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Abstract—MapReduce has emerged as a leading program-
ming model for data-intensive computing. Many recent re-
search efforts have focused on improving the performance
of the distributed frameworks supporting this model. Many
optimizations are network-oriented and most of them mainly
address the data shuffling stage of MapReduce. Our studies
with Hadoop demonstrate that, apart from the shuffling phase,
another source of excessive network traffic is the high number
of map task executions which process remote data. That leads
to an excessive number of useless speculative executions of map
tasks and to an unbalanced execution of map tasks across
different machines. All these factors produce a noticeable
performance degradation. We propose a novel scheduling
algorithm for map tasks, named Maestro, to improve the
overall performance of the MapReduce computation. Maestro
schedules the map tasks in two waves: first, it fills the empty
slots of each data node based on the number of hosted map
tasks and on the replication scheme for their input data;
second, runtime scheduling takes into account the probability
of scheduling a map task on a given machine depending on
the replicas of the task’s input data. These two waves lead to
a higher locality in the execution of map tasks and to a more
balanced intermediate data distribution for the shuffling phase.
In our experiments on a 100-node cluster, Maestro achieves
around 95% local map executions, reduces speculative map
tasks by 80% and results in an improvement of up to 34% in
the execution time.

Keywords-MapReduce; Hadoop; cloud computing; replica-
tion; scheduling;

I. INTRODUCTION

Data volumes are ever growing, from traditional applica-

tions such as databases and scientific computing to emerging

applications like Web 2.0 and online social networks. This

has boosted the intensity of recent research on scalable data

intensive systems, including Dryad [1] and MapReduce [2].

Among such systems, Hadoop, an open-source MapReduce

implementation, has widely been adopted by industries such

as Facebook, and academia. Recently, Hadoop has been de-

ployed in many cloud platforms. For example, Amazon has

equipped their software stack with Hadoop [3] to facilitate

running large-scale data applications on Amazon EC2 [4].

The New York Times rented 100 virtual machines for a day

to convert 11 million scanned articles to PDFs [5]. Due to its

wide adoption, the performance of Hadoop in particular (and

MapReduce in general) has become an important research

topic [6–10]. This paper follows this line of research and

contributes to the goal of improving the performance of

MapReduce frameworks.

MapReduce [2] was originally proposed by Google to

simplify development of web search applications on a large

number of machines. The MapReduce [2] system runs on

top of the Google File System (GFS) [11], where files are

partitioned into chunks, and each chunk is replicated to

tolerate failures. Data processing is co-located with data

storage; when a node is available to process a map task, the

job scheduler consults the storage metadata service to get the

hosted chunks as close as possible, in this order: on the same

node, on another node within the same rack and on another

node outside the rack. The goal is to leverage data locality.

Moreover, data replication makes the MapReduce system

not only fault-tolerant, but also facilitates the handling of

slow nodes (“stragglers”). For example, MapReduce runs

speculative copies of in-progress stragglers’ tasks on other

machines to finish the computation faster.

While this simple algorithm considers data locality for

efficiency, it is unaware of the consequences on scheduling

the next task in terms of the possibility of local map task

execution. For example, consider a situation with two data

nodes, A (hosts two chunks {r1, r2}) and B (hosts {r1}); at

run time, if node A reports an empty task slot, the current

Hadoop scheduler will blindly select one chunk without

considering the consequences of processing each hosted

chunk; Processing r1 on node A will cause a non-local map

task execution on node B. Our experiments demonstrate that

approximately 23% of the map tasks are non-local map tasks
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(i.e., the input of the map is on a remote machine).

Clearly, this excessive number of non-local map tasks

causes costly network traffic, and thus performance degrada-

tion. It also causes performance degradations in other ways:

1) The non-local map tasks may needlessly create specu-

lative map tasks. Because non-local map tasks, due to

the data transfer, have longer execution time compared

to local map tasks, they have more potential to be

categorized as slow tasks (and need to run speculative

copies). Our experiments demonstrate that approxi-

mately 50% of the speculative map tasks are backups

of non-local map tasks, and even worse, 50% of these

speculative map tasks are unnecessary.

2) The non-local map tasks along with the unnecessary

speculation may lead to unbalanced execution of map

tasks across different data nodes because some nodes

will be busy executing longer map tasks. This in turn

may cause reduce-shuffle skew.

Recognizing that the current Hadoop’s scheduler for map

tasks causes a high number of non-local map executions,

as it disregards replicas distributions, we seek an approach

to reduce the non-local map task executions, reduce the

unnecessary map speculations, and balance the number of

map tasks executions among data nodes (each node executes

nearly the same number of map tasks). We have developed

a scheduling algorithm – Maestro – to alleviate the non-

local map tasks executions problem of MapReduce. Mae-

stro is conducive to improving the locality of map tasks

executions efficiency by virtue of the finer-grained replica-

aware execution of map tasks, thereby having one additional

factor for the chunk hosting status – the expected number of

map tasks executions to be launched. Maestro keeps track

of the chunks’ locations along with their replicas’ locations

and the number of other chunks hosted by each node. In

doing so, Maestro can efficiently schedule the map task to

the node with minimal impacts on other nodes’ local map

tasks executions.

We have evaluated Maestro on 100-nodes of Grid5000

[12, 13]. With the sort and wordcount benchmarks, we

demonstrate that Maestro achieves around 95% local map

executions and reduces speculative map tasks by 80%. As

a result, it improves the response time of Hadoop by 34%

and 22% for sort and wordcount workloads, respectively.

The rest of this paper is organized as follows. Section 2

discusses the current map task scheduling and the impacts

of non-local map task execution through a series of experi-

ments. The design of our Maestro algorithm is presented in

section 3, followed by a performance evaluation in section

4. Finally, we review related work in section 5, and conclude

the paper in section 6.

II. MAP SCHEDULING IN MAPREDUCE

Before we introduce our approach, let us first illustrate

the current map tasks scheduling used in Hadoop. We then

discuss its shortcomings through a motivating example.

A. Map Task Scheduling in Hadoop

In the current version of Hadoop, the map tasks are

scheduled as follows. Initially, the Hadoop master assigns

the map tasks to the slaves (depending on the slaves’ slots

capacity), considering data locality. At run time, when a

slave reports an empty slot to process map task, the job

scheduler consults a storage metadata service to get the

hosted chunks in three successive ways: by that node, by

another node within the same rack, and then by another node

outside the rack. This order aims to exploit data locality.

New map task from the map tasks pool will be assigned con-

sidering the aforementioned sequence. Moreover, Hadoop-

MapReduce handles failures in the following way. If a node

crashes, MapReduce re-runs its tasks on a different machine

by giving these tasks higher priority in the map tasks pool
(the map tasks pool has three kinds of map tasks: failed

map tasks which have highest priority, normal map tasks

and speculative map tasks with lowest priority). Finally,

data replication not only makes the MapReduce system fault

tolerant, but also helps in handling stragglers: speculative

copies of straggler’s in-progress tasks are scheduled on other

machines to help reducing the overall computation time.

B. A Motivating Example

We perform a simple experiment as a motivating example

to illustrate the problem of non-local map execution in

Hadoop.

1) Experimental setup: Our experimental hardware con-

sists of a 6-nodes one-rack cluster. Each node is equipped

with two 4-core 2.33GHz Xeon processors, 8GB of memory

and 1TB of disk, runs RHEL5 with kernel 2.6.22, and

is connected with Gigabit Ethernet. We use virtualization

to scale the number of nodes in Hadoop using Xen 3.2

[14, 15]. In the virtualized environment, we deploy four

virtual machines (VMs) on five of these physical machines
(PMs), reaching a cluster size of with 20 slave. Each VM ia

configured with 1 pinned VCPU, 1GB memory and 60GB of

virtual disk and is running with REHEL5, kernel 2.6.22. All

results described in this paper are obtained using Hadoop

version 0.19.0, and the data is stored with 2 replicas per

chunk in Hadoop’s Distributed File System (HDFS). We

select the sort application from the GridMix benchmark.

2) Results and discussion: Figure 1 shows the experiment

results for map tasks executions in sort application. We vary

the number of map tasks to 40-maps and 160-maps which

is equivalent to running sort with two data sets 2.5GB and

10GB, respectively. The minimum and average completion

time of the local map tasks are (2 and 11) seconds and

(2 and 49) seconds for the 40-maps and 160-maps jobs,

respectively. In contrast, the minimum and average comple-

tion time of the non-local map tasks are (5 and 20) seconds
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(a) Map tasks: 40-Maps (b) Map tasks: 160-Maps (c) Job statistics

Figure 1. Impacts of non-local map tasks in sort

when running the 40-maps job; and (9 and 60) seconds when

running the 160-maps job.

Figures 1 (a) and (b) show the breakdown of map tasks

executions for two jobs with 40 and 160 map tasks, re-

spectively. The number of non-local map tasks is 23% and

17% of the total launched map tasks when executing jobs

with 40 and 160 map tasks, respectively, and only 70% and

65% are successfully executed. Moreover, the percentage

of the speculative tasks caused by non-local map tasks

executions is 50% and 55% for the 40-maps and 160-maps

jobs, respectively. Even worse, only 50% and 25% of the

speculative map tasks are successful as shown in Figure

1 (c). We also observe that the response time of the job

is almost proportional to the number of the non-local map

tasks. In addition, the time gap between the non-local and

local map tasks will affect the decision when speculation is

needed. In our experiments, the non-local map tasks cause

speculative executions with a probability of (2/8 = 25%)

and (11/20 = 55%) for the 40-maps and 160-maps jobs,

respectively. In contrast, the speculation caused by local map

tasks is of a much lower probability, i.e., (2/32 = 6.5%) and

(9/140 = 6.5%) for the same two jobs.

Furthermore, due to the time gap between the non-local

and local map tasks along with the wrong decision when

speculation, some nodes will be busy executing long-time

map tasks (“slots occupying”), resulting with significant

imbalance of the successful map tasks among different

identical nodes. Figure 2 (a) shows the successful map tasks

distribution among different data nodes when running sort
benchmark with 160 map tasks. We can see that the variation

is significant, the number of map tasks varies from 2 map

tasks to 15 map tasks, which results in load imbalance in

map tasks executions as shown in Figure 2 (b). Moreover,

this situation induces load imbalance in the shuffle phase

of the reduce phase, as some nodes need to transfer more

intermediate data than others and will result in unbalanced

load in reduce tasks executions as shown in Figure 2 (c).

III. MAESTRO DESIGN

The goal of Maestro is to practically improve the per-

formance of MapReduce (1) by reducing the number of

non-local map tasks executions, and (2) by balancing the

number of map tasks across different nodes. Getting the

optimal solution for achieving the goal is difficult (an NP-

hard problem). Therefore, we investigate for heuristic-based

solutions. In particular, we consider the following heuristics:

• We always select the data node which we think it

will execute the minimal number of local map tasks.

We explain how to find these potential data nodes by

calculating the probabilities of executing all the hosted

chunks locally.

• We always select the data node which has minimal

impact on other nodes’ local map tasks executions. This

node has the lowest share rate with other nodes. Share
rate of a node nj (denoted as ShareRateNj) is defined

as the maximum value of the number of replicas in

nj and ni representing the same data chunks, for all

ni not equal to nj in the cluster. ShareRateNj =
max1≤i≤N,i �=jSc

j
i , where Scji is the number of shared

chunks between ni and nj , (Scji = ni ∩ nj).

• We always select the chunk which has maximal prob-

ability of not being processed locally.

To facilitate the development of Maestro, we define the

following two important parameters. We consider that the

cluster consists of k servers: n1, n2, ..., nk.

1) Number of hosted chunks in node nj (denoted as

HCNj). The HCN value indicates the number of unpro-

cessed chunks hosted by a node. The HCN values help in

keeping the track of the chunks that are still unprocessed as

a map task. After a task mapi is launched, the corresponding

HCN of all the nodes hosting this specific chunk ci and its

replica are decreased by 1.

2) The chunk weight (denoted as Cwi). The Cw value

indicates the probability of processing ci on none of its hosts

(non-locally). Thus processing the chunk with the highest

weight will reduce the risk of launched non local map tasks.

Cwi = 1− (
1

HCN1
+

1

HCN2
+ ...+

1

HCNr
) (1)

where r donates the number of replications and HCNj is

the number of the chunks hosted by the data nodes which

host ci.
Fault Tolerance. Maestro is effective in handling failures,

with the consideration of both the locality execution of the

task and the priority of the map task executions. We calculate

the Cw for the specific map task excluding the replica on
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(a) Distribution of successful map tasks: the num-
ber of successful map tasks per node varies by
nearly 41%.
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(b) Map tasks runtime: even though all map tasks
receive the same amount of data, the slowest task
takes more than 217 seconds while the fastest
one completes in 2 seconds due to the non-local
execution along with the imbalance of map task
execution per node.
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(c) Reduce tasks runtime: there is a factor of
seven difference in runtime between the fastest and
the slowest reduce tasks which is due to the map
task-skew.

Figure 2. Distribution of successful map tasks per nodes and tasks runtime: Running sort benchmark with 160 map tasks and 40 reduces.

the failed node, thus this map will be the first to be executed

on any of the other hosts. As explained:

[Cw′i = 1−
k−1∑

j=1

1

HCNj
] > [Cwi = 1−

k∑

j=1

1

HCNj
] (2)

where Cw′i denotes the chunk weight when one of its

replicas hosted by failed map task, hence sum of (k − 1)

replicas, and Cwi is the chunk weight with k replicas – no

node failure.

Heterogeneous Cloud. In order to make Maestro effective

for both homogeneous and heterogeneous environments1, we

extend the equation of calculating the chunk weight to:

Cwi = 1− (
s1

HCN1
+

s2
HCN2

+ ...+
sr

HCNr
) (3)

where sj denotes the slots capacity of node nj which reflects

the heterogeneity degree. Accordingly, we select the chunk

shared with nodes with smaller slots capacity (i.e. from

equation (3), obviously, higher sj leads to smaller Cw).

We therefore prevent the nodes with higher computation

capacity to be out of chunks “possible non-local maps”

earlier than ones with lower computation capacity, especially

that all the nodes are by default host the same number of

chunks.

A. Maestro Scheduler

Considering the chunks locations and their replicas, Mae-

stro schedules the map tasks considering chunk locality and

node availability. The scheduling of Maestro is in two waves:

first wave scheduler and run time scheduler.

1) First wave scheduler: In the current Hadoop’s map

scheduler, when the job is starting, all the nodes are treated

equally and the map tasks will be scheduled blindly on

these nodes with no specific order or condition which may

cause early empty nodes (some nodes will be out of chunks).

Therefore, in Maestro, we first process the nodes with higher

potential in processing less local map tasks. For example,

1In this paper, heterogeneity refers to heterogonous data nodes in terms
of CPU cycles (number of CPUs pinned to one virtual machine).

this may be the case when the number of hosted chunks

is relatively smaller than on average or the nodes have low

share rates. Accordingly, we process the nodes ascendingly

by the sum of their hosted chunks’ weights, while priori-

tizing nodes which share chunks with more nodes, (i.e., we

process the nodes ascendingly according to their NodeWi

values, where NodeWi =
∑HCNi

j=1 (1−∑r
k=1

1
HCNk+Sci

k

)

where r is the number of replication. After selecting the

node with minimal NodeWi value, we process the chunk

with maximal weight. After this stage all the data nodes

will be kept hosting nearly the same number of chunks.

2) Run Time Scheduler: When a node reports an empty

task slot, the master will check if there is any unlaunched

map task where the data is hosted by this specific node.

Maestro then computes the Cw of each chunk and processes

the chunk with the highest weight. We need to perform some

refinements on the run time scheduler. We find in some

applications, especially when the map task computation is

fast (for example in sort benchmark where the map tasks

execution time could be 3 seconds which is very close to the

heartbeat time for some nodes) and when the slots number

larger than 1, that some nodes may report an empty slot

although they have reached the optimal number of local map

tasks ( total Maps
No. nodes ), therefore instead of launching a non-local

map task we firstly check for local speculative map tasks and

then non-local map tasks.

In summary, the first wave scheduler is responsible for

filling the empty slots of each data node based on the number

of hosted map tasks and on the replication scheme for their

input data, and the run-time scheduler is for runtime dynam-

ics. They are complementary with each other, achieving the

goals mentioned at the beginning of this section.

IV. EVALUATIONS ON MAESTRO

A. Experiments Setup

Maestro can be applied to Hadoop at different versions.

Maestro is currently built in Hadoop-0.19.0 and Hadoop-

0.21.0. We evaluate Maestro performance in two environ-

ments: on a local virtualized testbed – described in section
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Algorithm 1: First Wave Scheduler

Input: D: the needed data to be processed, N: number of
data nodes, S: total available slots and MapN: all the
map tasks.

Description: launch map tasks on N node to fill all the S
free slots for the single MapReduce job.
Output: {mapNL

i (ci, nj), mapFL
i (ci, nj),

mapSL
i (ci, nj),mapNN

i (ci, nj), mapFN
i (ci, nj),

mapSN
i (ci, nj)} /*mapXY represents the type of

map tasks where X = {N : Normal, F : Failed ,
S : Speculative} and Y = {L : Local,
N : Non− local}*/

while S is not zero do
Find max1≤k≤Nsk
sort nodes according to their NodeWj

while sj < max1≤k≤Nsk do
select next node

end
Find max1≤i≤HCNjCwi

Launch mapNL
i (ci, nj)

sj ← sj − 1
foreach nj host ci do

remove ci
end
foreach nj do

calculate NodeWj

end
end

2 – and on a large scale cluster of Grid5000 [13]. Our

Grid5000 experiments run on 100 nodes, located in the same

site. Nodes are IBM eServer 326m with 2 cores 2.0GHz

AMD Opteron 246, and 2GB of memory, equipped with

80GB/SATA disk. Table I summarizes the environments we

use throughout our evaluation.

We configure the Hadoop-HDFS to host two replicas of

each chunk. Each Hadoop-slave is configured to run 2 map-

pers and 2 reducers simultaneously (the default Hadoop).

Throughout our evaluation, we use primarily the sort bench-

mark as testing workload (sort benchmark is the main

benchmark used to evaluating MapReduce (Hadoop) [2, 7]),

but also evaluate wordcount benchmark.

In all tests, data distribution is 128MB and 1GB per data

node, equivalent to data set of 2.5GB and 10GB distributed

on our local cluster, respectively, and 12.5GB and 200GB

Algorithm 2: Run-Time Scheduler

When a heartbeat is received from node nj reporting free slot
if MapNj is not empty then

Find max1≤i≤HCNjCwi

Launch mapNL
i (ci, nj)

else if nj host speculative map task input then
Launch mapSL

i (ci, nj)
else

Launch mapSN
i (ci, nj)

end

Table I
ENVIRONMENTS USED IN OUR EVALUATION

Environments Scale
Local Cluster 4VMs/Node equivalent to 20VMs cluster
Grid5000 100-nodes

on Grid5000.

B. Maestro Scheduling on Local Cluster

We first evaluate Maestro and native Hadoop on our local

virtual cluster of 20VMs. We compare the response time –

the average of three runs of the job – and the balance of the

successful map tasks among data nodes in Maestro against

native Hadoop. We use two metrics to measure the balance

of map tasks distribution [16]:

• the coefficient of variation:

cv =
stdev

mean
× 100% (4)

• The min-max ratio:

Min −Max Ratio =
minmapi
maxmapj

× 100% (5)

where minmapi and maxmapj are the minimum and

the maximum number of the successful map tasks

among different nodes.

We use two sort jobs on two data sets of 2.5GB and 10GB,

equivalent to 40 and 160 map tasks, respectively. Figure 3

(a) shows the worst, best and average runtime achieved by

Maestro in contrast to native Hadoop. On average, Maestro

outperforms Hadoop by 25% and 11.8% for 40-maps and

160-maps, respectively. This can be explained due to the

decreasing number of non-local map tasks, (e.g. the number

of non-local map tasks is 23% in Hadoop, and it is only

4% in Maestro for the sort job with 160-maps). Moreover,

the speculative maps ratio (speculative maps ratio =
speculative map tasks

total successful map tasks ) is significantly decreased from

10% to nearly 1.25% for 40-maps and from 12.5% to 2.5%

for 160-maps.

Table II shows the variation of the successful map tasks

executions on different nodes. We can see that the variation

is significant in native Hadoop compared to Maestro. For

example, for 160-maps, the co-efficient of variation is almost

42% and the min-max ratio is 14.2% in native Hadoop while

there are 16.2% and 55.33% in Maestro, respectively.

C. Maestro Scheduling on Grid5000

In order to validate our evaluation on large scale dis-

tributed system, we evaluate Maestro and native Hadoop on

large scale cluster of 100-nodes on Grid5000. We compare

Maestro and native Hadoop in two settings: homogeneous

and heterogeneous environments. In order to mimic hetero-

geneous environment, we divide the nodes into two sets: one

with 2 map task slots capacity and one with 1 map task slot

capacity.
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(a) Response time of sort on 20-VMs local cluster:
worst, best and average case

(b) Speculative maps ratio

Figure 3. Sort benchmark with Maestro against native Hadoop on our local cluster

Table II
VARIATION OF SUCCESSFUL MAP TASKS AMONGST DIFFERENT NODES

FOR MAESTRO AGAINST NATIVE HADOOP

cv Min-Max Ratio
Hadoop Maestro Hadoop Maestro

Local cluster 40-maps 39.7% 16.2% 25% 33.3%
160-maps 41.7% 16.2% 14.2% 55.3%

Grid5000 200-maps 18% 12% 33% 33%
1600-maps 25% 11% 43% 72%

As shown in Figure 4, Maestro outperforms Hadoop by

34% and 6% for 200-maps and 1600-maps, equivalent to

128MB, and 1GB data distribution, respectively. The number

of non-local map tasks is 16% in Hadoop, and it is only 3%

in Maestro. Moreover, for the 1600-maps, the speculative

map tasks is significantly decreased from 5% to 1% of the

total map tasks. Moreover, Maestro leads to a better balanced

distribution of successful map tasks among different nodes.

As shown in Table II, the maestro reduced the cv from

18% to 12% for 200-maps and from 25% to 11% for

1600-maps. Furthermore, the min-max ratio is significantly

improved – Maestro reduces the gap between the node with

the maximum number of successful map tasks and the one

with the minimum number to 72%, while it is 43% in native

Hadoop for 1600-maps. In addition, the reduction in both

non-local map tasks and speculative map tasks along with

improving the balance of successful map tasks result with

shorter and more predictable map task phase in contrast with

native Hadoop and relatively shorter reduce phase as shown

in Figure 4.

1) Maestro scheduling with the wordcount application:
We run wordcount application to evaluate Maestro. As

shown in Figure 5, on average, Maestro allows the word-
count application to run 22% and 7% faster than Hadoop for

200-maps and 1600-maps, respectively. Moreover, the non-

local map tasks reduced by 77% from 11% in native Hadoop

to 2.4% in Maestro. The speculation reduced from 5.3% in

native Hadoop to only 1.1% in Maestro. The improvement

in sort benchmark is relatively better than wordcount when

the number of map tasks is small, because the local map task

execution time is much shorter compared to non-local map

Figure 4. Sort on Grid5000: detailed performance of each stage in Maestro
against native Hadoop

tasks in sort application compared to wordcount application.

2) Maestro scheduling in heterogeneous cluster: Similar

to the homogeneous environments, Maestro can be effi-

ciently employed in heterogeneous environment to improve

the local execution of map tasks and reduce the needless

map tasks speculation, as a result, improve the overall

performance of the applications. As shown in Figure 6,

Maestro outperforms Hadoop by 24% and 4% for 200-maps

and 1600-maps when running sort application, respectively.

The number of non-local map tasks is 14% in Hadoop, while

it is only 4% in Maestro. Moreover, for the 1600-maps, the

number of speculative map tasks is significantly decreased

by 70% – from 88 speculative map tasks in native Hadoop

to 27 speculative map tasks in Maestro. In addition, Maestro

allows the wordcount application to run 13% and 6% faster

than Hadoop for for 200-maps and 1600-maps, respectively,

and the speculation reduced from 70 speculative map tasks

in native Hadoop to 26 speculative map tasks in Maestro for

the wordcount application with 1600-maps.

V. RELATED WORK

Ever since the advent of the MapReduce programming

model, a huge number of studies have been dedicated

to improving the performance of MapReduce system, and

Hadoop in particular [7, 8, 17, 18]. A series of network-

oriented optimizations focus on the data shuffling stage

of MapReduce [19–21]. Tyson et al. [19] have proposed
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Figure 5. Wordcount on Grid5000: worst, best and average-case time for
Maestro against native Hadoop

Online MapReduce, a modified MapReduce architecture in

which intermediate data are pipelined between map and

reduce tasks, so that reducers start processing data as soon

as mappers produce them. This in turn results with faster

runtime. Sangwon et al. [20] have proposed pre-fetching

and pre-shuffling schemes for MapReduce in shared en-

vironment. The pre-shuffling scheme tries to reduce the

network overhead required to shuffle intermediate data, by

looking over the input splits before the map phase begins

and predicts the target reducer where the key-value pairs of

the intermediate output are partitioned; accordingly, the ex-

pected data are assigned to a map task near the future reducer

before the execution of the mapper. We have proposed LEEN

[21], a solution to reduce the network overhead required to

shuffle intermediate data, by partitioning the intermediate

data considering data locality in the mapper outputs while

keeping in mind fair distribution of reducers’ inputs.

There have been a few studies on improving MapReduce

performance by overcoming the performance degradation

caused by virtualization interference [6, 7, 17] (such in-

terferences are contributed by different factors including

the application’s type, the number of concurrent VMs, and

the scheduling algorithms used within both the guest and

the host [22]). We have proposed CLOULET [6], a new

framework for the MapReduce model by decoupling the

storage unit, namely HDFS, from the computation unit,

namely VMs, and keeping the data transfer physical node

based, thus minimizing the impact of the I/O virtualization

on the Hadoop execution. Zaharia et al. [7] have proposed a

new scheduling algorithm called Longest Approximate Time
to End (LATE) to improve the performance of Hadoop in

a heterogeneous environment, brought by the variation of

VM consolidation amongst different physical machines, by

preventing the incorrect execution of “speculative tasks”.

Although, the focus of LATE is to prevent the incorrect spec-

ulative reduce tasks for short jobs in heterogeneous cloud,

Maestro aims to achieve the same aim but for speculative

map tasks regardless the targeting environment.

Recent studies have demonstrated the performance gain of

Hadoop through data placement techniques [23, 24]. Xie et

Figure 6. Maestro speed up against native Hadoop on heterogeneous
Grid5000: running two benchmarks, sort and worcount, on heterogeneous
platform on Grid5000 with two data sets

al. [23] have proposed to distribute the input data chunks to

heterogeneous nodes based on their computing capacities.

Ananthanarayanan et al. [24] have proposed Scarlett, a

popularity-based data replication technique to reduce slots

contention on machines storing popular data and maximize

data locality. The monetary cost of running Hadoop has been

explored on public cloud environments [25, 26]. Cohan et
al. [26] has proposed to improve the performance of Hadoop

in public cloud with minimal monetary cost increasing by

adding spot instances as accelerators. We plan to investigate

the monetary efficiency of Maestro in the future.

A closely related work on improving the local execution

of map tasks in Hadoop is delay scheduler [27]. In [27],

Zaharia et al. have proposed a simple scheduling algorithm

called delay scheduling to achieve locality and fairness in

cluster scheduling. When a job that should be scheduled next

according to fairness cannot launch a local task, it waits for

small amount of time, letting other jobs launch tasks instead.

Our work is different in the targeting environment, we focus

on batch jobs with the awareness of replications. Moreover,

delay scheduler may increase the locality of map tasks

executions for single job but at the cost of performance and

number of speculative map tasks. Because it will introduce a

delay to enforce locality, this will lead to increase the overall

response time and will cause incorrect map speculation,

especially for applications with short map task execution.

VI. SUMMARY AND FUTURE WORK

As data-intensive applications became popular in the

cloud, data-intensive cloud systems call for empirical evalu-

ations and technical innovations. In this study, we investigate

some performance limits in current MapReduce frameworks

(Hadoop in particular). Our studies reveal that the current

Hadoop’s scheduler for map tasks is inadequate, as it disre-

gards replicas distributions. It causes performance degrada-

tion due to a high number of non-local map tasks, which in

turn causes too many needless speculative map tasks and

leads to imbalanced execution of map tasks among data

nodes. We address these problems through developing a new
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map task scheduler called Maestro. Maestro is conducive

to improving the locality execution of map tasks efficiency

by the virtue of the fine-grained replica-aware execution of

map tasks. Our preliminary results with Maestro demonstrate

promising improvements compared to Hadoop. Our future

work lies in two aspects: first, to improve the Maestro

algorithm to work in dynamic settings in public cloud such

as Amazon EC2; second, to evaluate our implementation

in shared environments with the possible integration with

existing schedulers such as the fair scheduler [27].
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