
FD-Buffer: A Cost-Based Adaptive Buffer
Replacement Algorithm for Flash

Memory Devices
Sai Tung On, Shen Gao, Bingsheng He, Ming Wu, Qiong Luo, and Jianliang Xu

Abstract—In this paper, we present a design and implementation of FD-Buffer, a cost-based adaptive buffer manager for flash

memory devices. Due to flash memory’s unique hardware features, it has an inherent read-write asymmetry: writes involve expensive

erase operations, which usually makes them much slower than reads. To address this read-write asymmetry, we revisit buffer

management and consider the average I/O cost per page access as the main cost metric, as opposed to the traditional miss rate. While

there have been a number of buffer management algorithms that take the read-write asymmetry into consideration, most algorithms fail

to effectively adapt to the runtime workload or different degrees of asymmetry. In this paper, we develop a new replacement algorithm

in which we separate clean and dirty pages into two pools. The size ratio of the two pools is automatically adapted based on the read-

write asymmetry and the runtime workload. We evaluate the FD-Buffer with trace-driven experiments on real flash memory devices.

Our trace-driven evaluation results show that our algorithm achieves 4.0-33.4 percent improvement of I/O performance on flash

memory, compared to state-of-the-art flash-aware replacement policies.

Index Terms—Flash memory, buffer management, solid-state drives, read-write asymmetry

Ç

1 INTRODUCTION

FLASH memory has been widely used for mobile devices
and embedded systems and it has a myriad of advan-

tages: high random read performance, high reliability, low
power consumption, and so on. Moreover, flash memory is
expected to have a sharp increase in market share. The
capacity of flash memory has been increasing while its price
per GB has been decreasing significantly [27], thanks to
demand in mobile and embedded markets. International
Data Corporation (IDC) [12] predicted that the total flash
memory volume will increase by 54.8 percent in the coming
years. Despite its fast speed, flash memory’s locality in the
main memory will play a key role in overall performance
[9], [11]. Since buffer managers are the primary component
for capturing memory locality in database and operating
systems, this paper studies the design of a cost-based adap-
tive buffer manager for flash memory devices.

Not all page accesses in a database/operating system go
to the disk. The buffer pool keeps a set of recently accessed
pages, and thus filters some of the page access requests
before they go to the disk. The buffer-management policy

influences the sequence of requests that access the disk.
Traditionally, it is assumed that the costs for a page read
and a page write are uniform (which is mostly true for
hard disks). However, the uniform read-write cost
assumption does not hold for flash memory. One inherent
feature of flash memory is a read-write asymmetry: their ran-
dom write performance is much lower than their random
read performance because of the erase-before-write limita-
tion. As shown in Table 1, random writes can be over two
orders of magnitude slower than random reads in current
flash memory. Even worse, a recent study [7] showed that
this gap would increase 3.5-10X further after flash storage
becomes fragmented.

This read-write asymmetry implies that evicting a dirty
page costs muchmore than evicting a clean page, which fun-
damentally affects the design of buffer-management poli-
cies. This results in inconsistency between minimizing
buffer miss rate and optimizing I/O performance: a lower
miss rate does not necessarily raise I/O performance. There-
fore, it breaks the conventional premise of minimizing the
buffer miss rate. Thus, as opposed to the traditional use of
miss rate as the performance metric, we use the average I/O
cost per buffer page access to measure the effectiveness of
buffer management. We note that under asymmetric read-
write performance, Belady’s algorithm is no longer cost-opti-
mal (see Section 3 for details). In fact, the average I/O cost is
influenced bymany factors such as the flashmemory charac-
teristics and read/write patterns in theworkload.

Recently, there has been a number of algorithms pro-
posed to address the read-write asymmetry in buffer man-
agement. Those algorithms include FAB [14], CFLRU [37]
(and its enhanced variant, CFDC [34]) and CASA [33]. Most
of those algorithms give priority to choosing clean pages as
victims over dirty pages. However, all of these algorithms

� S.T. On, S. Gao, and J. Xu are with the Department of Computer Science,
Hong Kong Baptist University, Kowloon Tong, KLN, Hong Kong.
E-mail: {ston, sgao, xujl}@comp.hkbu.edu.hk.

� B. He is with the School of Computer Engineering, Nanyang Technological
University, Singapore. E-mail: bshe@ntu.edu.sg.

� M. Wu is with Microsoft Research Asia, Haidian District, Beijing, China.
� Q. Luo is with the Department of Computer Science and Engineering,

Hong Kong University of Science and Technology, Clear Water Bay, Hong
Kong. E-mail: luo@cse.ust.hk.

Manuscript received 26 July. 2012; revised 26 Dec. 2012; accepted 24 Feb.
2013. Date of publication 6 Mar. 2013; date of current version 7 Aug. 2014.
Recommended for acceptance by E. Macii.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.52

2288 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

0018-9340� 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

have an ad-hoc way of determining the victim based on
heuristics. For example, CFLRU always selects a clean page
from the tail of the LRU list (i.e., the clean-first region), and
it sets the clean-first region to one half of the entire LRU list.
CASA [33] proposed a heuristics-based approach to dynam-
ically adjust the ratio of dirty to clean pages.

In general, the existing algorithms fail to fully adapt to
different read-write asymmetry levels and workload charac-
teristics, which makes them inefficient. First, the read-write
asymmetry varies significantly among flash memory devi-
ces because different devices have different hardware and
software implementations. Moreover, the degree of read-
write asymmetry increases as the flash memory gets frag-
mented [7]. Second, the buffer design needs to be aware of
the interplay between the read-write asymmetry and work-
load characteristics, such as the ratio of writes and their
access locality. In read-dominant cases, the buffer may evict
dirty pages to make room for reads. In some other cases, it
would be desirable to reduce the number of random writes,
without significantly increasing the number of misses to
other pages. For example, if the buffer-replacement policy
can selectively keep some dirty pages with high update fre-
quencies, it can significantly reduce the overhead of writing
these pages.

To address these challenges, we propose FD-Buffer, a
cost-based adaptive buffer-management algorithm for flash
memory devices. FD-Buffer divides the buffer pool into two
parts: one for clean pages and one for dirty pages. The size
ratio of the two pools is dynamically adjusted based on the
flash memory characteristics and the runtime workload. In
particular, for LRU replacement policies, a cost model is
developed to determine the optimal size ratio based on a
stack-based model that predicts the buffer miss rate of each
pool. With cost-based adaptation, the choice of whether a
victim is a clean page or a dirty page is made according to
the quantitative gain of the two pools. Moreover, to reduce
the overhead of block erasures, we use a write clustering
technique that gives priority to evicting pages that reside
in the same cluster. All these techniques give the FD-Buffer
good I/O performance on flash memory devices.

We evaluate our algorithm with trace-driven simulations
on real flash memory devices. The workloads contain three
publicly available benchmarks on transactional processing,
including TPC-C [42] and file-system traces. The results val-
idate the accuracy of the cost model and the effectiveness of
FD-Buffer. FD-Buffer outperforms CFDC [34] and CASA
[33], two representative flash-aware algorithms, with an
improvement of 4.0–33.4 percent on various traces. More-
over, FD-Buffer adapts well to the dynamics of workload
and flash memory fragmentation.

The contributions of this paper are summarized as fol-
lows. First, we propose a simple yet effective online
algorithm called FD-Buffer, which adapts to the runtime

dynamics of flash memory and workloads. Second, we
develop a two-stack method for online cost estimation of
the two pools in FD-Buffer. Third, we perform extensive
performance evaluation with database benchmarks and
file-system traces for our algorithm compared to flash-
aware buffer-management policies.

The rest of this paper proceeds as follows. The next sec-
tion briefly describes the background and related work, fol-
lowed by the problem definition in Section 3. Section 4
presents the FD-Buffer algorithm. We present our evalua-
tion results in Section 5, and offer conclusions in Section 6.

2 PRELIMINARIES AND RELATED WORK

In this section, we first give a brief introduction to flash
memory and data management on flash-based storage devi-
ces. Then we review related work on buffer-management
policies, followed by buffer miss-rate estimation.

2.1 Flash Memory

Flash memory has been the dominate media in mobile devi-
ces and embedded systems because of its low access latency
and power consumption. Recently, many manufacturers
have packed flash memory chips into solid-state drives
(SSDs) for personal computers and servers.

Flash memory is non-volatile storage with unique char-
acteristics. Both its reads and writes are at the granularity of
flash pages. The typical size of a flash page is between 512 B
and 2 KB. Due to the physical characteristics of flash mem-
ory, writes are only able to change bits from 1 to 0. Thus, an
erase operation that sets all bits to 1 must be performed
before rewriting. However, the unit of erase operations is a
block, which typically contains 16-64 pages. Moreover, the
latency of an erase operation is far higher than that of a read
or write. As a result, this erase-before-write limitation leads to
inferior write performance, especially for random writes—
hence the read-write asymmetry. In addition, each flash
block can only be erased a finite number of times before it
gets worn out.

To emulate a traditional hard disk interface that has no
erase operations, flash memory employs a firmware layer—
called the flash translation layer (FTL)—to implement page
mappings for out-of-place updates, garbage collection, and
wear leveling. A lot of research has been conducted to
improve the effectiveness of FTL [35], [45].

The internal structure of flash memory has been well
studied [2]. More recently, a performance study was con-
ducted to analyze the system issues of flash memory [7];
and the uFLIP benchmark [5] was proposed to explain the
performance characteristics of flash memory by evaluating
the spatial and temporal correlations of flash I/O patterns.

2.2 Data Management on Flash-Based Storage
Devices

Data management on flash-based storage devices has been
extensively studied in recent years. Lee et al. [19] have
shown that several components and operations of databases
(such as logging, MVCC, and merge joins) are naturally
suited for the I/O characteristics of flash memory. Addi-
tionally, basic database constructs of flash memory, such as
indexing and joins, have been studied [28]. Both studies

TABLE 1
Performance Comparison of Random Accesses on Current

Flash Memory (Page Size: 8 KB, Unit: IOPS)

ON ET AL.: FD-BUFFER: A COST-BASED ADAPTIVE BUFFER REPLACEMENT ALGORITHM FOR FLASH MEMORY DEVICES 2289

conclude that using flash-based storage devices provides
better performance for database applications than using
magnetic hard disks.

Specialized data structures and algorithms have been
designed to address the poor performance of random writes
in flash memory. Lee and Moon [18] proposed the in-page
logging (IPL) to improve update performance. In contrast to
the log-file system, IPL appends the update logs into a spe-
cial page that is placed in the same erase block as the
updated data pages in order to minimize erase operations.
Flash-aware tree indexes [1], [20], [21] have been proposed
to address the read-write asymmetry with lazy and batched
updates. Tsirogiannis et al. [44] demonstrated that the
column-based layout within a page can leverage fast ran-
dom reads of flash memory to speed up different query
operators. Li et al. [22] proposed new flash-aware algo-
rithms to optimize the non-indexed join processing of flash
memory. Chen [8] proposed a synchronous logging solution
by exploiting the fast sequential writes of flash devices. In a
previous study [31], we proposed a new commit scheme
called flag commit for supporting efficient transaction recov-
ery in flash-based databases. Unlike the aforementioned
studies that developed flash-optimized structures and algo-
rithms for data access and transaction management, this
paper investigates flash-optimized buffer-management pol-
icies for systems running on flash memory devices.

2.3 Buffer-Management Policies

Buffer management is an active research area in the study
of databases and operating systems. The theoretical miss-
rate-optimal replacement policy, known as Belady’s algo-
rithm [4], is to evict the page whose next use will occur far-
thest in the future. The policy most widely used by
commercial systems is LRU and its variants [15], [32]. LRU
always evicts the least recently used page. 2Q [15] is a
clock-based approximation of LRU, supporting higher con-
currency. LRU-K [32] keeps track of the times of the last K
references for each page. It achieves a lower miss rate in
database systems by distinguishing frequent pages from
infrequent ones. Cost-based victim selection has also been
studied in different scenarios [36]. In contrast, our work
develops a cost-based victim-selection algorithm for flash
memory devices.

Recently, several buffer-management policies have
been proposed to address the read-write asymmetry of
flash memory [34], [37]. FAB [14] and BPLRU [16] are two
block-level buffer-management policies. They are both
designed for the small buffers in embedded flash devices.
The techniques used in these proposals can be categorized
into two types: giving priority to choosing clean pages as
victims over dirty pages [23], [24], [34], [37], and improv-
ing the locality of writes [16], [34]. The first category of
techniques is more relevant to our study. CCF-LRU [23]
considers the access frequencies of clean pages in their
clean-page first policy. Lv et al. [24] analyzed the locality
and the cost of read/write operations and they adjusted
the victim-selection mechanism based on their cost analy-
sis. AD-LRU [13] separates the buffer pool into a cold LRU
queue and a hot LRU queue, based on reference frequen-
cies. The sizes of the two queues are adjusted according to

the access pattern. In our cost model, we consider not only
the workload but also read-write asymmetry.

To address the read-write asymmetry, Clean-First LRU
(CFLRU) [37] maintains the LRU list in two regions: the
working region and the clean-first region. The working region
consists of the most recently used pages that are placed at
the head of the LRU list, and the clean-first region is at the
tail of the LRU list. Victims are identified in the following
order: first clean pages in the clean-first region, then dirty
pages in the clean-first region, and finally the working
region. The size of the working region is a parameter in
CFLRU. Based on CFLRU, CFDC [34] further splits the
clean-first region into a clean queue and a dirty queue, and
it avoids scanning extra dirty pages in the clean-first region
of CFLRU. In both studies clean pages are always given a
higher priority for replacement than dirty pages.

Recent adaptive algorithms like CASA [33] and ACR
[40] adjust the clean-first region with a heuristics-based
approach. Suppose the number of clean and dirty pages
in the buffer is C and D, respectively. If there is a clean
page hit, CASA heuristically assigns a weight to the
page of D

C. Similarly, in the case of a dirty page hit,
CASA assigns a weight of C

D. The victim selection is
based on the weight. However, the reasons of using this
way to assign weight were not explained in the previous
study [33].

In contrast, the approach proposed in this paper adap-
tively determines their priority based on a well-developed
cost model. Write clustering has been considered an effec-
tive technique to reduce the total cost [34], [38]. It groups
dirty pages with locality into clusters to take advantage of
efficient sequential writes of flash memory. CFDC [34] fur-
ther enhances CFLRU by clustering dirty pages and evicting
them consecutively. Similar techniques have been used in
the recently-evicted-first algorithm [38].

Several previous studies have explored partitioning the
buffer pool into two or multiple separate regions for differ-
ent purposes. DBMIN [10] was proposed to allocate a sepa-
rate buffer pool for each query. In order to capture both
recency and frequency, ARC [26] and its clock-based
approximation CAR [3] divide the buffer pool into two
parts: one region contains frequent pages, the other contains
recent pages. Cesana and He [6] developed a multi-buffer
scheme for saving energy consumption of accessing flash
memory. Unlike these previous studies, we divide the
buffer pool into clean and dirty regions in order to optimize
performance for the asymmetric read-write speeds of flash
memory.

Our previous work has given preliminary test results for
the FD-Buffer [30]. This study goes beyond the previous
work by (a) providing a novel cost model to estimate the
ratios of the clean pool and the dirty pool in the buffer; and
(b) reporting more extensive experiments on real flash
memory devices.

2.4 Buffer Miss-Rate Estimation

Buffer miss-rate estimation is important for the
effectiveness of buffer management. Tran et al. [43] used
curve-fitting techniques to estimate the buffer miss rate of
several replacement policies, including FIFO and LRU.

2290 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

Mattson et al. [25] proposed a stack-based algorithm to esti-
mate the buffer miss rate for LRU and its variants of any
buffer size. This is done with a single-pass scan on the
page references. Kim et al. [17] reduced the computational
overhead of the stack-based algorithm, which has been
widely studied in different replacement policies such as
LRU, LIRS, and MRU. In this paper, we will extend their
technique to estimate the cost of two-pool management in
our cost-based buffer replacement algorithm (Section 4.3).

3 PROBLEM DEFINITION

The buffer miss rate is not consistent with I/O performance
because of the read-write asymmetry. Therefore, we use the
average I/O cost as the primarymetric. In particular, we con-
sider the average I/O cost per page access (the average I/O cost
in short) after thewarm-up (i.e., after the buffer is filled). This
excludes the cost of buffermisses duringwarm-up. Thus, the
average I/O cost in our model includes two parts: the cost of
fetching a page from flash memory upon a buffer miss and
the cost ofwriting a page back to flashmemory upon evicting
a dirty page. Eq. (1) gives the average I/O cost:

Costio ¼ Ptotal � Cread þ Ptotal � Edirty � Cwrite; (1)

where Ptotal is the buffer miss rate, Edirty is the ratio of evicting

a dirty page in all the evictions, and Cread and Cwrite are the

average costs for reading and writing a page from the flash

memory, respectively. For simplicity, we assume each read

operation on the flash memory has a cost of Cread, and each

write is a random write with a cost of Cwrite. While this

assumption does not take the access patterns of reads and

writes into account, our experiments on real flash memory

devices justify the effectiveness of this simple cost model (see

Section 5 for more details). Table 2 summarizes the notations

used throughout the paper.

To quantify the read-write asymmetry of the flash mem-
ory, we further define the asymmetry factor as IR ¼ Cwrite

Cread
.

On a real flash memory device, IR can be dynamic. Its value
is usually estimated according to its history [7], [33]. For the
ease of presentation, we treat IR as a constant, and the for-
mula can easily be extended to be the cases of dynamic IR
values. Normalizing Eq. (1) by Cread, we obtain the normal-
ized average I/O cost in Eq. (2):

Cost0io ¼ Ptotal � ð1þEdirty � IRÞ: (2)

This cost model generalizes to capture both read-write
symmetric devices (such as hard disks where IR ¼ 1) and
read-write asymmetric devices (such as flash memory
where IR > 1). In the rest of the paper, we assume IR � 1 to
model both hard disks and flash memory devices.

Given an I/O request sequence S, a buffer-management
algorithm A, a buffer with M pages, the asymmetry factor
IR, we denote the normalized average I/O cost of A by
Cost0ioðAðS;M; IRÞÞ. Our definition of the cost-optimal
buffer-management algorithm is as follows:

Definition 1. A buffer-management algorithm A is cost-optimal
iff, for any other algorithm A0 and for any S,M, and IR values,
Cost0ioðAðS;M; IRÞÞ � Cost0ioðA0ðS;M; IRÞÞ.
Due to the read-write asymmetry of flash memory, the

traditional miss-rate-optimized replacement policies are
no longer cost-optimal. Table 3 gives an example to show
that Beledy’s algorithm [4] is not cost-optimal. In this
example, the buffer can accommodate two pages. The ref-
erence list consists of nine page access requests. The
working set contains four pages, which is larger than the
buffer size. Initially, after warm-up, the buffer contains
two clean pages: X and Y . We compare the normalized
average I/O costs of Belady’s algorithm and an alterna-
tive algorithm (our FD-Buffer algorithm in Section 4).
According to Eq. (2), they are 6

9 � ð1þ 2
6 IRÞ and 8

9 � ð1þ 1
8 IRÞ,

respectively. The IR value determines which algorithm is
better. If IR < 2, Beledy’s algorithm wins. When IR ¼ 2,
they have the same cost. If IR > 2, the alternative algo-
rithm wins, and the performance gap will increase as IR
increases.

This definition suggests some guidelines in the design of
a cost-optimal buffer-management algorithm for flash mem-
ory devices. An ideal buffer-management algorithm should
minimize both Ptotal and Edirty. In a fixed-size buffer, these
two sub-goals may conflict with certain workloads. For
example, we need to put more buffer space for dirty pages
in order to reduce Edirty. But this will increase the buffer
miss rate when the dirty pages have a lower degree of local-
ity than the clean pages. The key issue is how to achieve a

TABLE 2
Parameters and Notations

TABLE 3
Examples of Belady’s Algorithm and FD-Buffer

ON ET AL.: FD-BUFFER: A COST-BASED ADAPTIVE BUFFER REPLACEMENT ALGORITHM FOR FLASH MEMORY DEVICES 2291

balance between these two sub-goals so that overall I/O
performance is optimized.

4 FD-BUFFER

Our cost definition clearly indicates two design points for
an asymmetry-aware algorithm: (1) distinguish clean and
dirty pages and (2) compare the locality of the two kinds of
pages to make the replacement decision. Based on these two
points, we develop FD-Buffer, a unified buffer manager that
attempts to minimize the average I/O cost in flash memory.

Without knowledge of future page references, FD-
Buffer follows two design points closely: first, we divide
the buffer pool into two sub-pools, the clean pool for
clean pages and the dirty pool for dirty pages. The two
pools are independent of each other, with each being
managed by a traditional buffer-management policy to
exploit locality. This design allows us to utilize the pre-
vious research results of buffer-management policies for
each sub-pool. Second, the relative size of the clean
pool and the dirty pool affect the global localities of
reads and writes in the entire buffer pool. We dynami-
cally adjust the size ratio of the two sub-pools by com-
paring their localities. Since the total size of the buffer
pool is fixed, increasing the size of one sub-pool will
reduce misses in it, but increase misses in the other
sub-pool. We further apply the write-clustering tech-
nique to the dirty pool so that dirty pages belonging to
the same erase block are consecutively written back to
the flash memory.

Unlike the existing policies, such as CFLRU [37] and
CFDC [34], which depend highly on a specific existing
replacement policy, each pool of FD-Buffer can be managed
by an independent policy. This flexibility enables FD-Buffer
to integrate various traditional buffer-management policies
with little modification.

4.1 Overview

FD-Buffer has three main components: a buffer manager, cost
estimator, and policy advisor.

The buffer manager has the following four parameters
<M, Mc, Policyc, Policyd>: the total buffer pool size is M
pages; the size threshold of the clean pool is Mc pages; and
the replacement policies are Policyc and Policyd for the clean
and the dirty pool, respectively. The threshold for the dirty
buffer size is Md ¼ M �Mc. In FD-Buffer, Mc is the key
parameter for adaptation to the flash memory characteris-
tics and the runtime workload.

The cost estimator is responsible for estimating the cost
for different Mc values, with the runtime statistics and flash
memory profile as input. The main statistics include the
counters in stack-based cost estimation. We use a light-
weight method to collect these statistics (Section 4.3). The
profile of the flash memory includes the average latency for
reads and writes, as well as, the asymmetry factor, all of
which are obtained through measurements at runtime. The
reason for runtime measurement as opposed to offline cali-
bration is that these characteristics of the flash memory can
change dynamically over time [7].

The policy advisor is used to adaptively recommend the
optimal setting to the buffer manager. It determines the

optimal setting by choosing the clean pool ratio that mini-
mizes the I/O cost of flash memory.

4.2 Replacement Algorithms in FD-Buffer

Each pool has an independent replacement policy. In princi-
ple, we can use any replacement policy. In this paper, we
use LRU and its variants as case studies for two reasons.
First, they are widely used and evaluated in traditional
buffer management. Second, their miss-rate predictions
have been studied for a long time, which we can leverage
for cost estimation.

Our FD-Buffer algorithm uses APIs including Lookup,
Update, Add, Remove, and GetVictim, which are commonly
used in other buffer algorithms. Lookup locates a page in the
pool and returns the frame that contains the page. Update
updates the book-keeping data structure to record that the
page is referenced. Add adds a page frame to the pool.
Remove removes a page frame from the pool. GetVictim gets
a victim frame for replacement.

To illustrate these commands, take LRU as an example.
LRU maintains the metadata of all the page frames in a
queue according to their access recency, where the head
is the least recently used page frame. Initially, the queue
consists of the metadata of all unused page frames. Add
adds the metadata of a new page frame to the tail of the
queue. Remove removes the metadata of the page frame
from the queue. Lookup locates a page frame in the queue.
Update moves the metadata of the page to the tail of
the queue. GetVictim selects the page frame at the head of
the queue as the victim.

Algorithm 1 illustrates our FD-Buffer algorithm. The
entire buffer pool is divided into the clean pool, C, and the
dirty pool, D. For both read and write operations, FD-Buffer
first checks the clean pool and then the dirty pool. Maintain-
ing the locality of each individual pool is the responsibility
of each corresponding replacement policy, whereas FD-
Buffer is in charge of adjusting the sizes of both pools. We
define the number of frames in the clean and the dirty pool
as jCj and jDj, respectively.

The sizes of the two pools jCj and jDj are dynamically
adjusted along with the reads and writes in FD-Buffer.
Specifically, FindVictimForClean and FindVictimForDirty
select the victim page from the clean or dirty pool by
comparing the number of clean pages and its threshold
(Algorithm 2). When the sizes of the two pools are
adjusted, frames move between them. A frame moves
from the clean pool to the dirty pool in two scenarios:
(1) while writing a page in the clean pool or (2) while
writing a page to a frame previously occupied by a clean
page. In contrast, a frame moves from the dirty pool to
the clean pool when reading a page to a frame originally
occupied by a dirty page. With this policy, jCj and jDj
dynamically approach Mc and Md, respectively.

Table 3 shows an example of running FD-Buffer. The
threshold size for the clean and dirty pools is one page each.
Both pools are managed by LRU. We represent the buffer
with a tuple ½D;C�, with the first frame belonging to the
dirty pool and the second frame to the clean pool. Initially,
D is empty and C contains two clean pages. As WI comes,
D grows to one page. The dirty page J stays in the dirty

2292 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

pool for its next write, since no other writes occur during
this period. In this example, FD-Buffer can achieve a lower
cost than Belady’s algorithm.

Next we analyze the average I/O cost of FD-Buffer
based on the miss rate. A buffer miss occurs in FD-
Buffer only when the miss occurs in both the clean pool
and the dirty pool. We also note that, for every access,
FD-Buffer starts by checking the clean pool; hence, not
every access goes to the dirty pool. Given the miss rates

of the clean and the dirty pools Pc and Pd (respectively),
we can derive Ptotal ¼ Pc � Pd.

A dirty page is evicted when a write causes a miss in the
dirty pool. We define this miss rate as Pw

d . By definition,
Edirty ¼ Pw

d . Substituting Ptotal and Edirty, we get the normal-
ized average I/O cost for FD-Buffer as expressed in Eq. (3).
Note, to adapt to the dynamics of flash memory, we esti-
mate the IR value according to the historical read and write
performance. In particular, we estimate IR to be the ratio of
the average latency of the previous m writes and the aver-
age latency of the previous m reads (m is set at 32,768 by
default, as in a previous study [33]).

Cost0io ¼ Pc � Pdð1þ Pw
d � IRÞ: (3)

Pc and Pd are two independent metrics, although the
clean pool size and the dirty pool size are correlated (i.e.,
their sum is equal to the total buffer size). Note that when a
page access request arrives at the FD-Buffer, the probability
that the page is not found in the clean pool is independent
of the probability that the page is not found in the dirty
pool, and vice versa.

4.3 Cost Estimation

In order to adapt the size of the clean pool to the characteris-
tics of the flash memory and the workload, we need to for-
mulate how Pc, Pd, and Pw

d are influenced by different Mc

and Md values. This motivates us to perform online estima-
tion of Pc, Pd, and Pw

d .
We estimate these miss rates based on Mattson’s stack-

based algorithm [25]. Mattson’s algorithm uses a stack to
store page accesses, and it estimates the miss ratio based on
the calculation of stack distances. Since the traditional
Mattson’s stack algorithm only works for a single buffer
pool, we propose the Two-Stack algorithm, which extends
the Mattson’s algorithm for the two pools in FD-Buffer.

Before we present our Two-Stack algorithm, let us briefly
review the basic ideas of Mattson’s algorithm. Recall that
we use LRU and its variants as buffer-replacement policies
in this paper. Mattson’s algorithm is based on the inclusion
property of LRU: for any sequence of memory accesses, the
contents of a buffer with k pages should be a subset of the
contents of a buffer of size kþ 1 or larger. To estimate
the buffer miss rate, Mattson’s algorithm uses an LRU stack
to store the accessed pages, such that the most recent page
is on the top of the stack. The algorithm maintains an array
of hit counters, Hit½1; 2; . . . ;1�, to keep track of the miss
counts under different buffer sizes.

Upon each page access, the algorithm finds the refer-
enced page in the simulated stack and updates the stack to
reflect the memory contents based on the replacement pol-
icy. For example, under the LRU policy, the referenced page
will be moved to the top of the stack. Before the movement,
if the referenced page is the dth element from the top of the
stack, the stack distance of the current access is d; otherwise if
the referenced page is not found in the current stack, its dis-
tance is considered to be 1. This reflects the fact that if the
buffer size M is between 1 and d� 1 pages, this access will
result in a page miss. On the other hand, if M is larger than
or equal to d, the access will result in a page hit. For a page

ON ET AL.: FD-BUFFER: A COST-BASED ADAPTIVE BUFFER REPLACEMENT ALGORITHM FOR FLASH MEMORY DEVICES 2293

access of distance d, the hit counter Hit½d� will be increased
by 1. Thus, given a sequence of page accesses, the buffer
miss rates for various memory sizes can be calculated
according to the hit counters. Specifically, the miss rate of
P ðMÞ for an M-page buffer on an access sequence of N dis-
tinct pages is given by Eq. (4):

P ðMÞ ¼ 1�
PM

i¼1 Hit½i�
PN

i¼1 Hit½i� þHit½1� : (4)

Now we explain our Two-Stack algorithm, which is for-
mally described in Algorithms 3 and 4. The extension of
Mattson’s algorithm to Two-Stack is a non-trivial task, since
the clean pool C and the dirty pool D interact with each
other. Two-Stack uses two LRU stacks named CLRU and
DLRU for C and D, respectively. CLRU and DLRU store
the accessed pages according to their access recency.

For each page access, there are two steps involved in the
Two-Stack algorithm:

Step 1: We first move the referenced page to the top of its
corresponding stack(s). Since a page in C can be moved to
D (and vice versa) in FD-Buffer, we also allow page move-
ment between CLRU and DLRU . For example, a write
access to a page in CLRU may move the page to DLRU ,
since the page becomes dirty afterwards. However, it is a
challenge to handle the page movement from DLRU to
CLRU . Consider a case where a read access arrives, and the
referenced page exists in DLRU but not in CLRU . After the
read access, the page may remain in DLRU if it is a hit in
the dirty pool. Otherwise, the read access is a miss in the
dirty pool, and the page should be put into CLRU , since the
read access will load the page into the clean pool. To deter-
mine the residence pool of each page, we introduce the
notion of present condition, PCond. In the scenario mentioned
above, we will maintain a pair of complementary conditions
fPCondc; PConddg for the corresponding entries in CLRU
and DLRU . Given the size of the dirty pool Md (or the size
of the clean pool Mc), only one present condition can be true,
which implies that a page can exist in either C or D. Fig. 1
shows an example of page movement from DLRU to
CLRU . Assume that page pa exists only in DLRU , and its
stack distance is d. Upon a new read access to pa, we need to
move the page to the top of DLRU and copy it to the top of

CLRU . Accordingly, we will update PCondd½pa� ¼ ðMd � dÞ
and PCondc½pa� ¼ ðMc > M � dÞ for the corresponding
entries in DLRU and CLRU , respectively. Since Mc þMd ¼
M, only one condition can be true for any size ofMc orMd.

Step 2: Next we increment the hit counter for an ele-
ment at position i for CLRU and DLRU , respectively. In
Mattson’s algorithm, i has the same value as the stack dis-
tance d of the current access, since d reflects the actual
position of the referenced page in the pool. However, this
is not the case in our Two-Stack algorithm, since d may
miscount some pages that actually do not exist in the pool
under a given buffer size. To address this issue, we derive
the value of i in the following way: given a referenced
page pe, if PCond½pe� is true, then i ¼ d; otherwise,
PCond½pe� must be in the form of Mc > d0, and i is set to
the larger of d and d0. This is due to the inclusion property
of LRU. Specifically, when PCond½pe� ¼ true, although the
distance i may count the pages that do not exist in the
pool, it guarantees that the current access is a hit for any

Fig. 1. An example of Two-Stack simulation for page read access.

2294 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

buffer with a size greater than or equal to i. If PCond½pe� is
in the form of Mc > d0, the larger of d and d0 would have
the same guarantee. After deriving the value of i, the cor-
responding hit counter is incremented. The Two-Stack
algorithm maintains the hit counters for both CLRU and
DLRU . It also distinguishes the hit counters for reads and
writes, since the computation of Pw

d depends on write
accesses only. We denote the hit counters for reads and
writes in the clean (dirty) pool as by Hitrc and Hitwc (Hitrd
and Hitwd), respectively.

Finally, given an access sequence on N distinct pages, Pc,
Pd, and Pw

d are computed by Eqs. (5)-(7), respectively

PcðMcÞ¼ 1�
PMc

i¼1

�
Hitrc½i� þHitwc ½i�

�

PN
i¼1

�
Hitrc½i� þHitwc ½i�

�þHitrc½1� þHitwc ½1� ;

ð5Þ

PdðMdÞ ¼1�
PMd

i¼1

�
Hitrd½i� þHitwd ½i�

�

PN
i¼1

�
Hitrd½i� þHitwd ½i�

�þHitrd½1�þHitwd ½1� ;

ð6Þ

Pw
d ðMdÞ ¼ 1�

PMd
i¼1 Hitwd ½i�PN

i¼1 Hitwd ½i� þHitwd ½1� : ð7Þ

A direct implementation of the cost estimation in FD-
Buffer might incur a high runtime overhead because the
stacks are accessed randomly. In order to improve the effi-
ciency of our stack-based estimation, we use an LRU stack

for each sub-pool, and we use the group-based optimization
suggested in a previous study [17]. The basic idea of the
optimization is to group the pages by their access recency
into g groups G0, G1, . . . ; Gg�1, with each group consisting
of z pages. G0 consists of the most recently accessed pages.
The stack distances for all the pages within a group Gk are
set to approximately the same value (i.e., k � z). We maintain
the pointers to the pages in the header of each group. Upon
each page access, only the affected group headers are
updated, instead of the affected pages. As such, for each
page access, the stack-access complexity is reduced to OðDÞ,
whereD is the number of groups. As demonstrated in a pre-
vious study [17], group-based optimization can greatly
reduce overhead without significantly reducing accuracy.
In our performance evaluation, the accuracy loss in the miss
rate estimation is less than 5 percent.

4.4 Policy Advisor

The policy advisor predicts the optimal replacement for
future page references. Since workload estimation is gener-
ally difficult, we use a simple window-based estimation
method, where a window is defined as a predefined num-
ber of consecutive page references. We denote the previous
window and the current window as Win and Win0, respec-
tively. The policy advisor decides theMc value based on the
statistics collected from Win, and it uses the Mc value for
Win0.

Based on the hit counters in Win, we iterate Mc from 1 to
ðM � 1Þ, and use Eqs. (5)-(7) to compute Pc, Pd, and Pw

d val-
ues. With Pc, Pd, and Pw

d values, we use Eq. (3) to compute
the normalized average I/O cost for each Mc value. Thus,
we obtain the optimal Mc value of Win as the value that
minimizes the average I/O cost among the estimated costs.

The window size is a tuning parameter for the policy
advisor. Ideally, it should balance the gain of adaptation in
workload changes and the overhead of running the policy
advisor. If the window size is too small, the policy advisor
will be executed too often and its computational overhead
will be high. On the other hand, if the window size is too
large, the policy may not adapt well to workload changes.
Thus, we determine the window size considering the com-
putation overhead of the policy advisor. The basic idea is to
limit the overhead to a threshold ratio of q of the total I/O
cost incurred in the current window. We define the compu-
tation time of the cost estimation in the policy advisor as
Comp, and we set the window size so that the total I/O cost
reaches Comp

q . We demonstrate the effectiveness of this sim-
ple method in our experiments.

4.5 Write Clustering

Write clustering is an effective technique for exploiting the
locality of writing multiple consecutive pages to the same
erase block. The basic idea is that, since the cost of erasing
an erase block is a bottleneck for writes to flash memory,
writing multiple pages belonging to the same erase block
could reduce multiple erase operations to one. Specifically,
we group dirty pages in the buffer pool into clusters accord-
ing to their logical addresses. On the first eviction request,
we choose a victim cluster based on the metric function
developed in a previous study [34], and then we flush one

ON ET AL.: FD-BUFFER: A COST-BASED ADAPTIVE BUFFER REPLACEMENT ALGORITHM FOR FLASH MEMORY DEVICES 2295

page from the victim cluster. Each subsequent eviction
request will flush the next page from the same cluster until
the whole cluster is emptied; after that, another victim clus-
ter will be chosen, and the same process is followed. In this
way, multiple writes are likely directed to a limited number
of blocks. Although FTL hides the real logical-to-physical
address mappings, the effectiveness of this simple scheme
has been evaluated and validated for different flash mem-
ory devices [34], [39].

Compared with existing buffer-management policies
(such as CFDC), FD-Buffer has several advantages of
using the write-clustering technique. First, our cost model
prefers that the set of hot dirty pages is kept in the buffer,
and the two-pool design of FD-Buffer usually keeps more
dirty pages in the buffer, as we observed in our experi-
ments. This offers more opportunities to increase the num-
ber of dirty pages in clustered writing. Second, FD-Buffer
has less computational overhead in finding a victim clus-
ter, since all the dirty pages are already maintained in a
localized dirty pool.

There are two issues worth noting. First, the write-clus-
ter size (i.e., the number of pages in a victim cluster)
should be adapted to flash memory characteristics. To
make the clustered write fit into one erase block, we set
the cluster size as bepc, where e is the erase block size and p
is the page size of the flash memory. The e value can usu-
ally be found in product specifications, and the p value
depends on the application.

Second, to minimize the modification of our cost
model, we carefully design the conversion from dirty
pages to clean pages. In particular, during page replace-
ment, we move only the evicted dirty page to the clean
pool, and we keep all other dirty pages of the same clus-
ter in the dirty pool. This is to reduce the number of
page movements between the two pools. In practice, this
is useful because dirty pages usually have temporal
locality and will be written again soon. With this careful
design, our cost model achieves good accuracy, as will
be demonstrated in the performance evaluation.

5 PERFORMANCE EVALUATION

In this section, we evaluate our algorithms with trace-driven
experiments on real flash memory devices.

5.1 Experimental Setup

We ran our simulation experiments on a Windows work-
station with an Intel 2.4 GHz Quad-Core CPU, with 4 GB
main memory, a 160 GB 7200 rpm SATA magnetic hard
disk, and two flash memory devices. The hard disk sup-
ports 109 random reads and 100 random writes on 8 KB
pages per second. To evaluate the impact of different
asymmetry factors, we used two flash memory devices: a
Kingston SDHC 8 GB and a Sandisk Cruzer USB 8 GB.
Without on-device caches, the data access characteristics
of flash memory are well captured by the SD card and the
USB. Because they have asymmetry factors of 136 and 475,
we denote them as “Flash-136” and “Flash-475,” respec-
tively. We also use one 16 GB Mtron MOBI3500 SSD
(denoted as “Flash-25” for its asymmetry factor) to investi-
gate the performance of FD-Buffer on SSDs.

Workloads. The workloads include publicly available
benchmarks on transactional processing (TM1 [29], TPC-B
[41], and TPC-C [42]) and a file-system trace (see Table 4).
The file-system trace includes system-call I/O accesses to a
file system, named LASR.1 As for the three benchmarks,
TM1 is a telecom workload benchmark, TPC-B simulates
transactions on a hypothetical bank, and TPC-C is for online
transaction processing. To get the traces for buffer page
accesses, we ran the benchmarks on PostgreSQL with
default settings (e.g., a page size of 8 KB). For each bench-
mark, we ran the test for a sufficiently long period of time
(around 3 hours), including a 30-minute warm-up period.
The number of clients was set at 20 for all benchmarks. We
explicitly configured the buffer size to be smaller than the
data set size in order to exercise disk I/O operations. More-
over, the trace includes all of the accesses to disk pages
(including those hit in the buffer), while the logging I/Os
are not included in the trace. In addition to the default data
sets listed in Table 4, we also used a larger TPC-C data set
of 12 GB.

In order to evaluate the performance impact of work-
load dynamics, we simulated the dynamics in the read/
write ratio. In particular, we divided the TPC-C trace
into epochs, with each epoch consisting of around 5,000
page references. We dynamically changed the write ratio
w in these epochs by changing reads to writes in the
trace. We used two models for simulating workload
dynamics: (WM1) wi ¼ w0ð1þ i%Þ and (WM2) wi ¼
0:95w0 � ðimod 2Þ þ w0 � ððiþ 1Þmod 2Þ, where wi is the
write ratio in the ðiþ 1Þth epoch, and w0 is obtained in
the first epoch of the original TPC-C trace. The first
model simulates the case when write requests become
dominant in the workload, and the second model simu-
lates the case where the workload periodically changes.

Implementation for buffer manager. We implemented a
buffer manager on top of the standard OS file system
facilities. The buffer manager takes a trace as input and
performs I/O requests for the flash memory. Thus, we
can obtain the response time for each buffer page request
for the flash memory.

Both of FD-Buffer’s two pools are managed by LRU.
We set the group size to be 64 in the group-based stack-
distance calculation. We evaluate the effectiveness of FD-
Buffer in comparison with LRU, CFDC [34], and CASA
[33], the representatives of traditional disk-based and
flash-based replacement algorithms. We also imple-
mented the write-clustering technique for all of the
buffer-replacement algorithms. We use LRU as the base-
line for comparison, since LRU and its variants are the

TABLE 4
Specification of the Traces in the Experiment

1. http://iotta.snia.org/tracetypes/1.

2296 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

most widely used replacement policies in traditional
buffer managers. By default, we set the ratio of the
clean-first region in CFDC at 0.5, as in a prior study [34].
CASA is a heuristic-based adaptive algorithm for victim
selection. The comparison with CASA is meant to assess
the effectiveness of our cost-based adaptation.

To evaluate the impact of different read-write asymme-
try levels, we intentionally add latency to the read or write
operations to increase their latency. A high asymmetry
level may come from two sources—either the inherent and
static property of the device or the dynamic fragmentation
effect of the device. For instance, a hard disk has an asym-
metry factor of approximately 1, and a low-end flash mem-
ory may have a high asymmetry factor. Furthermore, due
to fragmentation, the asymmetry factor may significantly
increase on the same flash memory over time. We simu-
lated the dynamics in the asymmetry level in a way similar
to workload dynamics. In particular, we used two models
for dynamics: (RM1) IRi ¼ IR0 � ð1þ i� 0:1Þ and (RM2)
IRi ¼ 0:95 � IR0 � ðimod 2Þ þ IR0 � ððiþ 1Þmod 2Þ, where IRi is
the asymmetry value when executing the (iþ 1)th epoch of
trace, and IR0 is the initial IR value of the specific device.
The first model simulates the increasing asymmetry as the
flash memory becomes fragmented, and the second model
simulates the scenario where the fragmented flash memory
is periodically cleaned (such as by using the latest Trim
command) and restored a relatively low asymmetry.

For all of the replacement algorithms, a page that was
updated in the buffer pool is marked as dirty, and it
will be written to flash memory when it is evicted. To
avoid interference between the virtual memory of the
operating system and our buffer manager, we disabled
the buffering functionality of the operating system using
Windows APIs.

We measure the read/write speed at runtime and esti-
mate the asymmetry level online. To smooth out short-term
fluctuations in I/O speeds, we use the same method as

CASA [34], which is an n-point moving average of the mea-
sured values. By default, the size of each workload estima-
tion window is set to 5,000 page references so that the
overhead of the policy advisor does not exceed 1 percent.
We also experimentally evaluate the impact of different
window sizes.

5.2 Results

Now we present the results of trace-driven simulations on
the flash memory devices. We vary the buffer size and the
simulated asymmetry factor in the evaluation. By default,
the buffer is set at 3 percent of the data set size, and we do
not add any latency to read/write operations.

Evaluating miss-rate estimations. Table 5 shows the average
errors between the estimations and measurements on Pc, Pd,
and Pw

d values for running all of the traces under the default
settings on Flash-136. The results on Flash-475 are similar
and hence omitted to save space.

The error is defined as e ¼ jv�v0 j
v � 100%, where v is the

measured value and v0 is the estimated value. We compare
the estimations with and without present conditions, denoted
as “w/ PR” and “w/o PR.” As the results show, the exten-
sion of using present conditions significantly reduces the esti-
mation error. In particular, the improvement is most
significant for Pc, since Pc is affected most by page move-
ment between the two stacks in the Two-Stack algorithm.
Such a small error is important for the effectiveness of our
adaptation.

Overall comparison. Figs. 2 and 3 show the average I/O
cost of FD-Buffer compared to LRU, CFDC, and CASA on
the two flash memory devices. All algorithms are with write
clustering enabled. According to the device specifications,
we set the write cluster size to 256 on both Flash-136 and
Flash-475. FD-Buffer significantly outperforms the other
three algorithms in most cases. Compared with LRU,
CFDC, and CASA, the average improvement of FD-Buffer
on the four traces is 30.4, 18.1, and 18.1 percent on Flash-136
and 33.4, 24.2, and 15.4 percent on Flash-475, respectively.

As for computational overhead, FD-Buffer and CASA
have a similar cost, which is only about 0.2 percent of
total I/O time. Such a small overhead is negligible to FD-
Buffer, thanks to the group-based optimization for decid-
ing stack distances in the Two-Stack algorithm. Moreover,
the estimation of buffer miss rates is performed only at
the beginning of each workload estimation window. As a
result, it achieves a computational overhead comparable
to CASA, where each buffer hit may incur a buffer-pool
adjustment.

TABLE 5
Miss Rate Estimation with and without Present Conditions

in FD-Buffer

Fig. 2. Avg. I/O cost of different algorithms (Flash-136).

Fig. 3. Avg. I/O cost of different algorithms (Flash-475).

ON ET AL.: FD-BUFFER: A COST-BASED ADAPTIVE BUFFER REPLACEMENT ALGORITHM FOR FLASH MEMORY DEVICES 2297

To better understand the performance improvement of
our algorithm, we next examine the number of buffer
misses, the effectiveness of adaptation, and the impact of
write-cluster size. Since we observed similar results of run-
ning the four traces on the two flash memory devices, in the
following part, we present the results of running TPC-C on
Flash-136 only.

Table 6 compares the number of reads and writes and the
total number of disk operations for different algorithms
running TPC-C on Flash-136. Being aware of the read-write
asymmetry, CFDC, CASA, and FD-Buffer all have a smaller
number of writes than LRU, with the cost of incurring a
larger number of reads. This results in a higher buffer miss
rate for these three algorithms in comparison with LRU.
Nevertheless, due to the read-write asymmetry of flash
memory, they have better overall performance than LRU.
Among the flash-aware algorithms, CFDC is static, and
CASA and FD-Buffer are both adaptive. The cost model in
FD-Buffer guides the buffer management to adaptively give
priority to dirty pages. Consequently, FD-Buffer has a
smaller number of writes than CFDC and CASA, and FD-
Buffer achieves the best overall performance.

Fig. 4 shows the number of clean pages in FD-Buffer and
CASA while they run TPC-C. FD-buffer has a more fluctu-
ated pattern on the clean pool size. To gain more insight
into this pattern, we also plot the ratio of the total read cost
to the total I/O cost for each workload estimation window.
We can see that this ratio also fluctuates, and FD-Buffer
more closely follows this fluctuation. In contrast, CASA is
not very sensitive to these fluctuations. This demonstrates
that FD-buffer is more adaptive to the read/write cost fluc-
tuations in the workload.

Fig. 5 shows the average number of clean pages for dif-
ferent algorithms running TPC-C. FD-Buffer has the small-
est average number of clean pages. Since LRU does not
separate the clean and dirty pages, it has the worst combina-
tion of read/write counts. Although CFDC separates the
clean and dirty pools, it fails to manage them adaptively.
With adaptive adjustments of the clean/dirty pool size, FD-
Buffer has a relatively large number of dirty pages in its
buffer pool. This enables it to take greater advantage of clus-
tered writing. To verify this, Fig. 6 shows the average

number of dirty pages in a write cluster for the four algo-
rithms. As expected, FD-Buffer has the largest number of
dirty pages—12.3 percent more than that of CASA.

Finally, Fig. 7 shows the experimental results on Flash-
25 with a larger TPC-C data set. We set the data set size to
be 12 GB, which is close to the storage capacity of Flash-
25, and the ratio of buffer size to data set size is kept at
3 percent. We can see that FD-Buffer significantly outper-
forms LRU by 37.4 percent and CFDC by 32.2 percent.
The improvement over CASA is slightly smaller (10.9 per-
cent), due to a small asymmetry factor.

Comparison under various settings. We now present
parametric studies that vary the buffer size, the asymmetry
level, and workload dynamics. Since we obtained similar
results on the four traces, in the interest of space, we focus
our discussion on the TPC-C trace with Flash-136 only.
Fig. 8 shows the average I/O cost for the four algorithms
when the ratio of buffer size to data set size is varied from
0.75, 1.5, 3, to 6 percent. As the buffer size increases, the
improvement of FD-Buffer over CASA increases from 9 to
24 percent. This is mainly because FD-Buffer considers the
buffer size in the cost model, whereas CASA adjusts the
clean pool based on heuristics only.

Fig. 9 compares the average I/O cost for the four algo-
rithms using models with different asymmetry levels IR. In
the RM1 model, where the IR value continuously increases,
FD-Buffer achieves a higher improvement than the static
algorithms, such as LRU and CFDC. This is because FD-
Buffer has the capability to adaptively adjust the clean/
dirty pool size. A similar trend is observed in the RM2

model, where the IR value changes periodically. Compared
to the adaptive algorithm—CASA, the improvement of FD-
Buffer is higher in the RM2 model than in the RM1 model,
which suggests that FD-Buffer is able to capture the periodic
changes in IR values well.

Fig. 10 shows the average I/O cost for the four algo-
rithms with dynamic workloads. For WM1, since there

TABLE 6
Disk Read and Write Operations for Different Algorithms

(TPC-C, Flash-136)

Fig. 4. Number of clean pages during the execution time of TPC-C for
FD-Buffer and CASA (Flash-136).

Fig. 5. Average number of clean pages (TPC-C, Flash-136).

Fig. 6. Average number of dirty pages in a write cluster (TPC-C, Flash-
136).

2298 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

are increasingly more writes, the effect of clustered writ-
ing is significant, which narrows the performance gaps
between the algorithms. This is consistent with the find-
ings of a previous study [34]. For WM2, since the work-
load is more dynamic, the improvement of FD-Buffer
over CASA is increased by 2-9 percent, showing the
robust adaptivity of our proposed algorithm.

Next, we examine the effect of window size in per-
forming workload estimation, which determines the fre-
quency of running the policy advisor in FD-Buffer.
Fig. 11 shows the results of increasing the estimation win-
dow size from 0.25 to 5 times of the default size. The
overall performance is almost steady for all workloads
when the window size is between 0.25 and 1. The run-
time overhead of FD-Buffer increases slightly from 0.2 to
1 percent when the window size is decreased from 1 to
0.25. On the other hand, our adaptation on the clean and
dirty pool sizes is more effective, which cancels out the
small increase in runtime overhead. When the window
size is increased from 1 to 5, the runtime overhead is
reduced to below 0.1 percent. Nevertheless, the adaption
of buffer management to the workload changes is weak-
ened so that the overall performance is degraded slightly,
by 2.7-7.1 percent.

Finally, we investigate the effect of varying the epoch
size, which determines the fluctuation frequency of the syn-
thetic workloads. The smaller the epoch size, the more

frequent the workload changes. Fig. 12 compares the results
of the two adaptive algorithms (CASA and FD-Buffer)
under smaller epoch sizes of 1,250 and 2,500 page references
(5,000 is the default setting). For the WM1 workload in
Fig. 12a, the performance improvement of FD-Buffer over
CASA remains at 4 percent, as consistent with Fig. 10. For
the WM2 workload in Fig. 12b, when the epoch size is
smaller, the performance of FD-Buffer is slightly worse.
Nevertheless, the improvement over CASA is still more
than 20 percent, which demonstrates the robustness of our
FD-Buffer.

In summary, FD-Buffer outperforms the other three algo-
rithms in all aspects, regardless of the buffer size, IRmodels,
and the model of workload dynamics. In particular, its per-
formance gain over the existing algorithms becomes larger
when the buffer size is larger, the asymmetry level or the
read/write workload is more dynamic.

6 CONCLUSIONS

This paper studies buffer management in flash memory
devices, with a focus on read-write asymmetry and work-
load dynamics. We have developed a cost-based adaptive
buffer replacement algorithm named FD-Buffer, which
automatically adapts to the flash memory characteristics
and the runtime workload. The atomicity of FD-Buffer
significantly reduces the ownership cost of systems run-
ning on flash memory devices. Our experimental studies
show that FD-Buffer outperforms the existing algorithms,
with 4.0-33.4 percent performance improvement under
various settings. It is demonstrated to be more effective to
dynamic system environments where the asymmetry level
and/or read/write workload change over time.

In future work, we are interested in further improving
the efficiency of FD-Buffer with other traditional replace-
ment polices (such as 2Q [15]) and with optimizations on
write patterns to flash memory.

Fig. 7. Experimental results on the SSD (TPC-C, Flash-25).

Fig. 8. Average I/O cost with different buffer sizes (TPC-C, Flash-136).

Fig. 9. Average I/O cost under the models with varying IR (TPC-C, Flash-
136).

Fig. 10. Average I/O cost under different synthetic workloads (TPC-C,
Flash-136).

Fig. 11. Varying the estimation window size under synthetic workloads
(TPC-C, Flash-136).

ON ET AL.: FD-BUFFER: A COST-BASED ADAPTIVE BUFFER REPLACEMENT ALGORITHM FOR FLASH MEMORY DEVICES 2299

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments. This work was supported in
part by a start-up grant (M4080102.020) of Nanyang Tech-
nological University, Singapore, the Research Grants
Council of Hong Kong SAR, China (Grants 211510 and
HKBU211212), and the Natural Science Foundation of
China (Grant 60833005).

REFERENCES

[1] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and S. Singh,
“Lazy-Adaptive Tree: An Optimized Index Structure for Flash
Devices,” Proc. VLDB Endowment, vol. 2, pp. 361-372, 2009.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse,
and R. Panigraphy, “Design Tradeoffs for SSD Performance,”
Proc. USENIX Ann. Technical Conf., 2008.

[3] S. Bansal and D.S. Modha, “CAR: Clock with Adaptive
Replacement,” Proc. Third USENIX Conf. File and Storage Technolo-
gies (FAST), 2004.

[4] L.A. Belady, “A Study of Replacement Algorithms for a Virtual-
Storage Computer,” IBM Systems J., vol. 5, pp. 78-101, 1966.

[5] L. Bouganim, B.T. J�onsson, and P. Bonnet, “uFLIP: Understanding
Flash IO Patterns,” Proc. Fourth Biennial Conf. Innovative Data Sys-
tems Research (CIDR), 2009.

[6] U. Cesana and Z. He, “Multi-Buffer Manager: Energy-Efficient
Buffer Manager for Databases on Flash Memory,” ACM Trans.
Embedded Computing Systems, vol. 9, article 28, 2010.

[7] F. Chen, D. Koufaty, and X. Zhang, “Understanding Intrinsic
Characteristics and System Implications of Flash Memory Based
Solid State Drives,” Proc. 11th Int’l Joint Conf. Measurement and
Modeling of Computer Systems (SIGMETRICS), 2009.

[8] S. Chen, “Flashlogging: Exploiting Flash Devices for Synchronous
Logging Performance,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD), 2009.

[9] S. Chen, A. Ailamaki, M. Athanassoulis, P.B. Gibbons, R.
Johnson, I. Pandis, and R. Stoica, “TPC-E vs. TPC-C: Charac-
terizing the new TPC-E Benchmark via an I/O Comparison
Study,” ACM SIGMOD Record, vol. 39, pp. 5-10, Feb. 2011.

[10] H.-T. Chou and D.J. DeWitt, “An Evaluation of Buffer Manage-
ment Strategies for Relational Database Systems,” Proc. 11th Int’l
Conf. Very Large Data Bases (VLDB), 1985.

[11] J. Gray. Tape is dead, disk is tape, flash is disk, RAM locality is
king. Pres. at the CIDR Gong Show, 2007.

[12] Worldwide Solid State Drive 2008-2012 Forecast and Analysis: Enter-
ing the No-Spin Zone. IDC, 2008..

[13] P. Jin, Y. Ou, T. H€arder, and Z. Li, “AD-LRU: An Efficient Buffer
Replacement Algorithm for Flash-Based Databases,” Data and
Knowledge Eng., vol. 72, pp. 83-102, 2012.

[14] H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee, “FAB: Flash-
Aware Buffer Management Policy for Portable Media Players,”
IEEE Trans. Consumer Electronics, vol. 52, no. 2, pp. 485-493, May
2006.

[15] T. Johnson and D. Shasha, “2Q: A Low Overhead High Perfor-
mance Buffer Management Replacement Algorithm,” Proc. 20th
Int’l Conf. Very Large Data Bases (VLDB), 1994.

[16] H. Kim and S. Ahn, “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage,” Proc. Sixth USENIX
Conf. File and Storage Technologies (FAST), 2008.

[17] Y.H. Kim, M.D. Hill, and D.A. Wood, “Implementing Stack Simu-
lation for Highly-Associative Memories,” ACM SIGMETRICS Per-
formance Evaluation Rev., vol. 19, no. 1, pp. 212-213, 1991.

[18] S.-W. Lee and B. Moon, “Design of Flash-Based Dbms: An In-Page
Logging Approach,” Proc. ACM SIGMOD Int’l Conf. Management
of Data (SIGMOD), 2007.

[19] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A Case for
Flash Memory SSD in Enterprise Database Applications,” Proc.
ACMSIGMOD Int’l Conf. Management of Data (SIGMOD), 2008.

[20] Y. Li, B. He, Q. Luo, and K. Yi, “Tree Indexing on Flash Disks,”
Proc. IEEE Int’l Conf. Data Eng. (ICDE), 2009.

[21] Y. Li, B. He, R.J. Yang, Q. Luo, and K. Yi, “Tree Indexing on Solid
State Drives,” Proc. VLDB Endowment, vol. 3, pp. 1195-1206, 2010.

[22] Y. Li, S.T. On, J. Xu, B. Choi, and H. Hu, “Optimizing Non-
Indexed Join Processing in Flash Storage-Based Systems,” IEEE
Trans. Computers, vol. 62, no. 7, pp. 1417-1431, July 2013.

[23] Z. Li, P. Jin, X. Su, K. Cui, and L. Yue, “CCF-LRU: A New Buffer
Replacement Algorithm for Flash Memory,” IEEE Trans. Consumer
Electronics, vol. 55, no. 3, pp. 1351-1359, Aug. 2009.

[24] Y. Lv, B. Cui, B. He, and X. Chen, “Operation-Aware Buffer Man-
agement in Flash-Based Systems,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD), pp. 13-24, 2011.

[25] R.L. Mattson, J. Gecsei, D.R. Slutz, and I.L. Traiger, “Evaluation
Techniques for Storage Hierarchies,” IBM System J., vol. 9, no. 2,
p. 78, 1970.

[26] N. Megiddo and D.S. Modha, “ARC: A Self-Tuning, Low Over-
head Replacement Cache,” Proc. Second USENIX Conf. File and
Storage Technologies (FAST), 2003.

[27] S.L. Min and E.H. Nam, “Current Trends in Flash Memory Tech-
nology: Invited Paper,” Proc. Asia and South Pacific Design Automa-
tion Conf., pp. 332-333, 2006.

[28] D. Myers, “On The Use of Nand Flash Memory in High-
Performance Relational Databases,” Msc thesis, MIT, 2008.

[29] Nokia, Network Database Benchmark, http://hoslab.cs.helsinki.fi/
homepages/ndbbenchmark/, 2014.

[30] S.T. On, Y. Li, B. He, M. Wu, Q. Luo, and J. Xu, “FD-Buffer: A
Buffer Manager for Databases on Flash Disks,” Proc. 19th ACM
Int’l Conf. Information and Knowledge Management (CIKM), 2010.

[31] S.T. On, J. Xu, B. Choi, H. Hu, and B. He, “Flag Commit: Support-
ing Efficient Transaction Recovery in Flash-Based DBMSs,” IEEE
Trans. Knowledge and Data Eng., vol. 24, no. 9, pp. 1624-1639, Sept.
2012.

[32] E.J. O’Neil, P.E. O’Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD), 1993.

[33] Y. Ou and T. H€arder, “Clean First or Dirty First? A Cost-Aware
Self-Adaptive Buffer Replacement Policy,” Proc. 14th Int’l Database
Eng. and Applications Symp. (IDEAS), pp. 7-14, 2010.

[34] Y. Ou, T. H€arder, and P. Jin, “CFDC: A Flash-Aware Replacement
Policy for Database Buffer Management,” Proc. Fifth Int’l Workshop
Data Management on New Hardware (DaMoN), 2009.

[35] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim, “A
Reconfigurable FTL (Flash Translation Layer) Architecture for
Nand Flash-Based Applications,” ACM Trans. Embedded Comput-
ing Systems, vol. 7, article 38, Aug. 2008.

[36] C.-M. Park, K.-Y. Whang, J.-J. Lee, and I.-Y. Song, “A Cost-Based
Buffer Replacement Algorithm for Object-Oriented Database Sys-
tems,” Information Sciences—Informatics and Computer Science,
vol. 138, pp. 99-118, Aug. 2001.

[37] S.Y. Park, D. Jung, J.U. Kang, J. Kim, and J.W. Lee, “CFLRU: A
Replacement Algorithm for Flash Memory,” Proc. Int’l Conf. Com-
pilers, Architecture and Synthesis for Embedded Systems (CASES), 2006.

Fig. 12. Varying epoch size of the synthetic workloads (TPC-C, Flash-
136).

2300 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

[38] D. Seo and D. Shin, “Recently-Evicted-First Buffer Replacement
Policy for Flash Storage Devices,” IEEE Trans. Consumer Electron-
ics, vol. 54, no. 3, pp. 1228-1235, Aug. 2008.

[39] R. Stoica, M. Athanassoulis, R. Johnson, and A. Ailamaki,
“Evaluating and Repairing Write Performance on Flash Devices,”
Proc. ACM Fifth Int’l Workshop Data Management on New Hardware
(DaMoN ’09), pp. 9-14, 2009.

[40] X. Tang and X. Meng, “ACR: An Adaptive Cost-Aware Buffer
Replacement Algorithm for Flash Storage Devices,” Proc. Int’l
Conf. Mobile Data Management (MDM), pp. 33-42, 2010.

[41] TPC-B, TPC Benchmark B: Standard Specification, http://www.tpc.
org/tpcb/spec/tpcb_current.pdf, 2014..

[42] TPC-C, TPC Benchmark C: Standard Specification, http://www.tpc.
org/tpcc/spec/tpcc_current.pdf, 2014.

[43] D.N. Tran, P.C. Huynh, Y.C. Tay, and A.K.H. Tung, “A New
Approach to Dynamic Self-Tuning of Database Buffers,” Trans.
Storage, vol. 4, pp. 3:1-3:25, May 2008.

[44] D. Tsirogiannis, S. Harizopoulos, M.A. Shah, J.L. Wiener, and G.
Graefe, “Query Processing Techniques for Solid State Drives,”
Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD),
2009.

[45] C.-H. Wu, “A Self-Adjusting Flash Translation Layer for
Resource-Limited Embedded Systems,” ACM Trans. Embedded
Computing System, vol. 9, article 31, 2010.

Sai Tung On received the BEng degree in soft-
ware engineering from Tsinghua University,
Beijing, China. He is currently working toward
the MPhil degree in the Department of Com-
puter Science at Hong Kong Baptist University
His research interests include data manage-
ment on novel storage media.

Shen Gao received the BSc degree in computing
studies (information systems) from Hong Kong
Baptist University where he is currently working
toward the MPhil degree in the Department of
Computer Science. His research interests include
data management for next-generation storage
devices. He is a student member of the ACM.

Bingsheng He received the bachelor’s degree in
computer science from Shanghai Jiao Tong Uni-
versity (1999-2003), and the PhD degree in com-
puter science from the Hong Kong University of
Science and Technology (2003-2008). He is cur-
rently an assistant professor in the Division of
Computer Science, School of Computer Engi-
neering of Nanyang Technological University,
Singapore. His research interests include high
performance computing, distributed and parallel
systems, and database systems.

Ming Wu received the bachelor’s degree in
computer science from the University of Science
and Technology of China (1997-2002), and the
PhD degree in computer science from the Insti-
tute of Computing Technology, Chinese Acad-
emy of Science (2002-2007). He is currently a
researcher in the Systems Research Group,
Microsoft Research Asia. His research interests
include high performance computing, distributed
and parallel systems, and transaction process-
ing systems.

Qiong Luo received the PhD degree in computer
sciences from the University of Wisconsin-
Madison in 2002. She is currently an associate
professor in the Department of Computer Sci-
ence and Engineering, Hong Kong University of
Science and Technology. Her research interests
include database systems, parallel and distrib-
uted systems, and scientific computing.

Jianliang Xu received the BEng degree in com-
puter science and engineering from Zhejiang Uni-
versity, Hangzhou, China, in 1998, and the PhD
degree in computer science from the Hong Kong
University of Science and Technology in 2002.
He is currently an associate professor in the
Department of Computer Science, Hong Kong
Baptist University. He held visiting positions at
Pennsylvania State University and Fudan Univer-
sity. His research interests include data manage-
ment, mobile/pervasive computing, wireless

sensor networks, and distributed systems. He has published more than
110 technical papers in these areas. He was a vice chairman of the
ACM Hong Kong Chapter and is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ON ET AL.: FD-BUFFER: A COST-BASED ADAPTIVE BUFFER REPLACEMENT ALGORITHM FOR FLASH MEMORY DEVICES 2301

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

