
LEEN: Locality/Fairness- Aware Key Partitioning for MapReduce in the Cloud

Shadi Ibrahim, Hai Jin, Lu Lu, Song Wu
Cluster and Grid Computing Lab

Services Computing Technology and System Lab
Huazhong University of Science and Technology

Wuhan, 430074, China
{shadi, hjin, wusong}@hust.edu.cn

Bingsheng He
School of Computer Engineering

Nanyang Technological University
Singapore, 639798
bshe@ntu.edu.sg

Li Qi
Information and Technology Department

China Development Bank
Beijing, 100037, China
quick.qi@gmail.com

Abstract—This paper investigates the problem of Partitioning
Skew1 in MapReduce-based system. Our studies with Hadoop,
a widely used MapReduce implementation, demonstrate that
the presence of partitioning skew causes a huge amount of data
transfer during the shuffle phase and leads to significant
unfairness on the reduce input among different data nodes. As
a result, the applications experience performance degradation
due to the long data transfer during the shuffle phase along
with the computation skew, particularly in reduce phase. We
develop a novel algorithm named LEEN for locality-aware and
fairness-aware key partitioning in MapReduce. LEEN
embraces an asynchronous map and reduce scheme. All
buffered intermediate keys are partitioned according to their
frequencies and the fairness of the expected data distribution
after the shuffle phase. We have integrated LEEN into
Hadoop-0.18.0. Our experiments demonstrate that LEEN can
efficiently achieve higher locality and reduce the amount of
shuffled data. More importantly, LEEN guarantees fair
distribution of the reduce inputs. As a result, LEEN achieves a
performance improvement of up to 40% on different
workloads.

Keywords-MapReduce; Hadoop; partationing skew; Cloud
Computing

I. INTRODUCTION
MapReduce [1], due to its remarkable features in

simplicity, fault tolerance, and scalability, is by far the most
successful realization of data intensive cloud computing
platform. It is often advocated as an easy-to-use, efficient
and reliable replacement for the traditional programming
model of moving the data to the cloud. Many
implementations have been developed in different
programming languages for various purposes [2-5]. The
popular open source implementation of MapReduce, Hadoop
[5], was developed primarily by Yahoo, where it processes

1 We refer to the significant variance in both intermediate keys’
frequencies and their distributions among the different data nodes
as Partitioning Skew.

hundreds of terabytes of data on tens of thousands of nodes
[6], and is now used by other companies, including
Facebook, Amazon, Last.fm, and the New York Times [7].

The MapReduce system runs on top of the Google File
System (GFS) [8], within which data is loaded, partitioned
into chunks, and each chunk replicated across multiple
machines. Data processing is co-located with data storage:
when a file needs to be processed, the job scheduler consults
a storage metadata service to get the host node for each
chunk, and then schedules a “map” process on that node, so
that data locality is exploited efficiently. The map function
processes a data chunk into key/value pairs, on which hash
partitioning function is performed, on the appearance of each
intermediate key produced by any running map within the
MapReduce system:

hash (Hash code (Intermediate-key) Modulo ReduceID)

The hashing results are stored in memory buffers, before
spilling the intermediate data (index file and data file) to the
local disk [9]. In the reduce stage, a reducer takes a partition
as input, and performs the reduce function on the partition
(such as aggregation). Naturally, how the hash partitions are
stored among machines affects the network traffic, and the
balance of the hash partition size is an important indicator for
load balancing among reducers.

In this work, we address the problem of how to
efficiently partition the intermediate keys to decrease the
amount of shuffled data, and guarantee fair distribution of
the reducers’ inputs, resulting with improving the overall
performance. while, the current Hadoop’s hash partitioning
works well when the keys are equally appeared and
uniformly stored in the data nodes, we show that, with the
presence of partitioning skew, the blindly hash-partitioning is
inadequate and can lead to (1) network congestion caused by
the huge amount of shuffled data, (for example, in
wordcount application, the intermediate data are 1.7 times
greater in size than the maps input, thus tackling the network
congestion by locality-aware map execution in MapReduce
system is not enough), (2) unfairness of reducers’ inputs, and

2nd IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-4302-4/10 $26.00 © 2010 IEEE

DOI 10.1109/CloudCom.2010.25

17

finally (3) severe performance degradation (i.e. the variance
of reducers’ inputs, in turn, causes a variation in the
execution time of reduce tasks, resulting with longer
response time of the whole job, as the job’s response time is
dominated by the slowest reduce instance).

In the presence of partitioning skew, the existing shuffle
strategy encounters the problems of long intermediate data
shuffle time and noticeable network overhead. To overcome
the network congestion during the shuffle phase, we propose
to expose the locality-aware concept to the reduce task;
However, locality-aware reduce execution might not be able
to outperform the native MapReduce due to the penalties of
unfairness of data distribution after the shuffle phase,
resulting with reduce computation skew. To remedy this
deficiency, we have developed an innovative approach to
significantly reduce data transfer while balancing the data
distribution among data nodes.

Recognizing that the network congestion and unfairness
distribution of reducers’ inputs, we seek to reduce the
transferred data during the shuffle phase, as well as
achieving more balanced system. We develop an algorithm,
locality-aware and fairness-aware key partitioning (LEEN),
to save the network bandwidth dissipation during the shuffle
phase of MapReduce job along with balancing the reducers’
inputs. LEEN is conducive to improve the data locality of the
MapReduce execution efficiency by the virtue of the
asynchronous map and reduce scheme, thereby having more
control on the keys distribution in each data node. LEEN
keeps track of the frequencies of buffered keys hosted by
each data node. In doing so, LEEN efficiently move buffered
intermediate keys to the destination considering the location
of the high frequencies along with fair distribution of
reducers’ inputs. To quantify the locality, data distribution
and performance of LEEN, we conduct a comprehensive
performance evaluation study using LEEN in Hadoop 0.18.0.
Our experimental results demonstrate that LEEN
interestingly can efficiently achieve higher locality, and
balance data distribution after the shuffle phase. In addition,
LEEN performs well across several metrics, with different
partitioning skew degrees, which contribute to the
performance improvement up to 40%.

We summarize the contributions of our paper as follows:
• A natural extension of the data-aware execution by

the native MapReduce model to the reduce task.
• A novel algorithm to explore the data locality and

fairness distribution of intermediate data during and
after the shuffle phase, to reduce network congestion
and achieve acceptable data distribution fairness.

• Practical insight and solution to the problems of
network congestion and reduce computation skew,
caused by the partitioning skew, in emerging Cloud.

The rest of this paper is organized as follows. Section 2
discusses the related works. Section 3 illustrates the recent
partitioning strategy used in Hadoop. The design of the
asynchronous map and reduce scheme and the LEEN
scheduling algorithm is discussed in section 4. Section 5
details the performance evaluation. Finally, we conclude the
paper and propose our future work in section 6.

II. RELATED WORKS
We divide the previous work into two groups: (1) reduce

the network congestion by data-aware shuffling, and (2) the
impacts of data skew on MapReduce performance.

A. Data-aware Reduce Execution
There have been few studies on minimizing the network

congestion by data-aware reduction.
Sangwon et al. have proposed pre-fetching and pre-

shuffling schemes for shared MapReduce computation
environment [10]. While the pre-fetching scheme exploits
data locality by assigning the tasks to the nearest node to
blocks, the pre-shuffling scheme significantly reduces the
network overhead required to shuffle key-value pairs. Like
LEEN, the pre-shuffling scheme tries to provide data-aware
partitioning over the intermediate data, by looking over the
input splits before the map phase begins and predicts the
target reducer where the key-value pairs of the intermediate
output are partitioned into a local node, thus, the expected
data are assigned to a map task near the future reducer before
the execution of the mapper. LEEN has a different approach.
By separating the map and reduce phase and by completely
scanning the keys’ frequencies table generating after map
tasks, LEEN partitions the keys to achieve the best locality
while guaranteeing near optimal balanced reducers’ inputs.

Chen et al. have proposed Locality Aware Reduce
Scheduling (LARS), which designed specifically to minimize
the data transfer in their proposed grid-enabled MapReduce
framework, called USSOP [11]. However, USSOP, due to
the heterogeneity of grid nodes in terms of computation
power, varies the data size of map tasks, thus, assigning map
tasks associated with different data size to the workers
according to their computation capacity. Obviously, this will
cause a variation in the map outputs. Master node will defer
the assignment of reduces to the grid nodes until all maps are
done and then using LARS algorithm, that is, nodes with
largest region size will be assigned reduces (all the
intermediate data are hashed and stored as regions, one
region may contain different keys). Thus, LARS avoids
transferring large regions out. Despite that LEEN and LARS
are targeting different environments, a key difference
between LEEN and LARS is that LEEN provides nearly
optimal locality on intermediate data along with balancing
reducers’ computation in homogenous MapReduce system.

B. Data Skew in MapReduce
Unfortunately, the current MapReduce implementations

have overlooked the skew issue [12], which is a big
challenge to achieve successful scale-up in parallel query
systems [13].

However, few studies have reported on the data skew
impacts on MapReduce-based system. Qiu et al. have
reported on the skew problems in some bioinformatics
applications [14], and have discussed potential solutions
towards the skew problems through implementing those
applications using Cloud technologies.

Lin analyzed the skewed running time of MapReduce
tasks, maps and reduces, caused by the Zipfian distribution
of the input and intermediate data, respectively [15].

18

Kwon et al. have proposed SkewReduce, to overcome the
computation skew in MapReduce-based system where the
running time of different partitions depends on the input size
as well as the data values [16]. At the heart of SkewReduce,
an optimizer is parameterized by user-defined cost function
to determine how best to partition the input data to minimize
computational skew. LEEN approaches the same problem,
which is computation skew among different reducers caused
by the unfair distribution of reduces’ inputs, while assuming
all values have the same size, and keeping in mind reduce the
network congestion by improving the locality of reducers’
inputs. However, extending LEEN to the case when different
values vary in size is ongoing work in our group.

III. EMPIRICAL STUDY ON THE IMPACT OF PARTATIONING
SKEW IN MAPREDUCE

To justify our motivation, we demonstrate the problem
by following motivational example and by performing a
series of experiments to demonstrate the aforementioned
problems in the current Hadoop implementation.

A. Motivational Example
As shown in Fig. 1, three nodes: node1, node2, and

node3, with nine intermediate keys, are ordered by their
appearance during the map tasks execution. The sum of the
entire keys’ frequencies is 225 keys, distributed equally
among the three identical data nodes, we assume balanced
execution of the map tasks as well as we assume that the size
of all intermediate records is equal (extending our work to
the case of different records’ size, when the values associated
with the keys are differ in size, is ongoing research within
our group). In our example the keys’ frequencies are varied
along with their distributions among the data nodes.

Fig. 1 illustrates the keys partitioning results using the
existing hash partitioning. We observe that the current blind
hash partitioning is inadequate in the case of partitioning
skew in terms of data size which needs to be shuffled through
the system network and balanced distribution of the reduces’
inputs. In our example, the percentages of the keys locally
partitioned on each of the three nodes, (Locality = Local
keys/Total Map Output), are 29%, 40%, and 22%,
respectively, with an average of 30%. Subsequently, the total
keys needs to be transferred (Total Map output × (1 - Locality))
is 156 keys which is big fraction of the maps output.
Moreover, the reducers’ input varies by 42%. The reducers’
inputs are: 82, 102, and, 41.

In summary, the absence of locality-aware keys
partitioning overlooks any opportunities to reduce the data
transfer during shuffle phase. In addition, the imbalanced
data distribution of reducers’ inputs among the different data
node occurs; consequently, heavy reduce execution on some
nodes (node1 and node2). Thus performance experiences
degradation (i.e. waiting the last subtask to be finished), and
less resource utilization (i.e. node3 will be idle while node2
is overloaded).

B. Empirical Study
1) Experimental environment
Our experimental hardware consists of a cluster with

seven nodes. Each node is equipped with two quad-core
2.33GHz Xeon processors, 8GB of memory and 1TB of
disk, runs RHEL5 with kernel 2.6.22, and is connected with
1GB Ethernet. All results described in this paper are
obtained using Hadoop version 0.18.0. To monitor the data
flow in our experiments we use iptables [17], that is, a
TCP/IP packet filtering system embedded into Linux kernel.
We perform our experiments by repeatedly executing the
wordcount benchmark, with dataset of 2GB.

In order to show the case of partitioning skew, we
perform the wordcount applications without combiner
function. Moreover, we have used up to 1000 different keys,
representing different words with the same length (to avoid
variation in values size), with different frequencies.

2) Key Results
Fig. 2 presents the data locality, the data transferred and

the data distribution. We observe that the data locality
ranges from 1% to 41% among the different data nodes, in
particular, 14%, 9%, 4%, 17%, 1%, and 41%, with average
of 17%. Moreover, the total data shuffled is 2966MB which
is greater than the input data (2GB = 2048MB).

Furthermore, the data distribution among the different
data nodes is totally imbalanced, ranged from 182MB to
903MB. We use two metrics [18] to illustrate the imbalance
in data distribution, shown in Table 1.

• The coefficient of variation:

×100% stdev
cv =

mean
• The max-min ratio:

Figure 1. Motivational Example: demonstrates the current blindly key partitioning in MapReduce in the presence of Partitioning skew. The keys are
ordered by their appearance while each value represents the frequency of the key in the data node.

19

≤ ≤

≤ ≤
×

min 100% max1 i n i

1 j n j

(Reduce input)
Max - Min Ratio =

(Reduce input)

TABLE I. VARIATION OF THE DATA DISTRIBUTION AMONG
DIFFERENT DATA NODES.

 Data Distribution

Max-Min Ratio 20%
cv 42%

As presented in Table 1, the variation among different

data nodes in term of data distribution is 42%. While the
minimum data distribution, data node5 in our example host
data set of 20% compared to the maximum data node, data
node6. Resulting with misuse of the system resources, for
example data node5 finished reading the input data and
process the reduce function nearly five times faster than data
node6.

IV. LEEN DESIGN
In this section we first introduce the asynchronous map

and reduce scheme. Then, we present LEEN algorithm.

A. Asynchronous Map and Reduce
In Hadoop several maps and reduces are concurrently

running on each data node (two of each by default) to
overlap computation and data transfer. While in LEEN, in
order to keep a track on all the intermediate keys’
frequencies and key’s distributions, we propose to use
asynchronous map and reduce scheme, which is trade-off
between improving the data locality along with fair
distribution and concurrent MapReduce (concurrent
execution of map phase and reduce phase).

Although, this trade-off seems to bring a little overhead
due to the unutilized network during the map phase, but it
can fasten the map execution because the complete I/O disk
resources will be reserved to the map tasks. For example,
the average execution time of map tasks when using the
asynchronous MapReduce is 26 seconds while it is 32

seconds in the native Hadoop. Moreover, the speedup of
map execution can be increased by reserving more memory
for buffered maps within the data node. This will be
beneficial, especially in the Cloud, when the executing unit
is VM with small memory size (e.g. in Amazon EC2 [19],
the small instance has 1GB of virtual memory).

In our scheme, when the map function is applied on input
record, similar to the current MapReduce, a partition
function will be applied on the intermediate key in the
buffer memory by their appearance in the maps output, but
the partition number represents the a unique ID which is the
KeyID: hash (Hash code (Intermediate-key) Modulo KeyID)

Thus, the intermediate data will be written to the disk as
an index file and data file, each file represents one key,
accompanied by a metadata file, DataNode-Keys Frequency
Table, which includes the number of the records in each file,
representing the key frequency. Finally, when all the maps
done all the metadata files will be aggregated by the Job
Tracker, the keys will be partitioned to the different data
nodes according to LEEN algorithm.

B. LEEN Algorithm
In this section, we present our LEEN algorithm for

locality-aware and fairness-aware key partitioning in
MapReduce.

In order to effectively partition a given data set of K keys,
distributed on N data nodes, obviously, we need to find the
best solution in a space of KN of possible solutions, which is
too large to explore. Therefore, in LEEN, we use a heuristic
method to find the best node for partitioning a specific key,
then we move on to the second key. Therefore, it is
important that keys are sorted. LEEN is intending to provide
a solution which provides a close to optimal tradeoff
between data locality and reducers’ input fairness, that is, to
provide a solution where locality of the keys partitioning
achieve maximum value while keeping in mind the best
fairness of reducers’ input (smallest variation). Thus the
solution achieves minimum value of the (Fairness/Locality).

Locality is the sum of keys frequencies in the nodes,
which are partitioned to, to the total keys frequencies.

∑
∑

K j
ii=1

LEEN K
ii=1

FK
Locality =

FK

where j
iFK indicate the frequency of key ki in the data node

rnj. If ki is partitioned to nj, FKi represents the total
frequency of key ki, which is the sum of the frequencies of ki
in all the data nodes:

==∑nodes j
i ij 1

FKFK . The locality in our

system will be bounded by:

≤ ≤ ≤ ≤= =∑ ∑
∑ ∑

< <K Kj j
1 j n 1 j ni ii 1 i 1

LEENK K
i ii=1 i=1

))min (FK max (FK
Locality

FK FK

Fairness is the variation of the reducers’ inputs. In

Figure 2. The size of data transferred from and into the data nodes
during the copy phase, when performing wordcount application on
2GB of data after disabling the combiners.

20

MapReduce system the response time is dominated by the
slowest sub-task, in our case the slowest reduce task.
Therefore, in terms of performance score the fairness of
LEEN can be presented by the extra data of the maximum
reducers’ inputs to the average, called overload data,
refereed as Doverload:

= −

= −j
K

overload D max (Reducers input) Mean

Total Datamax ()
N

HostedDataN

where j
iHostedDataN is the data hosted in node nj after

partitioning all the K keys.

−

−

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

+ −
=

−

j
i

j

j j
i ii 1

i j

j j
ii 1

i j

)

SumKN
,the intial value

HostedDataN (FK FK

,k is partationed to n

HostedDataN FK
,k is not partationed to n

HostedDataN

where jSumKN represents the sum of the all keys frequencies
within that data node nj: ==∑Keys j

ii 1
j FKSumKN .

When processing keys in LEEN, it is important that keys
are sorted. Thus we sort the keys according to their
(Fairness/Locality) values. As keys with small value will
have less impact on the global (Fairness/Locality), therefore,
we sort the keys in descending order according to their
fairness-locality value, refereed as FLK.

i
i

Fairness in distribution of K amongst datanodesFLK =
Best Locality

The fairness of key distribution is presented by using the
standard deviation of this key and refereed as DevKi.

−∑ ==iDevK

j 2n (FK Mean)ij 1
N

where j
iFK indicates the frequency of key ki in the data node

nj, and Mean represents the mean of j
iFK values. The best

locality indicates partitioning ki to the data node nj which
has the maximum frequencies. FLKi can be formulated as:

≤ ≤max i
i j

1 j n i

DevK
FLK =

FK

Initially, the hosted data on each node is set to their initial
values, with the assumption of equal maps outputs, the
initial value of hosted data on each node are equal and can
be presented as (total data/the number of data nodes).

For a specific key to achieve the best locality, we select
the node with maximum frequency. Therefore, we sort the
nodes in descending order according to their j

i (s)FK . Then
we compare the current node with the next node (second
maximum frequency). If the Fairness-Score, which is the

variation of the expected hosted data among all the data
nodes if this key will be partitioned to this node, of the
second node is better than the current one, it is accepted.
LEEN recursively tries the next lower node. The node is
determined when the new node fairness-score is worse than
the current one. After selecting the node, it moves on to the
next key and calculates the new values of hosted data in the
different data nodes (j

iHostedDataN).
The fairness-Score is defined as:

−∑ =− =
j 2n (HostedDataN Mean)ij 1jFairness ScoreNi N

It is very important that our heuristic method has running
time at most K×N. The complete algorithm is represented in
Fig. 3. Fig. 4 demonstrates the results of using LEEN with
the same motivated example mentioned in section 3.1.

V. PERFORMANCE EVALUATION

A. Evaluation Methodology
The testbed is similar to the one descried in section 3.2.1.

In order to extend our testbed, we also use virtualized
environment, using Xen [20]. In the virtualized
environment, we deploy four virtual machines (VM) on
each physical machine (PM), reaching a cluster size of 24
data nodes. Each virtual machine is configured with 1 CPU
and 1GB memory. We conduct our experiments with native
Hadoop-0.18.0 and then with LEEN.

To evaluate the performance of LEEN, we have designed
an execution framework to execute LEEN. The framework
consists of three separate stage: (1) map execution: execute
all the maps and store the intermediate data files in the local

Algorithm 1: LEEN Algorithm

Input: K: set of Keys and N: the number of data nodes
Description: perform partition function on a set of keys,
with different frequencies to different data nodes. The keys
are sorted in descending order according to their j

iFK
values.
Output: partition (ki, nj)

foreach ki ∈ K do
// process the nodes according to their j

iFK
j 0
while +>− −j j 1

i iFairness ScoreN Fairness ScoreN do
j j+1
end while
Partition (ki,nj)
foreach nj ∈ N do

Calculate j
iHostedDataN

end for
end for

Figure 3. LEEN Algorithm

21

disk and perform a merge function on the files with the
same keyID, side by side with generating the keys’
frequencies table; (2) use LEEN algorithm to partition the
keys to their appropriate data nodes; and (3) reduce
execution: start the shuffle phase and then perform sort and
reduce function on the reduce input. The sum of the three
stages represents the execution time of the whole job. We
use wordcount benchmark without combiner.

In our experiments using the keys’ frequencies variation
and the key’s distribution are very important parameters in
the motivation of LEEN design. While, the keys’
frequencies variation will obviously cause variation of the
data distribution of reducers’ inputs, the variation in key’s
distribution will affect the amount of data transferred during
shuffle phase.

To control the keys’ frequencies variation and the
variation of each key distribution, we modify the existing
textwriter code in Hadoop for generating the input data into
the HDFS, and we get six different test sets shown in Table
2. Moreover, Table 2 shows the locality boundaries could be
achieved in each test set which can be calculated by the
LocalityLEEN boundaries defined in section 4.2.

B. Key Results
In order to investigate the performance impacts of

partationing skew, caused by the wide variety of both
intermediate keys’ frequencies and their distribution among
the different datanodes, we first study the impacts of the two
factors separately: test sets #1 and #2 shown in Table 2.

In the test set #1, we vary the keys frequencies, while we
keep uniform distribution of each key among the data nodes.
As expected, shown in Fig. 5-a both LEEN and native
Hadoop achieve close to maximum possible locality
(presented in Table 2), resulting with minimum data transfer
with both. Thus, native Hadoop outperforms LEEN in the
sum of the first two phases, map phase and shuffle phase,
which can be explained due to advantage of the concurrent
execution of map phase and shuffle phase in native Hadoop
over LEEN. However, due to the keys’ frequencies
variation, LEEN achieves 10 times better fairness in the
reducers’ input than native Hadoop (see Fig. 5-b), resulting

with faster execution of the reduce tasks and overall
performance improvement of 6%.

In the test set #2, we vary the distribution of each key
among different data node, and kept the frequencies of all
the keys nearly equal. Subsequently, we get the same
fairness in both native Hadoop and LEEN. The reducers’
inputs variations are less than 1% (see Fig. 5-b). Thus,
LEEN and native Hadoop spend nearly the same time on
execution the reduce tasks. However, due to the variation of
key’s distribution and the blindly partitioning of native
Hadoop, LEEN, benefiting of the highly achieved locality,
outperforms native Hadoop in the sum of both map phase
and shuffle phase. As a result, LEEN outperforms native
Hadoop by 9%.

Test sets #3, #4, #5, and #6, illustrate the impacts of
partitioning skew while varying the two metrics, variation of
keys’ frequencies and variation of key’s distribution, in
different system configuration. In all scenarios, LEEN
outperform native Hadoop by up to 40%.

In summary, shown in Fig. 5-a, LEEN achieves very high
locality, proportional to the key’s variation, compared with
native Hadoop. Moreover, LEEN achieves better balance in
the distribution of data among the different reduces’ inputs,
proportional to keys’ frequencies variation, shown in Fig. 5-
b. Furthermore, shown in Fig. 5-c, although, LEEN
performs a little overhead during the map phase due to the
table generation, the map phase in LEEN is faster than
native Hadoop, which can be explained due to the
concurrent execution of maps and reduce, that is, map and
reduces tasks will compete for the I/O resources for reading
data and spilling intermediate files in the maps and writing
the data to the local disk when shuffle phase starts.
Moreover, as expected LEEN is faster than native Hadoop
during the reduce task execution, due to the improvement in
the variation of the reducers’ inputs shown in Fig. 5-b.
Furthermore, the sums of the map and shuffle phases are
depending on the achieved locality.

However, regarding the response time of the whole job,
we observe that, in the presence of partitioning skew, LEEN
outperforms native Hadoop in all the test sets, with

Figure 4. Motivational Example Using LEEN: The keys which will be locally partitioned on the each of the three nodes are 44%, 50%, and
46% respectively, with an average of 47%, and 50% improvement of the data locality in native Hadoop as shown in Fig.1. Subsequently, LEEN
reduces the amount of data transfer by 24%, 120 keys were shuffled. More importantly, LEEN achieved very close to optimal data distribution
of reduces’ inputs, 74, 74, and 77 respectively, and the achieved variation is 2% only.

22

improvement of up to 40%. Moreover the performance
improvements of LEEN over native Hadoop varies
according to the two aforementioned factors along with two
another important factors which are computing capacity of
the nodes which can affect the execution time of reduce
tasks, and network latency which can affect the time to
shuffle the intermediate data among the different data nodes,
hown in test set #5 and #6.

VI. CONCLUSION AND FUTURE WORK
Locality and fairness in data partitioning is an important

performance factor for MapReduce. In this paper, we have
developed an algorithm named LEEN for locality-aware and
fairness-aware key partitioning to save the network
bandwidth dissipation during the shuffle phase of
MapReduce caused by partitioning skew for some
applications. LEEN is effective in improving the data
locality of the MapReduce execution efficiency by the
asynchronous map and reduce scheme, with a full control on
the keys distribution among different data nodes. LEEN
keeps track of the frequencies of buffered keys hosted by
each data node. LEEN achieves both fair data distribution
and performance under moderate and large keys’
frequencies variations. To quantify the data distribution and
performance of LEEN, we conduct a comprehensive
performance evaluation study using Hadoop-0.18.0 with and
without LEEN support. Our experimental results
demonstrate that LEEN efficiently achieves higher locality,
and balances data distribution after the shuffle phase. As a
result, LEEN outperforms the native Hadoop by up to 40%

in overall performance for different applications in the
Cloud.

Future Work. In considering future work, we are going
to release the asynchronous MapReduce scheme and LEEN
algorithm as optional plug-in in Hadoop-0.18.0 and higher
versions. Moreover, we are intending to conduct more
experiments to evaluate LEEN with different applications
such as scientific applications [14, 21]. In addition to
provide a comprehensive study on the impact of the system
configuration on LEEN performance, including the impacts
of virtualization technology as in [22, 23], the impacts CPU
and memory capacity (as mentioned in section 4.1) and the
impacts of different network topology including: star, tree
and Dcell (motivated by the research work in [24] which
reported on the impacts of network topology on
MapReduce).

As a long-term agenda, we are interested in adopting
LEEN to the query optimization techniques [25, 26] for
query-level load balancing and fairness.

VII. ACKNOWLEDGMENTS
The research work is supported by National 973 Key

Basic Research Program under grant No.2007CB310900,
Information Technology Foundation of MOE and Intel
under grant MOE-INTEL-09-03, the Important National
Science & Technology Specific Projects under grant
2009ZX03004-002, National High-Tech R&D Plan of
China under grant 2006AA01A115, and China Next
Generation Internet Project under grant CNGI2008-109.

TABLE II. TEST SETS USED IN THE EXPERIMENTS

 1 2 3 4 5 6
Nodes number 6PMs 6PMs 6PMs 6PMs 24VMs 24VMs

Data Size 14GB 8GB 4.6GB 12.8GB 6GB 10.5GB
Keys frequencies variation 230% 1% 117% 230% 25% 85%

Key distribution variation (average) 1% 195% 150% 20% 180% 170%
Locality Range 24-26% 1-97.5% 1-85% 15-35% 1-50% 1-30%

(a) (b) (c)

Figure 5. Experiments results: (a) shows the data locality, (b) shows the data distribution variation (coefficient of variation), and (c) illustrates the
execution of each phase and demonstrates the response time for the six experiments sets using native Hadoop partitioning strategy and LEEN.

23

REFERENCES
[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters”, Proc. Usenix Symp. Opearting Systems Design &
Implementation (OSDI 2004), Dec. 2004, pp.137-150.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks”, Proc. European Conf. Computer Systems (EuroSys 2007),
ACM Press, Mar. 2007, pp.59-72.

[3] B. S. He, W. B. Fang, Q. Luo, N. K. Govindaraju, and T. Y. Wang,
“Mars: a MapReduce framework on graphics processors”, Proc. conf.
Parallel Architectures and Compilation Techniques (PACT 2008),
ACM Press, Oct. 2008, pp.260-269.

[4] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C.
Kozyrakis, “Evaluating MapReduce for Multi-core and
Multiprocessor Systems”, Proc. Symp. High-Performance Computer
Architecture (HPCA-13), ACM Press, Feb. 2008, pp.13-24.

[5] Hadoop, http://lucene.apache.org/hadoop
[6] Yahoo!, Yahoo! Developer Network,

http://developer.yahoo.com/blogs/hadoop/2008/02/yahoo-worlds-
largest-production-hadoop.html

[7] Hadoop, Applications powered by Hadoop:
http://wiki.apache.org/hadoop/PoweredB

[8] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file
system”, Proc. ACM Symp. Operating Systems Principles (SOSP
2003), ACM Press, Oct. 2003, pp.29-43.

[9] T. Condie, N. Conway, P. Alvaro, M. J. Hellerstein, K. Elmeleegy,
and R. Sears, “MapReduce Online”, Proc. Usenix Symp. Networked
Systems Design and Implementation (NSDI 2010), Apr. 2010. pp.313-
328.

[10] S. Seo, I. Jang, K. C. Woo, I. Kim, J. S. Kim, and S. Maeng, “HPMR:
Prefetching and pre-shuffling in shared MapReduce computation
environment”, Proc. IEEE Conf. Cluster Computing (Cluster 2009),
IEEE Press, Aug. 2009, pp.1-8.

[11] P. C. Chen, Y. L. Su, J. B. Chang, and C. K. Shieh, “Variable-Sized
Map and Locality-Aware Reduce on Public-Resource Grids”, Proc.
Conf. Grid and Pervasive Computing (GPC 2010), May 2010,
pp.234-243.

[12] D. DeWitt and M. Stonebraker, “MapReduce: A major step
backwards”, http://databasecolumn.vertica.com/database-
innovation/mapreduce-a-major-step-backwards/, 2008.

[13] J. D. DeWitt and J. Gary, “Parallel Database System: The Future of
High Performance Database Systems”, Commun. ACM, Vol.35, No.6,
pp.85-98, June 1992.

[14] X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox, R. Barga,
and D. Gannon, “Cloud technologies for bioinformatics applications”,
Proc. ACM Work. Many-Task Computing on Grids and
Supercomputers (MTAGS 2009), ACM Press, Nov. 2009.

[15] J. Lin, “The Curse of Zipf and Limits to Parallelization: A Look at the
Stragglers Problem in MapReduce”, Proc. Work. Large-Scale
Distributed Systems for Information Retrieval (LSDS-IR'09), Jul.
2009.

[16] Y. C. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skew-resistant
parallel processing of feature-extracting scientific user-defined
functions”, Proc. ACM Symp. Cloud Computing (SOCC 2010), ACM
Press, Jun. 2010, pp.75-86.

[17] Iptables: http://en.wikipedia.org/wiki/Iptables.2009
[18] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure Of Fairness

And Discrimination For Resource Allocation In Shared Computer
Systems”, DEC Research Report TR-301, September 1984.

[19] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
[20] Xen Hypervisor Homepage, http://www.xen.org/
[21] S. Chen and S. W. Schlosser, “Map-Reduce Meets Wider Varieties of

Applications”, IRP-TR-08-05, Technical Report, Intel Research
Pittsburgh, May 2008.

[22] S. Ibrahim, H. Jin, B. Cheng, H. Cao, W. Song, and L. Qi, “Cloudlet:
Towards MapReduce implementation on Virtual machines”, Proc.
ACM Symp. High Performance Distributed Computing (HPDC
2009), ACM Press, Jun. 2009, pp.65-66.

[23] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi, “Evaluating
MapReduce on Virtual Machines: The Hadoop Case”, Proc. Conf.
Cloud Computing (CloudCom 2009), Springer LNCS, Dec 2009,
pp.519-528.

[24] G. Y. Wang, A. Butt, P. Pandey, and K. Gupta, “A Simulation
Approach to Evaluating Design Decisions in MapReduce”, Proc.
IEEE Symp. Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS 2009), IEEE Press, Sep.
2009, pp.1-11.

[25] B. S. He, M. Yang, Z. Y. Guo, R. S. Chen, W. Lin, B. Su, and L. D.
Zhou, “Comet: Batched Stream Processing for Data Intensive
Distributed Computing”, Proc. ACM Symp. Cloud Computing (SOCC
2010), ACM Press, Jun. 2010, pp. 63-74.

[26] B. S He, M. Yang, Z. Y. Guo, R. S. Chen, W. Lin, B. Su, H. Y.
Wang, and L. D. Zhou, “Wave Computing in the Cloud”, Proc. Work.
Hot Topics in Operating Systems (HotOS 2009), May 2009.

24

