
LEEN: Locality/Fairness- Aware Key Partitioning for MapReduce in the Cloud 
 

Shadi Ibrahim, Hai Jin, Lu Lu, Song Wu 
Cluster and Grid Computing Lab 

Services Computing Technology and System Lab 
Huazhong University of Science and Technology 

Wuhan, 430074, China 
{shadi, hjin, wusong}@hust.edu.cn 

Bingsheng He 
School of Computer Engineering 

Nanyang Technological University 
Singapore, 639798 
bshe@ntu.edu.sg 

Li Qi 
Information and Technology Department 

China Development Bank 
Beijing, 100037, China 
quick.qi@gmail.com 

 
 

Abstract—This paper investigates the problem of Partitioning 
Skew1 in MapReduce-based system. Our studies with Hadoop, 
a widely used MapReduce implementation, demonstrate that 
the presence of partitioning skew causes a huge amount of data 
transfer during the shuffle phase and leads to significant 
unfairness on the reduce input among different data nodes. As 
a result, the applications experience performance degradation 
due to the long data transfer during the shuffle phase along 
with the computation skew, particularly in reduce phase. We 
develop a novel algorithm named LEEN for locality-aware and 
fairness-aware key partitioning in MapReduce. LEEN 
embraces an asynchronous map and reduce scheme. All 
buffered intermediate keys are partitioned according to their 
frequencies and the fairness of the expected data distribution 
after the shuffle phase. We have integrated LEEN into 
Hadoop-0.18.0. Our experiments demonstrate that LEEN can 
efficiently achieve higher locality and reduce the amount of 
shuffled data. More importantly, LEEN guarantees fair 
distribution of the reduce inputs. As a result, LEEN achieves a 
performance improvement of up to 40% on different 
workloads. 

Keywords-MapReduce; Hadoop; partationing skew; Cloud 
Computing 

I.  INTRODUCTION  
MapReduce [1], due to its remarkable features in 

simplicity, fault tolerance, and scalability, is by far the most 
successful realization of data intensive cloud computing 
platform. It is often advocated as an easy-to-use, efficient 
and reliable replacement for the traditional programming 
model of moving the data to the cloud. Many 
implementations have been developed in different 
programming languages for various purposes [2-5]. The 
popular open source implementation of MapReduce, Hadoop 
[5], was developed primarily by Yahoo, where it processes 

                                                           
1 We refer to the significant variance in both intermediate keys’ 
frequencies and their distributions among the different data nodes 
as Partitioning Skew. 

hundreds of terabytes of data on tens of thousands of nodes 
[6], and is now used by other companies, including 
Facebook, Amazon, Last.fm, and the New York Times [7]. 

The MapReduce system runs on top of the Google File 
System (GFS) [8], within which data is loaded, partitioned 
into chunks, and each chunk replicated across multiple 
machines. Data processing is co-located with data storage: 
when a file needs to be processed, the job scheduler consults 
a storage metadata service to get the host node for each 
chunk, and then schedules a “map” process on that node, so 
that data locality is exploited efficiently. The map function 
processes a data chunk into key/value pairs, on which hash 
partitioning function is performed, on the appearance of each 
intermediate key produced by any running map within the 
MapReduce system: 

hash (Hash code (Intermediate-key) Modulo ReduceID)  

The hashing results are stored in memory buffers, before 
spilling the intermediate data (index file and data file) to the 
local disk [9]. In the reduce stage, a reducer takes a partition 
as input, and performs the reduce function on the partition 
(such as aggregation). Naturally, how the hash partitions are 
stored among machines affects the network traffic, and the 
balance of the hash partition size is an important indicator for 
load balancing among reducers.  

In this work, we address the problem of how to 
efficiently partition the intermediate keys to decrease the 
amount of shuffled data, and guarantee fair distribution of 
the reducers’ inputs, resulting with improving the overall 
performance. while, the current Hadoop’s hash partitioning 
works well when the keys are equally appeared and 
uniformly stored in the data nodes, we show that, with the 
presence of partitioning skew, the blindly hash-partitioning is 
inadequate and can lead to (1) network congestion caused by 
the huge amount of shuffled data, (for example, in 
wordcount application, the intermediate data are 1.7 times 
greater in size than the maps input, thus tackling the network 
congestion by locality-aware map execution in MapReduce 
system is not enough), (2) unfairness of reducers’ inputs, and 
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finally (3) severe performance degradation (i.e. the variance 
of reducers’ inputs, in turn, causes a variation in the 
execution time of reduce tasks, resulting with longer 
response time of the whole job, as the job’s response time is 
dominated by the slowest reduce instance). 

In the presence of partitioning skew, the existing shuffle 
strategy encounters the problems of long intermediate data 
shuffle time and noticeable network overhead. To overcome 
the network congestion during the shuffle phase, we propose 
to expose the locality-aware concept to the reduce task; 
However, locality-aware reduce execution might not be able 
to outperform the native MapReduce due to the penalties of 
unfairness of data distribution after the shuffle phase, 
resulting with reduce computation skew. To remedy this 
deficiency, we have developed an innovative approach to 
significantly reduce data transfer while balancing the data 
distribution among data nodes. 

Recognizing that the network congestion and unfairness 
distribution of reducers’ inputs, we seek to reduce the 
transferred data during the shuffle phase, as well as 
achieving more balanced system. We develop an algorithm, 
locality-aware and fairness-aware key partitioning (LEEN), 
to save the network bandwidth dissipation during the shuffle 
phase of MapReduce job along with balancing the reducers’ 
inputs. LEEN is conducive to improve the data locality of the 
MapReduce execution efficiency by the virtue of the 
asynchronous map and reduce scheme, thereby having more 
control on the keys distribution in each data node. LEEN 
keeps track of the frequencies of buffered keys hosted by 
each data node. In doing so, LEEN efficiently move buffered 
intermediate keys to the destination considering the location 
of the high frequencies along with fair distribution of 
reducers’ inputs. To quantify the locality, data distribution 
and performance of LEEN, we conduct a comprehensive 
performance evaluation study using LEEN in Hadoop 0.18.0. 
Our experimental results demonstrate that LEEN 
interestingly can efficiently achieve higher locality, and 
balance data distribution after the shuffle phase. In addition, 
LEEN performs well across several metrics, with different 
partitioning skew degrees, which contribute to the 
performance improvement up to 40%.  

We summarize the contributions of our paper as follows: 
• A natural extension of the data-aware execution by 

the native MapReduce model to the reduce task. 
• A novel algorithm to explore the data locality and 

fairness distribution of intermediate data during and 
after the shuffle phase, to reduce network congestion 
and achieve acceptable data distribution fairness. 

• Practical insight and solution to the problems of 
network congestion and reduce computation skew, 
caused by the partitioning skew, in emerging Cloud. 

The rest of this paper is organized as follows. Section 2 
discusses the related works. Section 3 illustrates the recent 
partitioning strategy used in Hadoop. The design of the 
asynchronous map and reduce scheme and the LEEN 
scheduling algorithm is discussed in section 4. Section 5 
details the performance evaluation. Finally, we conclude the 
paper and propose our future work in section 6. 

II. RELATED WORKS 
We divide the previous work into two groups: (1) reduce 

the network congestion by data-aware shuffling, and (2) the 
impacts of data skew on MapReduce performance. 

A. Data-aware Reduce Execution 
There have been few studies on minimizing the network 

congestion by data-aware reduction. 
Sangwon et al. have proposed pre-fetching and pre-

shuffling schemes for shared MapReduce computation 
environment [10]. While the pre-fetching scheme exploits 
data locality by assigning the tasks to the nearest node to 
blocks, the pre-shuffling scheme significantly reduces the 
network overhead required to shuffle key-value pairs. Like 
LEEN, the pre-shuffling scheme tries to provide data-aware 
partitioning over the intermediate data, by looking over the 
input splits before the map phase begins and predicts the 
target reducer where the key-value pairs of the intermediate 
output are partitioned into a local node, thus, the expected 
data are assigned to a map task near the future reducer before 
the execution of the mapper. LEEN has a different approach. 
By separating the map and reduce phase and by completely 
scanning the keys’ frequencies table generating after map 
tasks, LEEN partitions the keys to achieve the best locality 
while guaranteeing near optimal balanced reducers’ inputs. 

Chen et al. have proposed Locality Aware Reduce 
Scheduling (LARS), which designed specifically to minimize 
the data transfer in their proposed grid-enabled MapReduce 
framework, called USSOP [11]. However, USSOP, due to 
the heterogeneity of grid nodes in terms of computation 
power, varies the data size of map tasks, thus, assigning map 
tasks associated with different data size to the workers 
according to their computation capacity. Obviously, this will 
cause a variation in the map outputs. Master node will defer 
the assignment of reduces to the grid nodes until all maps are 
done and then using LARS algorithm, that is, nodes with 
largest region size will be assigned reduces (all the 
intermediate data are hashed and stored as regions, one 
region may contain different keys). Thus, LARS avoids 
transferring large regions out. Despite that LEEN and LARS 
are targeting different environments, a key difference 
between LEEN and LARS is that LEEN provides nearly 
optimal locality on intermediate data along with balancing 
reducers’ computation in homogenous MapReduce system. 

B. Data Skew in MapReduce 
Unfortunately, the current MapReduce implementations 

have overlooked the skew issue [12], which is a big 
challenge to achieve successful scale-up in parallel query 
systems [13]. 

However, few studies have reported on the data skew 
impacts on MapReduce-based system. Qiu et al. have 
reported on the skew problems in some bioinformatics 
applications [14], and have discussed potential solutions 
towards the skew problems through implementing those 
applications using Cloud technologies. 

Lin analyzed the skewed running time of MapReduce 
tasks, maps and reduces, caused by the Zipfian distribution 
of the input and intermediate data, respectively [15]. 
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Kwon et al. have proposed SkewReduce, to overcome the 
computation skew in MapReduce-based system where the 
running time of different partitions depends on the input size 
as well as the data values [16]. At the heart of SkewReduce, 
an optimizer is parameterized by user-defined cost function 
to determine how best to partition the input data to minimize 
computational skew. LEEN approaches the same problem, 
which is computation skew among different reducers caused 
by the unfair distribution of reduces’ inputs, while assuming 
all values have the same size, and keeping in mind reduce the 
network congestion by improving the locality of reducers’ 
inputs. However, extending LEEN to the case when different 
values vary in size is ongoing work in our group. 

III. EMPIRICAL STUDY ON THE IMPACT OF PARTATIONING 
SKEW IN MAPREDUCE 

To justify our motivation, we demonstrate the problem 
by following motivational example and by performing a 
series of experiments to demonstrate the aforementioned 
problems in the current Hadoop implementation. 

A. Motivational Example 
As shown in Fig. 1, three nodes: node1, node2, and 

node3, with nine intermediate keys, are ordered by their 
appearance during the map tasks execution. The sum of the 
entire keys’ frequencies is 225 keys, distributed equally 
among the three identical data nodes, we assume balanced 
execution of the map tasks as well as we assume that the size 
of all intermediate records is equal (extending our work to 
the case of different records’ size, when the values associated 
with the keys are differ in size, is ongoing research within 
our group). In our example the keys’ frequencies are varied 
along with their distributions among the data nodes. 

Fig. 1 illustrates the keys partitioning results using the 
existing hash partitioning. We observe that the current blind 
hash partitioning is inadequate in the case of partitioning 
skew in terms of data size which needs to be shuffled through 
the system network and balanced distribution of the reduces’ 
inputs. In our example, the percentages of the keys locally 
partitioned on each of the three nodes, (Locality = Local 
keys/Total Map Output), are 29%, 40%, and 22%, 
respectively, with an average of 30%. Subsequently, the total 
keys needs to be transferred (Total Map output × (1 - Locality)) 
is 156 keys which is big fraction of the maps output. 
Moreover, the reducers’ input varies by 42%. The reducers’ 
inputs are: 82, 102, and, 41. 

In summary, the absence of locality-aware keys 
partitioning overlooks any opportunities to reduce the data 
transfer during shuffle phase. In addition, the imbalanced 
data distribution of reducers’ inputs among the different data 
node occurs; consequently, heavy reduce execution on some 
nodes (node1 and node2). Thus performance experiences 
degradation (i.e. waiting the last subtask to be finished), and 
less resource utilization (i.e. node3 will be idle while node2 
is overloaded). 

B. Empirical Study 
1) Experimental environment 
Our experimental hardware consists of a cluster with 

seven nodes. Each node is equipped with two quad-core 
2.33GHz Xeon processors, 8GB of memory and 1TB of 
disk, runs RHEL5 with kernel 2.6.22, and is connected with 
1GB Ethernet. All results described in this paper are 
obtained using Hadoop version 0.18.0. To monitor the data 
flow in our experiments we use iptables [17], that is, a 
TCP/IP packet filtering system embedded into Linux kernel. 
We perform our experiments by repeatedly executing the 
wordcount benchmark, with dataset of 2GB. 

In order to show the case of partitioning skew, we 
perform the wordcount applications without combiner 
function. Moreover, we have used up to 1000 different keys, 
representing different words with the same length (to avoid 
variation in values size), with different frequencies. 

2)  Key Results 
Fig. 2 presents the data locality, the data transferred and 

the data distribution. We observe that the data locality 
ranges from 1% to 41% among the different data nodes, in 
particular, 14%, 9%, 4%, 17%, 1%, and 41%, with average 
of 17%. Moreover, the total data shuffled is 2966MB which 
is greater than the input data (2GB = 2048MB). 

Furthermore, the data distribution among the different 
data nodes is totally imbalanced, ranged from 182MB to 
903MB. We use two metrics [18] to illustrate the imbalance 
in data distribution, shown in Table 1. 

• The coefficient of variation: 

×100% stdev
cv =   

mean  
• The max-min ratio: 

 
Figure 1.  Motivational Example: demonstrates the current blindly key partitioning in MapReduce in the presence of Partitioning skew. The keys are 
ordered by their appearance while each value represents the frequency of the key in the data node. 
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≤ ≤

≤ ≤
×

min 100% max1 i n i

1 j n j

( Reduce input )
Max - Min Ratio =   

( Reduce input )  

TABLE I.  VARIATION OF THE DATA DISTRIBUTION AMONG 
DIFFERENT DATA NODES. 

 Data Distribution 

Max-Min Ratio 20% 
cv 42% 

 
As presented in Table 1, the variation among different 

data nodes in term of data distribution is 42%. While the 
minimum data distribution, data node5 in our example host 
data set of 20% compared to the maximum data node, data 
node6. Resulting with misuse of the system resources, for 
example data node5 finished reading the input data and 
process the reduce function nearly five times faster than data 
node6. 

IV. LEEN DESIGN 
In this section we first introduce the asynchronous map 

and reduce scheme. Then, we present LEEN algorithm. 

A. Asynchronous Map and Reduce 
In Hadoop several maps and reduces are concurrently 

running on each data node (two of each by default) to 
overlap computation and data transfer. While in LEEN, in 
order to keep a track on all the intermediate keys’ 
frequencies and key’s distributions, we propose to use 
asynchronous map and reduce scheme, which is trade-off 
between improving the data locality along with fair 
distribution and concurrent MapReduce (concurrent 
execution of map phase and reduce phase). 

Although, this trade-off seems to bring a little overhead 
due to the unutilized network during the map phase, but it 
can fasten the map execution because the complete I/O disk 
resources will be reserved to the map tasks. For example, 
the average execution time of map tasks when using the 
asynchronous MapReduce is 26 seconds while it is 32 

seconds in the native Hadoop. Moreover, the speedup of 
map execution can be increased by reserving more memory 
for buffered maps within the data node. This will be 
beneficial, especially in the Cloud, when the executing unit 
is VM with small memory size (e.g. in Amazon EC2 [19], 
the small instance has 1GB of virtual memory). 

In our scheme, when the map function is applied on input 
record, similar to the current MapReduce, a partition 
function will be applied on the intermediate key in the 
buffer memory by their appearance in the maps output, but 
the partition number represents the a unique ID which is the 
KeyID: hash (Hash code (Intermediate-key) Modulo KeyID)  

Thus, the intermediate data will be written to the disk as 
an index file and data file, each file represents one key, 
accompanied by a metadata file, DataNode-Keys Frequency 
Table, which includes the number of the records in each file, 
representing the key frequency. Finally, when all the maps 
done all the metadata files will be aggregated by the Job 
Tracker, the keys will be partitioned to the different data 
nodes according to LEEN algorithm. 

B. LEEN Algorithm 
In this section, we present our LEEN algorithm for 

locality-aware and fairness-aware key partitioning in 
MapReduce. 

In order to effectively partition a given data set of K keys, 
distributed on N data nodes, obviously, we need to find the 
best solution in a space of KN of possible solutions, which is 
too large to explore. Therefore, in LEEN, we use a heuristic 
method to find the best node for partitioning a specific key, 
then we move on to the second key. Therefore, it is 
important that keys are sorted. LEEN is intending to provide 
a solution which provides a close to optimal tradeoff 
between data locality and reducers’ input fairness, that is, to 
provide a solution where locality of the keys partitioning 
achieve maximum value while keeping in mind the best 
fairness of reducers’ input (smallest variation). Thus the 
solution achieves minimum value of the (Fairness/Locality). 

Locality is the sum of keys frequencies in the nodes, 
which are partitioned to, to the total keys frequencies. 

∑
∑

K j
ii=1

LEEN K
ii=1

FK
Locality =  

FK
 

where j
iFK  indicate the frequency of key ki in the data node 

rnj. If ki is partitioned to nj, FKi represents the total 
frequency of key ki, which is the sum of the frequencies of ki 
in all the data nodes: 

==∑nodes j
i ij 1

FKFK . The locality in our 

system will be bounded by: 

≤ ≤ ≤ ≤= =∑ ∑
∑ ∑

< <K Kj j
1 j n 1 j ni ii 1 i 1

LEENK K
i ii=1 i=1

) )min ( FK max ( FK
Locality

FK FK
 

Fairness is the variation of the reducers’ inputs. In 

Figure 2.  The size of data transferred from and into the data nodes 
during the copy phase, when performing wordcount application on 
2GB of data after disabling the combiners. 
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MapReduce system the response time is dominated by the 
slowest sub-task, in our case the slowest reduce task. 
Therefore, in terms of performance score the fairness of 
LEEN can be presented by the extra data of the maximum 
reducers’ inputs to the average, called overload data, 
refereed as Doverload: 

= −

= −j
K

overload D max (Reducers input ) Mean

Total Datamax ( )
N

HostedDataN
 

where j
iHostedDataN  is the data hosted in node nj after 

partitioning all the K keys. 

−

−

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

+ −
=

−

j
i

j

j j
i ii 1

i j

j j
ii 1

i j

)

SumKN
,the intial value

HostedDataN ( FK FK

,k  is partationed to n

HostedDataN FK
,k  is not partationed to n

HostedDataN
 

where jSumKN  represents the sum of the all keys frequencies 
within that data node nj:  ==∑Keys j

ii 1
j FKSumKN . 

When processing keys in LEEN, it is important that keys 
are sorted. Thus we sort the keys according to their 
(Fairness/Locality) values. As keys with small value will 
have less impact on the global (Fairness/Locality), therefore, 
we sort the keys in descending order according to their 
fairness-locality value, refereed as FLK. 

i
i

Fairness in distribution of  K amongst datanodesFLK =  
Best Locality

 

The fairness of key distribution is presented by using the 
standard deviation of this key and refereed as DevKi. 

−∑ ==iDevK

j 2n ( FK Mean)ij 1
N

 

where j
iFK  indicates the frequency of key ki in the data node 

nj, and Mean represents the mean of j
iFK  values. The best 

locality indicates partitioning ki to the data node nj which 
has the maximum frequencies. FLKi can be formulated as: 

≤ ≤max i
i j

1 j n i

DevK
FLK =  

FK
 

Initially, the hosted data on each node is set to their initial 
values, with the assumption of equal maps outputs, the 
initial value of hosted data on each node are equal and can 
be presented as (total data/the number of data nodes). 

For a specific key to achieve the best locality, we select 
the node with maximum frequency. Therefore, we sort the 
nodes in descending order according to their j

i ( s )FK . Then 
we compare the current node with the next node (second 
maximum frequency). If the Fairness-Score, which is the 

variation of the expected hosted data among all the data 
nodes if this key will be partitioned to this node, of the 
second node is better than the current one, it is accepted. 
LEEN recursively tries the next lower node. The node is 
determined when the new node fairness-score is worse than 
the current one. After selecting the node, it moves on to the 
next key and calculates the new values of hosted data in the 
different data nodes ( j

iHostedDataN ). 
The fairness-Score is defined as: 

−∑ =− =
j 2n ( HostedDataN Mean)ij 1jFairness ScoreNi N

 

It is very important that our heuristic method has running 
time at most K×N. The complete algorithm is represented in 
Fig. 3. Fig. 4 demonstrates the results of using LEEN with 
the same motivated example mentioned in section 3.1. 

V. PERFORMANCE EVALUATION 

A. Evaluation Methodology 
The testbed is similar to the one descried in section 3.2.1. 

In order to extend our testbed, we also use virtualized 
environment, using Xen [20]. In the virtualized 
environment, we deploy four virtual machines (VM) on 
each physical machine (PM), reaching a cluster size of 24 
data nodes. Each virtual machine is configured with 1 CPU 
and 1GB memory. We conduct our experiments with native 
Hadoop-0.18.0 and then with LEEN. 

To evaluate the performance of LEEN, we have designed 
an execution framework to execute LEEN. The framework 
consists of three separate stage: (1) map execution: execute 
all the maps and store the intermediate data files in the local 

Algorithm 1: LEEN Algorithm  

Input: K: set of Keys and N: the number of data nodes 
Description: perform partition function on a set of keys, 
with different frequencies to different data nodes. The keys 
are sorted in descending order according to their j

iFK  
values. 
Output: partition (ki, nj)  
 
foreach  ki ∈ K do  
// process the nodes according to their j

iFK  
j  0 
while +>− −j j 1

i iFairness ScoreN Fairness ScoreN do 
j j+1 
end while 
Partition (ki,nj) 
foreach  nj ∈ N do  

Calculate j
iHostedDataN    

end for  
end for 

Figure 3.  LEEN Algorithm 
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disk and perform a merge function on the files with the 
same keyID, side by side with generating the keys’ 
frequencies table; (2) use LEEN algorithm to partition the 
keys to their appropriate data nodes; and (3) reduce 
execution: start the shuffle phase and then perform sort and 
reduce function on the reduce input. The sum of the three 
stages represents the execution time of the whole job. We 
use wordcount benchmark without combiner. 

In our experiments using the keys’ frequencies variation 
and the key’s distribution are very important parameters in 
the motivation of LEEN design. While, the keys’ 
frequencies variation will obviously cause variation of the 
data distribution of reducers’ inputs, the variation in key’s 
distribution will affect the amount of data transferred during 
shuffle phase. 

To control the keys’ frequencies variation and the 
variation of each key distribution, we modify the existing 
textwriter code in Hadoop for generating the input data into 
the HDFS, and we get six different test sets shown in Table 
2. Moreover, Table 2 shows the locality boundaries could be 
achieved in each test set which can be calculated by the 
LocalityLEEN boundaries defined in section 4.2. 

B. Key Results 
In order to investigate the performance impacts of 

partationing skew, caused by the wide variety of both 
intermediate keys’ frequencies and their distribution among 
the different datanodes, we first study the impacts of the two 
factors separately: test sets #1 and #2 shown in Table 2. 

In the test set #1, we vary the keys frequencies, while we 
keep uniform distribution of each key among the data nodes. 
As expected, shown in Fig. 5-a both LEEN and native 
Hadoop achieve close to maximum possible locality 
(presented in Table 2), resulting with minimum data transfer 
with both. Thus, native Hadoop outperforms LEEN in the 
sum of the first two phases, map phase and shuffle phase, 
which can be explained due to advantage of the concurrent 
execution of map phase and shuffle phase in native Hadoop 
over LEEN. However, due to the keys’ frequencies 
variation, LEEN achieves 10 times better fairness in the 
reducers’ input than native Hadoop (see Fig. 5-b), resulting 

with faster execution of the reduce tasks and overall 
performance improvement of 6%. 

In the test set #2, we vary the distribution of each key 
among different data node, and kept the frequencies of all 
the keys nearly equal. Subsequently, we get the same 
fairness in both native Hadoop and LEEN. The reducers’ 
inputs variations are less than 1% (see Fig. 5-b). Thus, 
LEEN and native Hadoop spend nearly the same time on 
execution the reduce tasks. However, due to the variation of 
key’s distribution and the blindly partitioning of native 
Hadoop, LEEN, benefiting of the highly achieved locality, 
outperforms native Hadoop in the sum of both map phase 
and shuffle phase. As a result, LEEN outperforms native 
Hadoop by 9%. 

Test sets #3, #4, #5, and #6, illustrate the impacts of 
partitioning skew while varying the two metrics, variation of 
keys’ frequencies and variation of key’s distribution, in 
different system configuration. In all scenarios, LEEN 
outperform native Hadoop by up to 40%. 

In summary, shown in Fig. 5-a, LEEN achieves very high 
locality, proportional to the key’s variation, compared with 
native Hadoop. Moreover, LEEN achieves better balance in 
the distribution of data among the different reduces’ inputs, 
proportional to keys’ frequencies variation, shown in Fig. 5-
b. Furthermore, shown in Fig. 5-c, although, LEEN 
performs a little overhead during the map phase due to the 
table generation, the map phase in LEEN is faster than 
native Hadoop, which can be explained due to the 
concurrent execution of maps and reduce, that is, map and 
reduces tasks will compete for the I/O resources for reading 
data and spilling intermediate files in the maps and writing 
the data to the local disk when shuffle phase starts. 
Moreover, as expected LEEN is faster than native Hadoop 
during the reduce task execution, due to the improvement in 
the variation of the reducers’ inputs shown in Fig. 5-b. 
Furthermore, the sums of the map and shuffle phases are 
depending on the achieved locality. 

However, regarding the response time of the whole job, 
we observe that, in the presence of partitioning skew, LEEN 
outperforms native Hadoop in all the test sets, with 

 
Figure 4.  Motivational Example Using LEEN: The keys which will be locally partitioned on the each of the three nodes are 44%, 50%, and 
46% respectively, with an average of 47%, and 50% improvement of the data locality in native Hadoop as shown in Fig.1. Subsequently, LEEN 
reduces the amount of data transfer by 24%, 120 keys were shuffled. More importantly, LEEN achieved very close to optimal data distribution 
of reduces’ inputs, 74, 74, and 77 respectively, and the achieved variation is 2% only.  
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improvement of up to 40%. Moreover the performance  
improvements of LEEN over native Hadoop varies 
according to the two aforementioned factors along with two 
another important factors which are computing capacity of 
the nodes which can affect the execution time of reduce 
tasks, and network latency which can affect the time to 
shuffle the intermediate data among the different data nodes, 
hown in test set #5 and #6. 

VI. CONCLUSION AND FUTURE WORK 
Locality and fairness in data partitioning is an important 

performance factor for MapReduce. In this paper, we have 
developed an algorithm named LEEN for locality-aware and 
fairness-aware key partitioning to save the network 
bandwidth dissipation during the shuffle phase of 
MapReduce caused by partitioning skew for some 
applications. LEEN is effective in improving the data 
locality of the MapReduce execution efficiency by the 
asynchronous map and reduce scheme, with a full control on 
the keys distribution among different data nodes. LEEN 
keeps track of the frequencies of buffered keys hosted by 
each data node. LEEN achieves both fair data distribution 
and performance under moderate and large keys’ 
frequencies variations. To quantify the data distribution and 
performance of LEEN, we conduct a comprehensive 
performance evaluation study using Hadoop-0.18.0 with and 
without LEEN support. Our experimental results 
demonstrate that LEEN efficiently achieves higher locality, 
and balances data distribution after the shuffle phase. As a 
result, LEEN outperforms the native Hadoop by up to 40% 

in overall performance for different applications in the 
Cloud. 

Future Work. In considering future work, we are going 
to release the asynchronous MapReduce scheme and LEEN 
algorithm as optional plug-in in Hadoop-0.18.0 and higher 
versions. Moreover, we are intending to conduct more 
experiments to evaluate LEEN with different applications 
such as scientific applications [14, 21]. In addition to 
provide a comprehensive study on the impact of the system 
configuration on LEEN performance, including the impacts 
of virtualization technology as in [22, 23], the impacts CPU 
and memory capacity (as mentioned in section 4.1) and the 
impacts of different network topology including: star, tree 
and Dcell (motivated by the research work in [24] which 
reported on the impacts of network topology on 
MapReduce).  

As a long-term agenda, we are interested in adopting 
LEEN to the query optimization techniques [25, 26] for 
query-level load balancing and fairness. 
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TABLE II.  TEST SETS USED IN THE EXPERIMENTS 

 1 2 3 4 5 6 
Nodes number 6PMs 6PMs 6PMs 6PMs 24VMs 24VMs 

Data Size 14GB 8GB 4.6GB 12.8GB 6GB 10.5GB 
Keys frequencies variation  230% 1% 117% 230% 25% 85% 

Key distribution variation (average ) 1% 195% 150% 20% 180% 170% 
Locality Range  24-26% 1-97.5% 1-85% 15-35% 1-50% 1-30% 

  
(a)                                                       (b)                                                                                                      (c) 

Figure 5.  Experiments results: (a) shows the data locality, (b) shows the data distribution variation (coefficient of variation), and (c) illustrates the 
execution of each phase and demonstrates the response time for the six experiments sets using native Hadoop partitioning strategy and LEEN.  
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