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Abstract—Virtual machine (VM) interference has long been
a challenging problem for performance predictability and
system throughput for large-scale virtualized environments in
the cloud. Such interferences are contributed by intertwined
factors including the application’s type, the number of con-
current VMs, and the VM scheduling algorithms used within
the host. Since MapReduce has become an important data
processing platform in the cloud, we investigate the impact
of disk schedulers in Hadoop. Interestingly, our experimental
results report a noticeable variation of the Hadoop performance
between different applications when applying different disk
pairs’ schedulers in both the hypervisor and the virtual
machines. Furthermore, a typical Hadoop application consists
of different interleaving stages, each requiring different I/O
workloads and patterns. As a result, the disk pairs’ schedulers
are not only sub-optimal for different MapReduce applications,
but also sub-optimal for different sub-phases of the whole
job. Accordingly, this paper presents a novel approach for
adaptively tuning the disk pairs’ schedulers in both the
hypervisor and the virtual machines during the execution of a
single MapReduce job. Our results show that MapReduce per-
formance can be significantly improved; specifically, adaptive
tuning of disk pairs’ schedulers achieves a 25% performance
improvement on a sort benchmark with Hadoop.

Keywords-Virtual Machine; MapReduce; Hadoop; Disk I/O
Scheduler; Meta-Scheduler;

I. INTRODUCTION

Virtualization technology has become increasingly im-
portant for supporting efficient and flexible resource provi-
sioning. By means of this technique, cloud computing pro-
vides users with the ability to perform elastic computation
using large pools of VMs, without facing the burden of
owning or maintaining physical infrastructure. Virtualization
provides many benefits, including high resource utilization,
performance isolation, ease of management, and flexibility
of user-tailored environment deployment. Currently there are
several commercial virtualization software (such as VMware
[1], VirtualBox [2], and Windows Hyper-V [3]), while Xen
[4] is the most widely used open source virtual machine
monitor (VMM), for example, Amazon uses Xen as its
virtualization-enabling technology for its infrastructure as a
service, particularly in the Amazon Elastic Compute Cloud

(EC2) [5].
Meanwhile, the MapReduce programming model [6] has

become an essential component for data-intensive applica-
tions in the cloud. Due to its remarkable features including
simplicity, fault tolerance, and scalability, MapReduce is by
far the most powerful realization of data intensive cloud
computing. It is often advocated as an easier-to-use, efficient
and reliable replacement for the traditional programming
model of moving the data to the computation. MapReduce
has been applied widely in various fields including data- and
compute-intensive applications [7][8][9]. The popular open
source implementation of MapReduce, Hadoop [10], was
developed primarily by Yahoo!, where it processes hundreds
of terabytes of data on at least 10,000 cores, and is now used
by other companies, including Facebook, Amazon, Last.fm,
and the New York Times [11].

Although, MapReduce has been widely studied and con-
siderable experience has been gained in clusters or data cen-
ters, there are few studies on the performance of MapReduce
in VM-based system such as virtual clusters and clouds. Pre-
vious studies with Hadoop demonstrate a noticeable degra-
dation in the MapReduce performance in virtual clusters and
clouds [12][13][14]. Further studies reveal that the cause
for such performance degradation is the VM interference,
in particular the network I/O interference [15], that is, all
the VMs within the same physical environment are sharing
the network I/O resources. Lately, many techniques have
been proposed to improve or analyze Hadoop’s performance
in VM-based clusters. Their main focus is to reduce the
network overhead [16][17] and minimize the number of
the speculative tasks caused by the network heterogeneity
when varying the number of VMs which are deployed
on each cluster’s machines [15]. Despite the fact that the
main focus of the aforementioned work is network I/O
interference impacts on MapReduce performance in Xen-
based cloud, all these methods require MapReduce to be
aware of the runtime dynamics of virtualized environments.
This global knowledge is hard to get. Even worse, that means
MapReduce needs to be aware of virtualization, which hurts
the simplicity and ease-to-use features.
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(c) Three VMs

Figure 1. The variation of performance scores for different disk pairs’ schedulers in Xen with different VM consolidation, using Sysbench to create in
parallel one process per each VM to sequentially write 1GB to 16 files: (a) one VM is uniquely deployed within the physical machine, (b) two VMs are
deployed within the physical machine and, (c) three VMs are sharing the physical machine.

Instead of changing the MapReduce code base, we investi-
gate whether we can develop virtualization techniques to im-
prove the performance of MapReduce in specific cases, and
other data-intensive applications in general. VM interference
depends on various factors. First, the type of application;
second, the number of VMs; third, the VM scheduling
algorithms in the hypervisor [18][19][20][21][22]. In addi-
tion, the impacts of the VM’s interference caused by disk
contention is as important, if not more important in some
applications, as the ones caused by network contention. For
example, as shown in Fig. 1, where we observe the elapsed
time of the Sysbench benchmark [23], when sequentially
writing 1GB to 16 files, varies significantly according to
the number of VMs sharing the same physical machine.
The elapsed time increases by a factor of 3.5X and 8.5X
on average when the number of VMs deployed within a
physical machine is 2VMs and 3VMs respectively. More
importantly, our studies with our local cluster reveal that
the performance score of I/O application varies along with
the associated disk pair schedulers within both the Dom0
and DomUs, where the elapsed time varies by 16% on
average when selecting different disk pairs’ schedulers,
regardless of the number of VMs deployed per physical
node. Furthermore, we can easily see that the default pair
schedulers1(CFQ, CFQ) is not the best choice. In addition,
as in the new computation to data paradigm, the data that
needs to be processed by the disk is somewhat larger than
the one need to be transferred by the network, in this paper,
we investigate the impacts of disk schedulers in Hadoop.
As far as we know, no previous studies have illustrated the
impacts of VMs interference brought by disk I/O contention
along with the appropriate selection of disk pair schedulers
within the VMM and VMs on data intensive applications in
a virtualized environment (MapReduce-based applications).

1In this paper, by pair schedulers, we mean a pair of disk schedulers,
one within the VMM and the second within the VMs, referred to as (disk
scheduler in VMM-level, disk scheduler in VMs-level).

Accordingly, a series of experiments are conducted to
measure the performance of Hadoop on a Xen-based cluster
with different pairs’ schedulers. Interestingly, our experi-
mental results report not only a noticeable variation of the
Hadoop performance with different applications and with
different pairs schedulers, but also demonstrate the oppor-
tunity to achieve better performance, for example, when
we are using the pair (Anticipatory, Deadline), we achieve
a 9% performance improvement for the sort benchmark,
while using the pair (Anticipatory, CFQ), we can achieve
the best performance score for the wordcount benchmark.
Hence, different pair schedulers are only sub-optimal for
different MapReduce applications. Moreover, MapReduce
applications consist of different phases, in which the applica-
tion performs different I/O workloads with different patterns.
Therefore, taking advantage of the feature of dynamically
tuning the disk schedulers in both VMM and VMs, we inves-
tigate the performance improvement that can be achieved by
changing the disk pair schedulers at different points during
the Hadoop execution. We implement our scheme by first
manually dividing the Hadoop program into phases based
on the characteristics of Hadoop applications. If there are
phases in an application and a possible pair scheduler, there
are unique solutions, where a solution is an assignment of
disk pair schedulers to each phase.

However, dynamic disk scheduler tuning might not be
able to outperform the best case when a single scheduler
is used for all phases due to the penalty of the switching
overhead, that is, the time cost of switching among different
disk schedulers on VMMs and VMs. Even worse, the cost
of switching the disk pairs’ schedulers varies according to
the first state and the second state. Thus we must offset
the variation in the penalties of the switch cost. We present
a novel heuristic that searches the space of solutions. It
executes a solution and evaluates the performance score
including the switch cost. Based on the evaluation, it selects
the next solution to evaluate.
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Performance results on Hadoop show that our heuristic
finds an effective solution. Specifically we find several
solutions that use different pairs’ schedulers per phases
that are superior to any solution that uses a single pair
schedulers for all phases. For example, the sort benchmark
using multiple pairs’ schedulers outperforms the default pair
scheduler (CFQ, CFQ) and the best single scheduler solution
by 25% and 10% respectively. Moreover, the performance
improvement is proportional to the data size, VM consoli-
dation degree and system scale.

The primary contributions of this paper are as follows:

1. It demonstrates that significant potential exists for
performance improvement in applications, particularly
MapReduce applications, when choosing the appropri-
ate disk pair schedulers within both VMMs and VMs.

2. It proposes a new methodology to adaptively tune the
disk pairs’ schedulers to improve the overall perfor-
mance of the applications.

The rest of this paper is organized as follows: Section 2
briefly presents MapReduce and Xen I/O schedulers. Section
3 reports on our empirical study on the impacts of the
different disk pairs’ schedulers on Hadoop. The design of
our adaptive meta-scheduler method is discussed in section
4. In sections 5, we detail the performance evaluation of our
methodology and discuss our results. Section 6 discusses the
related work. Finally, we conclude the paper and propose our
future work in section 7.

II. BACKGROUND

In this section, we briefly introduce MapReduce and Xen
I/O schedulers.

A. MapReduce Programming Model

The MapReduce [6] abstraction is inspired by the Map
and Reduce functions, which are commonly used in func-
tional languages such as Lisp. Users express the computation
using two functions, map and reduce, which can be carried
out on subsets of the data in a highly parallel manner. The
runtime system is responsible for parallelizing and fault
handling.

B. Xen I/O Schedulers

The Xen hypervisor is a para-virtualizing virtual machine
monitor [4][24] in which the machine architecture presented
to an operating system is not identical to the underlying
hardware. The Xen hypervisor is responsible for resource
(CPU, memory and I/O device, etc.) allocation for the
various virtual machines running on the same hardware
device.

Xen is unique among VMM software because it allows
users to choose among different CPU schedulers and disk
I/O schedulers. The disk I/O scheduler performs two basic
operations: merging and sorting. While the merging opera-
tion reduces the number transactions between the guest-OS

and the VMM by merging adjacent I/O requests, the sorting
operation arranges pending I/O requests in block order to
minimize the seek time. There are currently four available
disk I/O schedulers in the 2.6 Linux kernels: Noop, Antic-
ipatory, Deadline, and Complete Fair Queuing Scheduler
(CFQ), (more details can be found in [18][20][25]).

III. EMPIRICAL STUDY OF HADOOP

A. Experimental Environment

We have conducted the experiments on a local cluster
of four nodes, with 32 CPU cores in total. Each node is
equipped with two quad-core 2.33GHz Xeon processors,
8GB of memory and one dedicated SATA disk of 1TB, run-
ning RHEL5 with kernel 2.6.22, and is connected with 1Gb/s
Ethernet. This capable server allows us to deploy multiple
virtual machines on each host. In VM-based environments,
we use Xen 3.4.2 [4]. The VMs are running with RHEL5
with kernel 2.6.22. Four VMs are deployed within each host,
and each VM is configured with 1GB memory and 1 VCPU
pinned to its own core. Thus, the total number of VMs is 16.
All results described in this paper are obtained using Hadoop
version 0.19.0. Each data node processes 512MB on average
and the data is stored with 2 replicas per chunk in Hadoop
Distributed File System (HDFS). In all our experiments, we
use the Xen credit scheduler as the default CPU scheduler
[26]. All results are reported based on the average of three
consecutive runs of the benchmarks.

1) Benchmarks: The performance of the disk schedulers
vary with workloads. In the MapReduce application, dif-
ferent tasks are performed simultaneously, such as read the
input of a new map task while writing the output of previous
map to the local disk. Thus, selecting the appropriate disk
schedulers is dominated by the I/O patterns along with the
number of requests issued by the different workloads and
data size. However, most of the MapReduce applications’
workloads adopt a similar I/O pattern, leaving the decision
of selecting the appropriate disk scheduler to the data size
of each workload. Hence, MapReduce applications exhibit
different behavior according to the data size of the map
output and reduce input. To this end, we classify the
MapReduce applications in term of disk operations into:
heavy, moderate and light. The applications are termed as
heavy disk operations when map output and the reduce
output are relatively big and the applications are classified
as moderate disk operations when only the map output is
big, otherwise the applications are light disk operations.
Accordingly, we use the three simple and widely used
benchmarks to mimic the three aforementioned applications
type: default wordcount, wordcount without combiner, and
stream sort.

∙ WordCount- With combiner. In map stage, the map
function maps data chunk (text file) into sets of
key/value pairs, where the key is the read word from
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Figure 2. Impacts of the different I/O schedulers pairs on MapReduce performance in virtualized cluster: (a) Wordcount benchmark, (b) Wordcount
without combiner benchmark, and (c) Sort benchmark.

the file and the value is a count of one (word, 1),
and buffers these pairs in the buffer memory. If the
buffered data reaches the buffer threshold, a combine
function (reduce-type function) will be performed on
the in-memory map output and outputs (word, count-
in-this-part-of-the-input) pairs to disk [27]. As a result,
fewer pairs will be written to disk and then read from
disk in reduce phase.

∙ WordCount w/o Combiner. Similar to the wordcount
benchmark but no combiner function will be applied
on the in-memory map output. Thus there is a huge
amount of data to be written to the disk, as the map
output is nearly 1.7 times the size of the data input.

∙ Stream Sort. Each mapper sorts the data locally, and the
reducer merges the result from all the mappers. The
map input and the reduce output have the same data
size as the input data.

2) Methodology: In our experiments we manually select
the combinations of different disk I/O schedulers within the
VMM and the VMs, giving the possibility of 16 disk pairs’
schedulers.

B. Macroscopic Analysis

In this section, we seek to obtain a big-picture under-
standing the impacts of the disk I/O schedulers on Hadoop
applications performances. In particular, we intend to answer
the following questions:
Q1. Is the default disk pair schedulers, namely (CFQ,

CFQ) the optimal solution for Hadoop applications?
Q2. How significant is the impact of selecting the appro-

priate pair schedulers on applications performance?
Fig. 2 shows the execution time of wordcount (with

and without combiner) and sort benchmarks with different
disk pair schedulers in Xen. Our first observation is that
the default pair scheduler (CFQ, CFQ) is not the optimal
solution regardless the tested benchmark. In addition, as
expected, the execution time varies according to the selected
disk I/O pair schedulers as well as the running application.

For instance, the execution time varies 1.5%, 29% (4.5%
excluding Noop2 in VMM), and 45% (10% excluding Noop
in VMM) for the wordcount, wordcount w/o combiner, and
sort benchmark, respectively. This can be explained by the
data size along with I/O workload and pattern which will
be operated on the data input and output during the map
and reduce phases. For instance, the performance variation
of the wordcount application is very small as shown in Fig.
2-a, which can be explained due to the small fraction of the
data which needs to be written to the local disk, in instance
the map output and the reduce input. However, the main
disk operations are sequential reads when reading the data
from the HDFS disk, 512 MB per VM. Thus, Anticipatory
is the best disk scheduler candidate within the VMM, due
to it’s “seeking-conserving” behavior, which is based on
the observation that a process will perform multiple I/O
operations within short time duration. Moreover, as each VM
performs two concurrent maps, fairness when reading the
map input for each process is important to achieve better
overall performance, therefore the CFQ scheduler is good
disk scheduler candidate within the VMs. As a result, the
disk pair scheduler (Anticipatory, CFQ) performs the best
with an improvement score of 4.5% compared to the default
scheduler.

Surprisingly, in the case of the wordcount without com-
biner, as shown in Fig. 2-b, the best solution (Anticipa-
tory, Noop) side by side with (Deadline, Noop) outbalance
the default solution by only 6%. We have expected the
improvement ratio to be higher as the amount of data
needs to be written to the disk is rather large compared
to the default wordcount benchmark. However, this results
can be explained due to the different I/O workloads that
the application exhibits while running, (i.e. the main disk
operations are a mix of processes doing synchronous and

2We additionally show the results excluding the ones when Noop is
selected as disk scheduler in the VMM for both Wordcount w/o combiner
and sort benchmark because the applications’ performances are particularly
bad.
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Figure 3. CDFs of the I/O throughput in both VMM and VM (average of
the four VMs) in the cases of the two disk pairs’ schedulers (CFQ, CFQ)
and (Anticipatory, Deadline).

asynchronous requests, roughly corresponding to reading the
maps’ inputs and writing both the maps’ outputs in the
mappers and the reduces’ inputs in the reduces, in addition
to only synchronous requests when reading the reduces’
inputs). Thus, all the disk pairs’ schedulers including the
best solutions are going to be sub-optimal in different points
of the job execution progress. This is similar to our case:
VMM treats all the VMs as “process” and within each VM
two maps and two reduces are running simultaneously, thus
the map/reduce read or write operation for the two running
instances are relatively close. In the current setting, since
each VM has only one core, we provision each VM at most
two Map or Reduce tasks (Hadoop default settings).

The previous discussion leads to the very important obser-
vation that, there is no single optimal disk pair schedulers for
Hadoop applications. Moreover, different stages of MapRe-
duce requires quite different I/O patterns: sequential I/Os
at the beginning of Map, random writes at the end of Map,
network I/O at the beginning of Reduce, sequential writes at
the end of Reduce. The interleaving of such stages makes all
the disk pair schedulers only sub-optimal for different stages.
Thus, none of the disk pair scheduler is an optimal solution
to any specific Hadoop application. The same observation
applies strongly to the sort benchmark, where the best pair
solution is (Anticipatory, Deadline) which outperforms the
default pair scheduler by 9%, as shown in Fig. 2-c.

C. Microscopic Analysis

In this section we complement our macroscopic analysis
with a detailed analysis of sort benchmark with two different
disk pairs schedulers, the default one (CFQ, CFQ) and (An-

Table I
PERFORMANCE SCORE OF THE DIFFERENT DISK PAIRS’ SCHEDULERS

WITH SORT BENCHMARK (average out of 3 runs).

VM
VMM

CFQ Deadline Anticipatory Noop
CFQ 402 436 375 962

Deadline 405 415 365 927
Anticipatory 399 516 369 987

Noop 413 418 370 915

Map 100%  
Reduce 100%   
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Figure 4. Performance score of the different disk I/O scheduler in
different points of the sort benchmark: Each point presents the MapReduce
performance under different disk pairs’ schedulers, where CFQ: CFQ, DL:
Deadline, AS: Anticipatory, and NP: Noop.

ticipatory, deadline), and then we examine the performance
score of the different disk pair schedulers in different stages
of the job.

Table I presents the execution time of the sort benchmark
with different disk pairs’ schedulers. The pair schedulers
(Anticipatory, Deadline) outperforms the default one (CFQ,
CFQ) by 9%. To empirically explain these results, we have
compared the I/O throughput in both VMM and VMs in one
physical machine while running the sort benchmark. Fig. 3-a
shows the cumulative distribution function (CDF) of the I/O
throughput in the VMM. The Anticipatory scheduler in the
VMM achieves better throughput, a maximum of 184 MB/s
and 52.3 MB/s on average, while the CFQ achieves through-
put of 159 MB/s on maximum and 47.1 MB/s on average.
Fig. 3-b shows the cumulative distribution function (CDF)
of the I/O throughput in the VMs (the average of the four
VMs). The pair schedulers (Anticipatory, Deadline) achieves
better throughput of 9.4, 9.6, 8.3, and 6.9 MB/s in each
VM (8.55 MB/s on average), while (CFQ, CFQ) achieves
8.4, 7.8, 7, and 8.1 MB/s (7.8 MB/s on avarage). Hence,
(Anticipatory, Deadline) achieves better overall performance
while the (CFQ, CFQ) achieves better fairness amongst the
different VMs.

Fig. 4 supports our earlier observation - the interleaving
of different stages during MapReduce job makes all the
disk pairs’ schedulers sub-optimal for different stages - by
showing the performance score (running time) in different
points of the job with different disk scheduler pairs in
contrast to the default pair (CFQ, CFQ), the base line.
We can clearly see that the (Anticipatory, Deadline) pair
is not the optimal pair schedulers for the sort application,
although it achieves the best performance. More importantly,
we can clearly see that the optimal solution, which selects
the best pair schedulers for each sub-phase, could achieve a
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performance improvement of 26% and 15% in contrast to the
default pair (CFQ, CFQ) and (Anticipatory, Deadline), re-
spectively. Accordingly, this paper presents a novel approach
for adaptively tuning the disk I/O pairs schedulers in Dom0
and DomUs during the execution of single MapReduce job.

IV. A META-SCHEDULER FOR ADAPTIVE DISK I/O
SCHEDULER SELECTION

As described in section 2.2, Xen provides different CPU
and I/O schedulers. While we would need to reboot the
physical machine when switching between the two CPU
schedulers; we can easily, on the fly, switch among the disk
schedulers in Dom0 and DomUs. This enables us to develop
a meta-scheduler for selecting the I/O scheduler at runtime
with little overhead. Previous studies [18][20] revealed that
different VMM I/O schedulers can significantly affect the
application performance. More interestingly, different guest
I/O scheduler can also affect the application performance
considering the applications running on other VMs within
the same physical machine.

Accordingly, we propose a novel methodology for adap-
tive disk I/O scheduler tuning, which is a framework for
executing a single MapReduce job with several disk pair
schedulers. The basic idea is to first divide the MapReduce
job into phases and execute a series of experiments, with
each phase we assign a prescribed pair of schedulers. During
each experiment, we measure the performance score and
then use a heuristic to choose the assignment of the disk
pair schedulers for the next phase of the experiment.

In this section we first describe our methodology in
dividing the MapReduce job into different phases. Next, we
discuss the penalties of switching among different disk pairs’
schedulers, and then we discuss our method for choosing an
assignment of disk pair schedulers to each phase.

A. MapReduce Phase Detection

By design, the MapReduce program is divided into two
phases, map and reduce. The map phase starts by reading
the data it needs to process then the application-specific
map, sort and spill is performed. The reduce phase starts
by receiving the data from different maps and then writing
it to the local disk, so finally the application-specific reduce
function is performed. However, the concurrent execution
of map and reduce makes it hard to identify the different
phases.

To identify the different phases in the MapReduce pro-
gram we use static program analysis to identify the access

Table II
PERCENTAGE OF NON-CONCURRENT SHUFFLE PHASE IN THE SORT

BENCHMARK WITH DIFFERENT WAVES NUMBER:
No. of waves = No. of data blocks

No. of data nodes×No. of slots per data node

Waves No. 1 1.5 2 2.5 3 3.5 4 4.5 5
Percent (%) 29.5 17 10.9 6.4 5.3 3.4 2.1 2.3 1.4

pattern of Hadoop program, according to the amount of
work per subtask. Thus, as the subtasks’ workload is either
computation or disk request or bandwidth request, we can
easily reduce the space of profiled option into - resource
utilization space:

∙ Computation. From start to the first map output fetching
to the disk.

∙ Computation, disk and network I/O-intensive. From the
first map is fetched to disk until all maps are done.

∙ Disk and network I/O-intensive. From all maps are done
until the shuffle phase is done.

∙ Computation and disk I/O-intensive. From the shuffle
is done till the job is completely finished.

Bearing in mind that (1) the MapReduce programming
model provides load balanced execution of the maps and
reduces among the nodes, that is mostly every data node
(TaskTracker) executing the same number of Map and
Reduce tasks, and (2) the cost of the frequent switch of
schedulers in running time, we finally divide the MapReduce
program into three distinct phases:
Ph1. Starts when starting the job and ends when all the

maps are completely done. This means that each node
is running (CPU-intensive and disk and network I/O-
intensive)

Ph2. Starts when the maps are done and ends when the
shuffle is done. This means that each node is running
(disk and network I/O-intensive)

Ph3. Represent the sort and reduce function. This means
that each node is running (CPU-intensive and disk I/O-
intensive ).

However, the length of the second phase is highly depend-
ing on the number of maps that are expected to be executed
for each node as shown in Table II. Therefore, as in our
example, we used the case when each node is performing 8
maps. The second phase will be very short and we integrate
it with phase three because the performance improvement
which we could achieve by switching to another disk pair
scheduler is very small taking in consideration the cost of
switching the disk pairs’ schedulers.

In the current setting, since MapReduce assumes that
different stages are synchronized in each VM, applying the
meta-scheduler method is effective and close to optimal,
however this assumption will not hold in the case of slow
nodes or tasks or when the cluster is shared by many
users, which needs a more fine-grained meta-scheduler at
the individual VM level and/or in the VMM level.

B. Cost of Tuning Disk Pairs Schedulers

In order to find the time cost when switching between
two solutions, we start a dd command that writes 600MB
of zeroes from /dev/zero to a file in parallel on four ma-
chines within the same physical machine. We calculate the
switch cost as: 𝐶𝑜𝑠𝑡𝑠𝑤𝑖𝑡𝑐ℎ = 𝑇 𝑖𝑚𝑒𝑤𝑖𝑡ℎ𝑇𝑤𝑜𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 − 1

2 ×
(𝑇 𝑖𝑚𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛1 + 𝑇 𝑖𝑚𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛2).
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Figure 5. Cost variation when switching between different disk pairs’
schedulers: The X and Y axis represent the first state and the second one
and ii represents the pair scheduler (VMM, VM) where i = {c: CFQ, d:
Deadline, a: Anticipatory, and n: Noop}

Fig. 5 demonstrates the time cost when switching between
two different pairs’ schedulers. We observe that the time
cost of disk I/O switch varies according to the first state
and the second state, from 4 seconds on average to 142
seconds. More interestingly, we observe that the switching
cost is not commutative, and even worse, re-assigning the
same disk I/O scheduler pair is costly, particularly when
using the switch command and the first state and second
state are the similar. However, we also demonstrate the
same experiments with different VM consolidation and as
expected the switching cost is proportional to the VM
consolidations. We are currently working to provide deeper
analysis of the disk I/O schedulers switching cost using a
more accurate method and with different scenarios such as
switching the disk schedulers within the VMs while fixing
the disk scheduler within the VMM and vice versa.

C. Heuristically Assignment of the Disk Pair Schedulers to
Phase

In order to effectively assign S disk pairs’ scheduler to a P
distinguished phases in a single MapReduce job, we need to
find the best solution in a space of 𝑆𝑃 of possible solutions,
which can be a challenge due to the exponential number of
combinations. Although the number of candidate solutions
for the example above is 162 which is relatively small,
we consider in our design the cases with larger number
of phases as in fine-grained phases detection or a chain of
MapReduce jobs (e.g., those specified in Pig [28]). As the
number of phases increases, the number of possible solutions
dramatically increases. Therefore, a brute force approach of
enumerating the cost of all possible solutions is not practical,
and we should consider the adaptation algorithm with little
overhead. Therefore, we use a heuristic method to find the
best disk pair schedulers in each phase, and then we move
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Figure 6. Performance score of the different disk pairs’ schedulers in two
phases for the sort benchmark.

on to the next phase. Once it moves on to another phase,
the scheduler for the preceding phase has been determined.

Initially, we execute the job completely using single pair
schedulers, and then we find the performance score of each
phase with each pair schedulers as shown in Fig. 6. Resulting
with P sets of disk pairs schedulers per phases, refereed as
SP. 𝑆𝑃 = {𝑠𝑗𝑖}, where 𝑠𝑗𝑖 indicates the disk pair schedulers
in the phase 𝑝𝑖.

To achieve the best performance for a specific phase
we test the application with the best pair schedulers,
therefore, we sort the pairs’ schedulers in each phase in
descending order according to their performance score.
Then we compare the current disk pair schedulers with
the next pair schedulers (second best scheduler pair) with

Algorithm 1: An Heuristics Algorithm for Meta-
Scheduler

Input: S: set of possible disk pairs’ schedulers and P: the
number of possible phases.

Description: find the best solution, assignment of disk pair
schedulers to a phase. The pairs’ schedulers are sorted in
descending order according to their performance score in
each phase for the single MapReduce job as shown in Fig. 6.
Output: 𝑆𝑜𝑙 = {𝑠𝑖} where 1 =< 𝑖 < 𝑃
foreach 𝑝𝑖 ∈ 𝑃 do

/*process the I/O disk schedulers pair according the their
performance score in each phase*/
𝑗 ← 0
while 𝐻𝑎𝑑𝑜𝑜𝑝𝑡𝑖𝑚𝑒(𝑆𝑜𝑙𝑖−1, 𝑠

𝑗
𝑖 , 𝑆𝑖+1) >

𝐻𝑎𝑑𝑜𝑜𝑝𝑡𝑖𝑚𝑒(𝑆𝑜𝑙𝑖−1, 𝑠
𝑗+1
𝑖 , 𝑆𝑖+1) do

𝑗 ← 𝑗 + 1
end
if The last non-Zero value in 𝑆𝑜𝑙𝑖−1 is the same as 𝑠𝑗𝑖
then

𝑆𝑜𝑙𝑖 = 𝑆𝑜𝑙𝑖−1 ∪ {0}
else
𝑆𝑜𝑙𝑖 = 𝑆𝑜𝑙𝑖−1 ∪ {𝑠𝑗𝑖}

end
end
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Figure 7. Performance score of the adaptive disk I/O scheduler in different scenarios: (a) different workloads, (b) different VM consolidation, (c) different
data size, and (d) different cluster scale.

respect to the elapsed time 𝐻𝑎𝑑𝑜𝑜𝑝𝑡𝑖𝑚𝑒(𝑆𝑜𝑙𝑖−1, 𝑠
𝑗
𝑖 , 𝑆𝑖+1).

𝐻𝑎𝑑𝑜𝑜𝑝𝑡𝑖𝑚𝑒(𝑆𝑜𝑙𝑖−1, 𝑠
𝑗
𝑖 , 𝑆𝑖+1) represents the elapsed time

of the application using the already fixed phases 𝑆𝑜𝑙𝑖−1,
and the current disk pair schedulers and more importantly
𝑆𝑖+1 which indicates the best disk pair schedulers for all the
left phases together, considering all the left phases as one
integrated phase. Using 𝑆𝑖+1 will guarantee a fair test for
the two tested solutions, especially with the existence of the
variation in the cost switch among the different solutions.
If the performance of the second solution is better than the
current one, it is accepted. Then it recursively tries the next
lower solution. The pair schedulers is determined when the
new performance score is worse than the current one. After
selecting the pair schedulers, it checks the last item in the
solution set, thus if the new solution is similar then we assign
a value 0, which means no switch should be used and then
it moves on to the next phase. While the heuristic method
does not guarantee to find an optimal pairs’ schedulers set,
it is able to find a good one in a running time at most 𝑃×𝑆,
as reflected in our experiments in the later section.

V. PERFORMANCE EVALUATION

We run a suite of experiments evaluating our adaptive
disk pair schedulers with different MapReduce workloads,
different VM consolidations, different data sizes and finally
different cluster scales.

Different workloads. We have applied the same method-
ology in the previous study on the sort application on
wordcount benchmark (with and without combiner). Fig. 7-
a shows the results on four-nodes cluster when deploying
four virtual machines per physical machine. We fix the
data distribution per data node to 512MB. We observe that
using our meta-scheduler method outperforms the default
disk pair schedulers and the single best disk pairs’ sched-
ulers. In addition, the improvement score varies according
to the running applications. For instance, for wordcount
applications, the performance improvements are 6.5% and
2% in contrast to the default and best disk pair schedulers
respectively. Surprisingly, even though the reduce output is
relatively small, selecting the best pair schedulers in this
phase, which is very short compared to the first phase as
shown in Fig. 8, has improved the overall performance

by 2%. In contrast, for the wordcount application without
combiner function, the performance improvements are 13%
and 7%, respectively, which can be explained because the
second phase is relatively short compared with the first
phase, as shown in Fig. 8. Our meta-scheduler outperforms
the default pair schedulers and the best single pair schedulers
by 16% and 7%. However, it is expected the performance
improvement over the best single pair schedulers would be
bigger, as both phases are nearly equal in time as shown
in Fig. 8. This can be explained because both solutions’
performances are very close in the second phase. However,
we are going to extend our current study by applying more
fine-grained phase detection in our methodology.

Different VM consolidations. Fig. 7-b presents the exe-
cution times of sort benchmark with different VM consol-
idations in three scenarios. We vary the number of VMs
per physical node while we fix the same amount of data
distribution per data node to 512MB. We observe that our
adaptive disk I/O scheduler is superior to both the default
disk pair schedulers and best single disk pair schedulers.
More importantly the improvement score is proportional to
the VM consolidation degree. For instance, in the case of
2VMs per node, the best single pair scheduler achieves
improvement of 4% and this improvement is gradually
increasing as the VM consolidation degree increases, with
9% and 12% when 4VMs and 6VMs are deployed. Our
adaptive solution achieves a performance improvement of
11%, 15%, and 22%. Here the improvement score is strongly
affected by the disk scheduler pairs’ switch cost.

Different data sizes. Fig. 7-c demonstrates the results of
sort benchmark on four-nodes cluster when deploying four
virtual machines per physical machine. We vary the data
distribution on each data node to 256MB, 512MB, 1GB,
and 2GB. Obviously, the performance improvements are
gradually increasing as the data size is increasing because
of two reasons, first the number of I/O operations bigger
and second the feasibility of our phase detection, see Table
II. The non-concurrent shuffle is gradually decreasing as the
number of maps “data size” increase which results with more
clearly and equally two phases as shown in Fig. 8.

Different cluster scales. Fig. 7-d presents the execution

342



50 100 150 200 250 300 350
0

10

20

30

40

50

Running Time (Sec)

# 
of

 T
as

ks
 

Wordcount benchmark 

Map
Shuffle
Merge
Reduce

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

Running Time (Sec)

# 
of

 T
as

ks

Wordcount w/o combiner

Map
Shuffle
Merge
Reduce

100 200 300 400 500
0

10

20

30

40

50

Running Time (Sec)

# 
of

 T
as

ks

Sort benchmark

Map
Shuffle
Merge
Reduce

Figure 8. Different phases during MapReduce job for different benchmarks.

times of the sort benchmark with different physical cluster
scales. We vary the number of used physical nodes to 3, 4, 5,
and 6 nodes and kept the same number of VMs per node (4
VMs per node). The adaptive disk I/O scheduler can achieve
better performance improvement as the physical cluster is
scaling up. These results are expected as the improvement
in each physical node is nearly the same, while here the
improvement score is affected by the network transfer in
all-to-all communication.

VI. RELATED WORK

We divide previous work into two parts: the impacts of
I/O schedulers on applications’ performance and improving
MapReduce in virtual-based environment.

Impact of I/O scheduler on application’s performance.
There are two representative studies [25][29] on the im-
pact of I/O schedulers in native operating system on the
application performance. Pratt and Heger [25] and Seelam
et al. [29] have done a thorough evaluation of the different
Linux I/O schedulers and their effects on different workload.
Some studies have been dedicated to improving application’s
performance by using heuristic I/O schedulers [30], and
using intelligence I/O schedulers [31][32].

Recent studies [18][20] have examined the impacts of the
choice of disk I/O scheduler in both VMM and VMs on
application performance. Kesavan et al. [20] have reported
that the choice of an appropriate I/O scheduler at the
VMM layer has a significant impact on the inter-application
isolation and performance guarantees inside a given VM.

Our work is different from the aforementioned works
in the sense that we study the impact of I/O schedulers
on parallel application with multiple I/O workloads, with
emphasis on MapReduce applications. We demonstrate that
using multiple disk pairs’ schedulers for a single job is
feasible and advantageous.

Improving MapReduce performance in virtual cluster.
There have been a few studies on improving MapReduce
performance in Xen-based virtual clusters. Zaharia et al. [15]
have proposed a new scheduling algorithm called Longest
Approximate Time to End (LATE) to improve the perfor-
mance of Hadoop in a heterogeneous environment, brought
by the variation of VM consolidation amongst different
physical machines, by preventing the incorrect execution of
speculative tasks.

Ibrahim et al. [17] have proposed CLOULET a new
framework for the MapReduce model by decoupling the
storage unit, namely HDFS, from the computation unit,
namely VMs, and keeping the data transfer physical node
based, thus minimizing the impact of the I/O virtualization
on the Hadoop execution.

As far as we know, we are the first to investigate the
disk scheduler’s impacts on MapReduce performance and
propose an optimized solution without any modification to
the Hadoop or the application code.

VII. CONCLUSION AND FUTURE WORK

Virtualization has become the fundamental technique for
cloud computing. As data-intensive applications become
popular in the cloud, their performance on the virtualized
platform calls for empirical evaluations and technical inno-
vations. In this study, we investigate the performance of the
popular data-intensive system, MapReduce, on a virtualized
platform. Our detailed study reveals that different disk pair
schedulers within the virtual machine manager and virtual
machines cause a noticeable variation in the Hadoop perfor-
mance in virtual cluster. We address this problem through
developing a meta-scheduler for selecting a suitable disk
pair schedulers. Given an application, a program is divided
into phases; currently we use coarse-grained phase detection,
using the program progress. A novel heuristic successively
evaluates solutions (phase-scheduler assignments). The pro-
gram is executed, and the performance score is measured.
Then, the heuristic evaluates the solution based on the best
performance score. Performance results are obtained on our
local virtual cluster which is based on a Xen hypervisor. We
find that for most of the Hadoop benchmarks, using multiple-
pairs in a single application can provide a better performance
score over any single-pair solution. More importantly, our
solution provides up to 25% performance improvement over
the default virtual Hadoop cluster configuration. Moreover,
the performance improvement is proportional to the data
size, VM consolidation and system scale.

In considering future work, we want to explore extending
our dynamic scheduler and performance switch for a wider
diversity of applications. In addition, we intend to build
a fine-grained control method to dynamically switch the
disk pairs’ schedulers. The fine-grained control method is
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using information from the VMs within the same physical
node and is based on the status of the VMs’ I/O (i.e. the
number of request); using this we can switch to the most
suitable pair schedulers. Ultimately we would want to build a
general prediction model for the scheduler switch. As a more
long-term agenda, we are going to investigate the cause of
cost when switching amongst different disk pairs’ schedulers
and minimize such cost. This will improve the design and
performance of our methodology.
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