Flash
Memory,” http://www.supertalent.com/datasheets/SLC_vs_
MLCwhitepaper.pdf, 2012.

[8] TPC Benchmark C, “Standard Specification,” http://www.
tpc.org/tpcc/spec/tpcc-current.pdf, 2012.

[9] D. Agrawal, D. Ganesan, R. Sitaraman, and Y. Diao, “Lazy-
Adaptive Tree: An Optimized Index Structure for Flash Devices,”
Proc. VLDB Endowment, vol. 2, pp. 361-372, 2009.

ON ET AL.: FLAG COMMIT: SUPPORTING EFFICIENT TRANSACTION RECOVERY IN FLASH-BASED DBMSS 1637

[10] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse,
and R. Panigrahy, “Design Tradeoffs for SSD Performance,” Proc.
Usenix Ann. Technical Conf. (USENIX ’08), June 2008.

[11] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrecy
Control and Recovery in Database Systems. Addison Wesley,
1987.

[12] L. Bouganim, B.T. Jónsson, and P. Bonnet, “uFLIP: Understanding
Flash IO Patterns,” Proc. Fourth Biennial Conf. Innovative Data
Systems (CIDR), 2009.

[13] J.S. Bucy and G.R. Ganger, “The Disksim Simulation Environment
Version 3.0 Reference Manual,” technical report, 2003.

[14] S. Byun, “Transaction Management for Flash Media Databases in
Portable Computing Environments,” J. Intelligent Information
Systems, vol. 30, no. 2, pp. 137-151, 2008.

[15] Flash Memories, P. Cappelletti, C. Golla, P. Olivo, and
E. Zanoni, eds. Kluwer, 1999.

[16] L.-P. Chang and C.-D. Du, “Design and Implementation of an
Efficient Wear-Leveling Algorithm for Solid-State-Disk Microcon-
trollers,” ACM Trans. Design Automation Electronic Systems, vol. 15,
no. 1, pp. 1-36, 2009.

[17] L.-P. Chang, T.-W. Kuo, and S.-W. Lo, “Real-Time Garbage
Collection for Flash-Memory Storage Systems of Real-Time
Embedded Systems,” ACM Trans. Embedded Computing Systems,
vol. 3, no. 4, pp. 837-863, 2004.

[18] S. Chen, “FlashLogging: Exploiting Flash Devices for Synchronous
Logging Performance,” Proc. 35th ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD), 2009.

[19] E. Gal and S. Toledo, “Algorithms and Data Structures for Flash
Memories,” ACM Computing Survey, vol. 37, no. 2, pp. 138-163,
2005.

[20] J. Gray and B. Fitzgerald, “Flash Disk Opportunity for Server
Applications,” Queue, vol. 6, no. 4, pp. 18-23, 2008.

[21] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F.
Putzolu, and I. Traiger, “The Recovery Manager of the System R
Database Manager,” ACM Computing Survey, vol. 13, no. 2,
pp. 223-242, 1981.

[22] T. Haerder and A. Reuter, “Principles of Transaction-Oriented
Database Recovery,” ACM Computing Survey, vol. 15, no. 4,
pp. 287-317, 1983.

[23] A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory
Based File System,” Proc. USENIX Technical Conf., 1995.

[24] H. Kim and S. Ahn, “BPLRU: A Buffer Management Scheme
for Improving Random Writes in Flash Storage,” Proc. Sixth
USENIX Conf. File and Storage Technologies (FAST ’08), pp. 1-14,
2008.

[25] I. Koltsidas and S.D. Viglas, “Flashing up the Storage Layer,” Proc.
VLDB Endowment, vol. 1, pp. 514-525, 2008.

[26] S.W. Lee and B. Moon, “Design of Flash-Based DBMS: An In-Page
Logging Approach,” Proc. ACM SIGMOD Int’l Conf. Management
of Data (SIGMOD ’07), pp. 55-66, 2007.

[27] S.-W. Lee, B. Moon, and C. Park, “Advances in Flash Memory SSD
Technology for Enterprise Database Applications,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’09), 2009.

[28] P.M. Lewis, A. Bernstein, and M. Kifer, Databases and Transaction
Processing: An Application-Oriented Approach. Addison Wesley,
2002.

[29] Y. Li, B. He, Q. Luo, and K. Yi, “Tree Indexing on Flash Disks,”
Proc. IEEE Int’l Conf. Data Eng. (ICDE), 2009.

[30] Y. Li, S.T. On, J. Xu, B. Choi, and H. Hu, “DigestJoin: Exploiting
Fast Random Reads for Flash-Based Joins,” Proc. 10th Int’l Conf.
Mobile Data Management (MDM ’09), 2009.

[31] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A Transaction Recovery Method Supporting Fine-Gran-
ularity Locking and Partial Rollbacks Using Write-Ahead Log-
ging,” ACM Trans. Database Systems, vol. 17, no. 1, pp. 94-162, 1992.

[32] S. Nath and P.B. Gibbons, “Online Maintenance of Very Large
Random Samples on Flash Storage,” Proc. VLDB Endowment,
vol. 1, pp. 970-983, 2008.

[33] Y. Ou, T. Härder, and P. Jin, “CFDC: A Flash-Aware Replacement
Policy for Database Buffer Management,” Proc. Fifth Int’l Workshop
Data Management on New Hardware (DaMoN), 2009.

[34] V. Prabhakaran, T.L. Rodeheffer, and L. Zhou, “Transactional
Flash,” Proc. Eighth USENIX Symp. Operating Systems Design and
Implementation (OSDI ’08), 2008.

[35] R. Ramakrishnan and J. Gehrke, Database Management Systems.
McGraw-Hill, 2003.

[36] K. Ross, “Modeling the Performance of Algorithms on Flash
Memory Devices,” Proc. Int’l Workshop Data Management on New
Hardware (DaMoN), 2008.

[37] D. Tsirogiannis, S. Harizopoulos, M.A. Shah, J.L. Wiener, and G.
Graefe, “Query Processing Techniques for Solid State Drives,”
Proc. 35th ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD), 2009.

[38] D. Woodhouse, “JFFS: The Journaling Flash File System,” Proc.
Ottawa Linux Symp., July 2001.

[39] C.-H. Wu, T.-W. Kuo, and L.-P. Chang, “Efficient Initialization
and Crash Recovery for Log-Based File Systems over Flash
Memory,” Proc. ACM Symp. Applied Computing (SAC ’06), 2006.

[40] C.-H. Wu, T.-W. Kuo, and L.-P. Chang, “An Efficient B-Tree Layer
Implementation for Flash-Memory Storage Systems,” ACM Trans.
Embedded Computing Systems, vol. 6, no. 3, article 19, 2007.

[41] D.Z. Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W.A.
Najjar, “MicroHash: An Efficient Index Structure for Flash-
Based Sensor Devices,” Proc. USENIX Conf. File and Storage
Technologies (FAST ’05), 2005.

Sai Tung On received the BEng degree in
software engineering from Tsinghua University,
Beijing, China. He is currently working toward
the MPhil degree in the Department of Computer
Science at Hong Kong Baptist University. His
research interest lies in data management on
novel storage media. He is a student member of
the ACM.

Jianliang Xu received the BEng degree in
computer science and engineering from Zhe-
jiang University, Hangzhou, China, in 1998 and
the PhD degree in computer science from the
Hong Kong University of Science and Technol-
ogy in 2002. He is an associate professor in the
Department of Computer Science, Hong Kong
Baptist University. He is a member of the
Database Group at Hong Kong Baptist Univer-
sity (http://www.comp.hkbu.edu.hk/~db/). He

held visiting positions at Pennsylvania State University and Fudan
University. His research interests include data management, mobile/
pervasive computing, wireless sensor networks, and distributed sys-
tems. He has published more than 100 technical papers in these areas.
He is a senior member of the IEEE.

Byron Choi received the BEng degree in
computer engineering from the Hong Kong
University of Science and Technology (HKUST)
in 1999 and the MSE and PhD degrees in
computer and information science from the
University of Pennsylvania in 2002 and 2006,
respectively. He is now an assistant professor in
the Department of Computer Science, Hong
Kong Baptist University. Before this, he was an
assistant professor in the School of Computer

Engineering, Nanyang Technological University (NTU) for three years
(2005-2008). He was a research associate at the University of
Edinburgh in 2005 and a summer student intern for the Galax project
at AT&T Labs, Florham Park, New Jersey. He visited the HKUST
Theoretical Computer Science Group in 2003. He is a member of the
ACM and the IEEE.

1638 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 9, SEPTEMBER 2012

Haibo Hu is a research assistant professor in
the Department of Computer Science, Hong
Kong Baptist University (HKBU). Prior to this, he
held several research and teaching posts at the
Hong Kong University of Science and Technol-
ogy (HKUST) and HKBU. He received the PhD
degree in computer science from HKUST in
2005. His research interests include mobile and
wireless data management, location-based ser-
vices, and privacy-aware computing. He has

published more than 20 research papers in international conferences,
journals, and book chapters. He is also the recipient of many awards,
including ACM-HK Best PhD Paper Award and Microsoft Imagine Cup.

Bingsheng He received the bachelor’s degree
in computer science from Shanghai Jiao Tong
University (1999-2003), and the PhD degree in
computer science from the Hong Kong Uni-
versity of Science & Technology (2003-2008).
He is an assistant professor in the Division of
Computer Science, School of Computer Engi-
neering, Nanyang Technological University,
Singapore. His research interests are high
performance computing, distributed and parallel

systems, and database systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ON ET AL.: FLAG COMMIT: SUPPORTING EFFICIENT TRANSACTION RECOVERY IN FLASH-BASED DBMSS 1639

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

