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Abstract—Cloud computing enables users to perform their 
computation tasks in the public virtualized cloud using a pay-
as-you-go style. Current pay-as-you-go pricing schemes 
typically charge on the incurred virtual machine hours. Our 
case studies demonstrate significant variations in the user 
costs, indicating significant unfairness among different users 
from the micro-economic perspective. Further studies reveal 
the reason for such variations is interference among 
concurrent virtual machines. The amount of interference cost 
depends on various factors, including workload characteristics, 
the number of concurrent VMs, and scheduling in the cloud. In 
this paper, we adopt the concept of pricing fairness from micro 
economics, and quantitatively analyze the impact of 
interference on the pricing fairness. To solve the unfairness 
caused by interference, we propose a pay-as-you-consume 
pricing scheme, which charges users according to their 
effective resource consumption excluding interference. The key 
idea behind the pay-as-you-consume pricing scheme is a 
machine learning based prediction model of the relative cost of 
interference. Our preliminary results with Xen demonstrate 
the accuracy of the prediction model, and the fairness of the 
pay-as-you-consume pricing scheme. 

Keywords- Cloud Computing; Virtualization; Pay-As-You-
Go; Pay-As-You-Consume; Machine Learning. 

I. INTRODUCTION 
Cloud computing has recently emerged as a popular 

paradigm for harnessing a large number of commodity 
machines in the cloud. In such a paradigm, users are allowed 
to use the computation resources with respect to a pricing 
scheme similar to the economic exchanges in the utility 
market place. However, unlike the utility market, which 
typically has standard fine-grained charging units (such as 
kilowatt per hour (kwh) in electricity market), there are no 
standard pricing units in a cloud environment1, particularly 
for computation as a services cloud. One of the common 
schemes used by recent cloud providers is primarily based on 
virtual machine (VM) hours on the virtualized cloud 
environment (e.g. Amazon charges per small instance hour at 
$0.085 [1]). Many existing studies [2, 3, 4] have focused on 

                                                           
1  Infrastructure as a Service cloud can be classified into Storage as a 
Service and Computation as a Service. Our focus is on the pricing scheme 
in the CaaS, as in the SaaS we already have well defined fine-grained 
charging unite, data size/transfer per Gigabyte. 

reducing the virtual machine hour usage. In contrast, we 
investigate the variance on the virtual machine hour usage in 
the cloud. 

A cloud is a multi-tenant infrastructure - users may share 
the same physical infrastructure. Hence, there are 
interferences between VMs, such as interferences in disk and 
network I/O, and CPU (since the L2 data cache is shared on 
multi-core processors). For example, a user may have multi 
VM instances running within shared physical servers, on 
which the resource consumption of each VM varies due to 
the interference. This sharing leads to several fundamental 
observations: interferences may increase the running time of 
a certain task on a VM, resulting in unfairness between users 
(not only do interferences result in lower performance and 
higher cost for user, but the cost of interferences can also 
vary with users). Nevertheless, the amount of interference 
cost depends on various factors, such as an application’s 
type, the number of VMs, and VM scheduling algorithms in 
the hypervisor [5, 6, 7, 8]. 

Since cloud computing is an economically-driven 
distributed system paradigm, pricing fairness is an important 
economic feature for a good pricing scheme [9, 10]. In 
economics, pricing fairness includes personal and social 
fairness. Personal fairness is subjective, and typically means 
that the pricing should be low enough, while social fairness 
mainly investigates whether users have the same financial 
cost for the same task. An unfair pricing scheme could foster 
dissatisfaction from users, and eventually the provider could 
lose customers. A previous study [11] has demonstrated the 
cost variance between different runs on Amazon EC2. In this 
study, we provide a quantitative study of the pricing fairness 
with respect to the virtualization internals, and investigate 
how we can remedy the pricing unfairness. 

As a start to understanding these two aspects in the 
pricing fairness, we define two metrics to quantify these two 
kinds of fairness. For the same task, we use the difference in 
the cost for the same user when running the VM instance 
alone and in the presence of other VM instances to measure 
the personal fairness, and we use the difference in the cost 
among different users to measure the social fairness. Since in 
the cloud users run different tasks, we extend the social 
fairness to be the difference in the ratio of the extra cost 
caused by interference to the total cost. Accordingly, we 
study the performance interference caused by the 
abovementioned interference factors in our local Xen 
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virtualized cloud with a focus on both the personal and social 
fairness of users cost. We quantify the cost interference to be 
the difference between the concurrent execution and the 
execution without interference. We define the Effective 
Virtual Machine Time (EVMTime) to finish a task - the 
amount of time when the VM is only running on the physical 
machine - as the charging unit. With the two aforementioned 
fairness metrics, we observe that the current pricing scheme 
based on virtual machine time is neither personally or 
socially fair. To remedy the unfairness caused by 
interference, we propose a pay-as-you-consume pricing 
scheme, which charges users according to their effective 
resource consumption excluding interference. Thus, the pay-
as-you-consume scheme reflects the real cost of executing 
the task and provides a fair cost to users, by means of the 
Effective Virtual Machine Time. Accordingly, our pricing 
scheme embraces an intelligent prediction model on the 
relative cost of interference. 

Unfortunately, the cost estimation of the interference is a 
challenging issue, due to the following factors. The 
interference is caused by congestion in the shared resources: 
CPU, disk I/O and network I/O. Even worse, the fairness in 
individual resource does not guarantee global fairness, due to 
the misalignment among the scheduling in the individual 
resources. Another difficulty is that the hypervisor does not 
have full knowledge of the application running in the VMs. 
Intuitively; it seems to be very complicated task, even 
impossible, to model the interference in virtualized 
environments, but motivated by the huge success and 
accuracy level of using machine learning techniques for 
enhancing the system performance in storage systems [12], 
we propose to use machine learning techniques, particularly 
Support Vector Machine (SVM) algorithms, to automatically 
identify the key parameters affecting the interference. Our 
preliminary experimental results with Xen demonstrate the 
accuracy of the prediction model, and the fairness of the pay-
as-you-consume pricing scheme. For example, our results of 
the data collected from the I/O benchmark, using libsvm [13] 
(a popular machine learning toolkit) demonstrate that our 
predication model can achieve around 90% accuracy in 
predicting the interference score for different I/O workloads. 
Thus, our pay-as-you-consume model can offer better 
fairness for users in terms of personal and social fairness. 

The paper is organized as follows. Section 2 discusses 
the interference in Xen, followed by the motivating 
performance results in section 3. In section 4, we introduce 
the pay-as-you-consume model. We discuss related work in 
section 5 and conclude in section 6. 

II. INTERFERENCE IN XEN 

A. Architecture Overview 
The Xen hypervisor is a para-virtualizing virtual machine 

monitor (VMM) [14, 15], in which the machine architecture 
presented to an operating system is not identical to the 
underlying hardware. The Xen hypervisor is responsible for 
resource (CPU, memory and I/O device, etc.) allocation for 
the various virtual machines running on the same hardware 
device. There is an initial domain, called Domain 0, which is 

a modified Linux kernel. Dom0 is a unique virtual machine 
running on the Xen VMM that has privilege to access 
physical I/O devices as well as interact with the other VMs. 
Other VMs sharing the same host with Dom0 are called 
DomainUs or Guest Os. 

Xen Schedulers. Xen is unique among VMM software 
because it allows users to choose among different CPU 
schedulers and I/O schedulers. From version 3.1.0, Xen has 
two different CPU schedulers available, Credit and Simple 
Earliest Deadline First (SEDF), both allowing users to 
specify CPU allocation via CPU weights. Moreover, there 
are currently four available I/O schedulers in the 2.6 Linux 
kernels: Noop, Anticipatory, Deadline, and Complete Fair 
Queuing scheduler (CFQ). Furthermore, users can select the 
I/O schedulers on the fly in both Dom0 and DomUs. For 
more details about CPU and I/O schedulers used in Xen, 
readers can refer to [5, 6, 7]. 

B. Intra-machine Interference in Xen 
The Xen hypervisor is responsible for providing isolation 

among the virtual machines and managing their access to 
hardware resources, that is, the Xen hypervisor performs 
functions such as scheduling processes and allocating 
memory among different guest operating systems. As the 
hardware resources are shared by multiple VMs, the current 
virtualized system experiences unpredictable and unstable 
performance, not to mention the performance degradation in 
some scenarios [8, 16, 17]. Different software solutions [18, 
19] can be adopted to reduce the interference in the shared 
environment. Previous studies have revealed that the reason 
of such behavior is due to VMs interference. Interference in 
a virtualized environment is caused by two conflated reasons 
as explained below: 
• Inherited Interference. This is the interference caused 

by the underlying technology, hardware and software, 
which is still a key problem in traditional (non-
virtualized) systems, such as the shared L2 data cache 
on multi-core processors [20] (hardware). There is also 
the interference by selecting the right scheduler, CPU 
and I/O schedulers, within the operating system 
(software) when diverse applications are introduced [5, 
7]. 

• VMM interference. The interference caused by the 
architecture of the Xen hypervisor, which is the tradeoff 
between risk isolation and fairness. In particular, we 
have driver domain interference as it provides access to 
the actual hardware I/O devices. Thus I/O resources will 
be shared by multiple VMs. In addition to the 
interference introduced by the resources contention 
between Dom0 and other domains that are running CPU 
applications, when I/O applications are performed [6, 
21], all the traffic must pass through the driver domain. 

Due to the various shared resources, interference does 
occur, especially when diverse applications are introduced on 
different VMs. This situation is even worse in the cloud, as a 
provider who is responsible to maintain and configure the 
VMM schedulers has no knowledge about the applications 
being run by users. 
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III. EMPIRICAL STUDY ON XEN 

A. Micro Benchmarks 
Looking at case studies about cloud providers [22, 23], 

we identify several popular applications, such as web-related 
tasks, storage backup, and high performance computing. As 
a start, we use the following micro benchmarks to mimic the 
workload in these popular applications. These include 
Postmark (I/O-intensive benchmark) [24] and PARSEC (we 
chose BlackScholes as an example to study the pricing 
fairness for CPU-intensive applications) [25] running on a 
single machine. We use the same settings as [11]. 

B. Experimental Setup 
Our experiment is conducted on a physical node, 

equipped with two 2-core 2.33GHz Xeon processors, 4GB of 
memory and 500GB of disk, running CentOS. All results 
described in this section are obtained using Xen version 
3.4.2. All the virtual machines used in our experiments are 
configured with 1 VCPU pinned to its own core and 768MB 
of memory and 60GB of virtual disk. We adopt the pricing 
scheme from Amazon: $0.085 for a small virtual machine 
instance [1]. We conduct our experiments on our local test 
bed so we have full control of the environment to get detail 
results of how the system internals affect the cost. We study 
the price fairness through evaluating different consolidation 
strategies as well as the Xen scheduler. 

Metrics. We use the following metrics to evaluate the 
price fairness. The personal fairness is based on the extra 
cost caused by interference. We use the following formula: 

      = Extra Cost By InterferenceInterference Cost
Total Cost

                      (1) 

In order to find the interference cost fairness (social 
fairness), we use Jain’s fairness measure [26] to quantify the 
fairness among the VMs when running different applications 
within the same physical node: 

      ( )=

=×
=
∑
∑

2m
ii 1

m 2
ii 1

x

m x
Fairness                                                      (2) 

where xi denotes the interference cost of VMi, and m is the 
number of the VMs within the same physical node. 

1) The Impacts of the VM Consolidation on Fairness 
In order to elaborate the impacts of VM consolidation on 

the fairness of users’ cost, we vary the number of VMs 
which are deployed within the host to two and three VMs, 
while we run similar applications in the background2. 

Personal Fairness. We observe that, in the presences of 
VM consolidation, the current pricing scheme is far from 
being fair. Moreover, the interference cost is increasing with 
the number of VMs that are deployed within the same host 
and varies according to the running application. 

For instance, the interference cost of VM when running 
the I/O intensive application Postmark has dramatically 
increased with different consolidation levels. As shown in 
Fig.1-a, the interference costs of VMPostmark when it shares the 
resources with two VMs and three VMs are nearly 45% and 
66%, which indicates that the total VM’ cost is two and three 
times higher than when it uniquely runs within the physical 
machine. The interference cost can be explained due to I/O 
congestion which adversely affects the I/O throughput of 
each VM as shown in Fig.1-b. Fig.1-b explains the previous 
result as it shows the cumulative distribution function (CDF) 
of I/O throughput in the virtual machine for the three 
aforementioned scenarios. 

Fig.1-a shows that the interference cost of the VM when 
running CPU intensive applications has slightly increased 
with different consolidations. The interference cost is 5% 
and 19% when it shares the resources with two VMs and 
three VMs, respectively. This can be explained due to the 
cache interference between the different CPUs, which is 
relatively small. In our study all the VCPUs are pinned to a 
specific CPU core, and obviously the interference is 
increasing as the number of VMs increases. 

Social Fairness. As shown in Fig.1-c, the social fairness 
is nearly optimal for the same applications regardless the 
VM consolidation. For example, the proportion of social 
fairness is nearly 99.5% when all VMs are running I/O 
intensive applications, because the default I/O VMM 
scheduler (CFQ) guarantees fairness in sharing the I/O 
resources amongst different VMs [7]. Moreover, the social 

                                                           
2  We refer to the applications running on other VMs as background 
applications 

  
(a)                                                                              (b)                                                                             (c) 

Figure 1.  VMs consolidation impact on interference for both PostMark (PM) and BlackScholes (BS) benchmarks: (a) the cost of the same VM with 
different VM consolidation and application type. (b) CDFs of the I/O size per second in the virtual machine for PostMark benchmark with different VM 
consolidation (c) Interference cost for each VM and social fairness among all VMs within the physical host. 
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fairness is nearly 96% when all the VMs are running CPU 
intensive applications, which is due to the fairness of the 
default CPU scheduler, the credit scheduler [5, 27]. 

In summary, we observe that for the same application, 
due to the resource contention in the presence of VM 
consolidation, the current pricing scheme based on a virtual 
machine time is not personally fair, while it is socially fair 
because the default VMM scheduler (CPU and I/O 
schedulers) tends to fairly share the resources among 
different VM instances. 

2) The Impacts of the Application Types on Fairness 
In the cloud users may run different types of applications 

simultaneously, where the key difference is that they 
consume different types of resources (e.g., CPU, memory, 
network or disk). Thus we fix the number of VMs which are 
deployed within the physical host to three VMs while 
varying the applications which are running on each between 
the Postmark and BlackScholes benchmarks. 

Personal Fairness. In Fig.2-a we see that the 
interference cost in a VM when running I/O intensive 
applications in two scenarios varies with the applications’ 
diversity. When the two background applications are both 
CPU applications, the interference cost of VM has increased 
slightly which can be explained mainly because of the 
priority boost impacts in the Xen credit scheduler [6], that is, 
when an I/O event is incurred the credit scheduler will be 
invoked and boost the priority of an idle domain receiving an 
I/O event. As a result the I/O application will perform very 
close to the case where it does not share the physical host 
with any VM. However, the I/O application will suffer a 
slight degradation due to the CPU interference, that is, the 
cache interference between the VCPU in Dom0 and the 
VCPUs in others domains running CPU applications, 
knowing that CPU overhead in Dom0 is caused by the 
memory page exchange by the I/O application [21]. The 
interference cost in the VMPostmark is increasing as the number 
of the VMs with similar applications is increasing. 

On the other hand and for the same reasons, partially due 
to L2 cache interference and mainly because of the priority 
boost impacts in the Xen credit scheduler [6], the VM with 
CPU intensive application suffers from relatively higher 
interference when both background applications are I/O 
applications. In contrast to the previous results, the 
interference cost in the VMBlachSholes is decreasing as the 
number of the VMs with same applications is increasing. 

The previous discussion leads to a very important 

observation: when different applications are running within 
the same host, the interference cost is dominated by the 
resource contention between these applications and the 
VMM (i.e. the interference cost of an application is 
contributed to by direct interference with the VMM, for 
example, a CPU intensive application’s performance 
degrades due to the L2 cache interference with VMM when a 
background application outperforms it in I/O operations) and 
indirect interference is caused by the VMM, for example an 
I/O application’s performance degrades due to interference 
between Dom0 and other domains running CPU intensive 
applications. 

Social Fairness. Fig.2-b shows that when two different 
applications are sharing the host resources, the interference 
cost of a CPU-heavy application is relatively higher than an 
I/O application as explained earlier, and the proportion of 
social fairness is 77%. Moreover, when three VMs are 
deployed - two of them are running similar applications - the 
social fairness is relatively high. For example, it is 88% for 
the case of (CPU, CPU, I/O) and 98% for the case (CPU, 
I/O, I/O). 

In summary, similar to the previous observation, we 
observe that social fairness varies according to the resource 
contention among the diverse applications running in the 
VMs along with the resource contention between VMs and 
VMM. In addition, the social interference is inversely 
proportional to the diversity of the applications that are 
sharing the same physical host, and it increases as more 
similar applications are sharing the host. 

3) The Impacts of the VMM Schedulers on Fairness 
The following experiments evaluate the impacts of the 

different VMM schedulers used in Xen, for instance, the I/O 
schedulers and the CPU schedulers, for interference when 
running CPU and/or I/O intensive applications on two VMs, 
and Table I presents the result. 

Previous studies have reported on the importance of 
selecting the right I/O scheduler or CPU scheduler and 
tuning them according to the running applications [6, 7 , 16, 
21], however our study tackles a different problem, and use a 
different approach. We study the impacts of both VMM 
schedulers and CPU schedulers side by side with the disk I/O 
schedulers, when diverse applications are running in the 
VMs, in terms of personal and social fairness, thus, we are 
not trying to detail the reason of the performance as it is well 
explained in the aforementioned research papers. 
Furthermore, as this paper is intending to identify unfairness 
in the cloud and the consequences of a provider’s user-
unaware administration, for the I/O schedulers we study the 
impacts of VMM scheduler regardless of the I/O scheduler 
running on the VM. As shown in Table I, the performance of 
different applications, EVMTime, vary slightly according to 
the selected CPU and I/O schedulers in the VMM layer when 
one VM is uniquely deployed in the physical host. However, 
when consolidation is introduced, the variation of the 
applications’ performance and the system throughput 
(referred to as Cost1,2 in Table I, where less cost indicates 
better system throughput) is increasing according to the 
resources’ alignment policy decided by both CPU and I/O 
scheduler in the VMM layer. 

  

                             (a)                                                        (b)                           

Figure 2.  Applications types impacts on interference: (a) Extra cost by 
interference, (b) Interference cost for each VM and social fairness. 
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TABLE I.  PERSONAL AND SOCIAL FAIRNESS WITH DIFFERENT PAIR SCHEDULER (CPU: CREDIT AND SEDF, DISK I/O: CFQ (CF), ANTICIPATORY (AS), 
NOOP (NP), AND DEADLINE (DL) 

 BS,BS PM,PM BS,PM 
 Credit SEDF Credit SEDF Credit SEDF 

 CF AS NP DL CF AS NP DL CF AS NP DL CF AS NP DL CF AS NP DL CF AS NP DL 

EVMTime 559 531 532 536 543 557 550 562 405 366 450 405 377 400 460 387 559 531  532  536 543 557 550 562
TimeVM1 587 559 570 567 575 583 558 579 738 724 1112 739 734 646 1061 898 687 586 533 555 585 550 589 558
TimeVM2 584 594 590 584 549 566 542 577 786 787 1422 909 804 780 1424 825 454 418 525 476 458 514 600 437
Cost1,2(10-2$) 3.25 3.2 3.22 3.2 3.12 3.19 3.06 3.21 4.23 4.2 7.04 4.58 4.27 3.96 6.9 4.79 3.17 2.79 2.94 2.86 2.9 2.95 3.3 2.76
I1 0.05 0.05 0.07 0.05 0.06 0.04 0.02 0.03 0.45 0.49 0.6 0.45 0.49 0.38 0.57 0.57 0.19 0.09 0.00 0.03 0.07 -0.01 0.07 -0.01
I2 0.08 0.11 0.1 0.08 0.01 0.02 -0.01 0.03 0.48 0.53 0.68 0.55 0.53 0.49 0.68 0.53 0.06 0.12 0.14 0.15 0.18 0.22 0.23 0.11
Social Fair 95.3 88.6 96.5 96 67.2 83 78.9 99.6 99.9 99.8 99.5 99 99.8 98.5 99.2 99.9 79.5 98.1 50.3 71.3 84.7 55.4 76.6 55.2

 
Personal Fairness. The interference score varies by 

35%, 14%, and 124% with different CPU and I/O 
schedulers’ combination in the three scenarios: two CPU 
applications, two I/O applications and one CPU application 
concurrently running with one I/O application in the same 
host, respectively. 

However, as shown in Table I, for the same applications, 
selecting the pair scheduler (SEDF, Anticipatory) leads to 
the lowest interference score in both VMs, hence it achieves 
the best system throughput. The interference scores are 0.02 
and negative 0.01 for CPU applications and 0.38 and 0.49 for 
I/O applications. When different applications are running 
concurrently, the choice of the pair of schedulers is only sub-
optimal for one application. Here the pair (SEDF, Deadline 
or Anticipatory) is the best for CPU application while 
(Credit, CFQ) is the best for the I/O applications. 

Social Fairness. As shown in Table I, when both VMs 
are running CPU applications the social fairness varies by 
12% with different pairs of schedulers, while the best social 
fairness is achieved when the pair (SEDF, Deadline) is 
selected in the VMM layer. For I/O applications the social 
fairness is nearly the same for all pairs schedulers with a 
slight advantage to the pairs of schedulers (credit, CFQ) and 
(SEDF, Deadline). However, the worst social fairness 
scenario occurred when different applications are sharing the 
same host, where the pair scheduler (SEDF, Deadline) had a 
social fairness score of 55.2%, although this pair scheduler 
achieves the best system throughput. These results are 
consistent with those in [6] (i.e. SEDF guarantees better 
system throughput and worse fairness than Credit in the case 
of I/O and CPU applications that are sharing the same host). 

In summary, we observe that the choice of an appropriate 
pairs of schedulers (CPU, disk) at the VMM layer has a 
significant impact on the application performance inside 
each VM (personal fairness) and intra-application isolation 
among different VMs (social fairness). More importantly, in 
the cloud different workloads may be performed on the same 
host, and as a result there is no optimal pair of schedulers 
when diverse applications are introduced, although some of 
them are sub-optimal for different workloads and can 
achieve better overall system throughput. However, as this 
paper is a call to action, we encourage further study in the 
area of VMM schedulers to consider both personal and social 
fairness. 

IV. PAY-AS-YOU-CONSUME PRICING STYLE 
We argue that because the cloud is an economy-driven 

distributed system, we should consider the fairness in 
monetary costs. Therefore, we propose the new pay-as-you-
consume pricing scheme, which charges users according to 
their effective resource consumption. However, due to the 
existence of interference, it is very hard to accurately 
determine the effective use of resources among different 
users. Accordingly, we define the Effective Virtual Machine 
Time to finish a task: the amount of time required when the 
VM is the only VM running on the physical machine. As for 
a VM, we consider the effective virtual machine time to be: 
virtual machine time less the interference time. Based on the 
effective virtual machine time, we define the pricing 
fairness: any user using the same amount of effective virtual 
machine time is charged at the same price. 

      = ×Cost Instance Per Hour EVMTimeNew Model                  (3) 

Unlike current pricing schemes, our pay-as-you-consume 
pricing scheme solves the unfairness by charging the users 
according to their effective resources consumption. Since 
there are various factors affecting the interference, we 
propose to use a machine learning model to predict the 
interference based on the resource usage during the running 
time and charge users for their effective virtual machine time 
as shown in Equation 3. Thus, the same task tends to have 
the same cost, resulting in better personal and social fairness. 

A. Interference Predication Model 
If only one VM runs on the physical machine, the 

interference of the VM is zero. If the time for executing a 
task on a VM without any concurrent VM is t, and the time 
for executing the same task of the VM with other concurrent 
VMs is t`, we call the overhead of interference is t`-t. 

We define Ii, the interference factor to VMi: 

              
= −i

i

t `I 1i t                                                             (4) 

The intra-machine fairness means that: given all VMs 
{VM1, VM2, ..., VMn}, running on the same physical machine, 
we should satisfy the two conditions: 
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       → = = =I 0 and I I ... Ii i1 2                                              (5) 

To predict the interference factor when concurrent VMs 
are running within the same host, a VM is represented by a 
vector. The problem is transformed to: given multiple 
vectors, we estimate the overhead of interference on each 
vector. The vector includes the following items: 
• CPU: the CPU time, CPI, the number of L1 data cache 

misses per instruction, the number of L2 data cache 
misses per instruction, the number of DTLB misses per 
instruction. 

• RAM: the average amount of occupied main memory, 
the working set size. 

• Disk: the number of I/O operations per second, the 
amount of data accessed per second, and the average 
length of the I/O queue per second. 

We want to develop a prediction model: 

    →(V , V , .... ,V ) I  n0 1 0                                                    (6) 

where V0, V1,.…, and Vn are vectors for VM0, VM1, …, VMn, 
respectively. I0 is the interference factor to VM0. The idea is 
to estimate the interference factor for V0, with the super 
vector composed of (V0, V1… Vn). Naturally, we can see: V0 
is different from V1… Vn; (V0, any permutation of V1… Vn) 
will get the same results I0. To train our model, we consider 
the following definitions: 
• (V0, nil, nil… nil) means we schedule the VM alone, and 

we can get the measurement t. 
• (V0, V1, nil… nil) means we schedule two VMs, and we 

can get the measurement t0' and t1'. 
• (V0, V1, … Vn) means we schedule n VMs, and we can 

get the measurement t0', t1', .. , and tn'. 
In machine learning, the accuracy of our model strongly 

depends on the training data set, and the correct execution of 
the different benchmarks which represent different 
workloads with different behaviors. Therefore, we need to 
expose the characteristics of interferences in the multiple 
shared layers in virtualization. 

B. A Case Study on I/O Applications 
Since the interference between I/O applications is higher 

than the one between CPU applications, in this paper we 
illustrate the effectiveness and accuracy of our model with 
I/O applications. Testing our prediction model, when diverse 
applications are running, is ongoing work in our group. 

1) Experimental setup 
Our experiment is conducted on a physical node, 

equipped with two 4-core 2.33GHz Xeon processors, 8GB of 
memory and 1TB of disk, running RHEL5 with kernel 
2.6.22, and is connected with 1Gbps Ethernet. All results 
described in this section are obtained using Xen version 
3.4.2. All the virtual machines used in our experiments are 
configured with 1 VCPU pinned to its own core and 1GB of 
memory and 60GB of virtual disk. VMM schedulers are set 
to the defaults: Credit for the CPU scheduler and CFQ for 
the I/O disk scheduler. We perform our experiments by 
repeatedly executing the benchmarks. According to previous 

studies on analyzing and predicting the performance of 
different workloads of I/O intensive applications [12, 28], we 
use a set of training workloads, reflecting various types of 
real-world I/O workloads including sequential and random 
read and write applications as shown in Table II. The 
workloads, shown in Table II, are generated using Sysbench 
[29]. We gather information about four different resource 
metrics related to CPU and disk I/O, which represent the 
items of the vector of our prediction system. These statistics 
are all gathered using vmstat [30], therefore, minimizing the 
effects of the monitoring system on our resource 
measurements. 

TABLE II.  TRAINING AND TESTING WORKLOADS 

Workload  Description  

Tr
ai

ni
ng

  

Sequential 
write/Read 

Writing/Reading sequentially different number 
of files varies from 1-512 files with differen 
size: 128KB-1GB 

Random 
write/Read 

Writing/Reading randomly differen number of 
files varies from 1-5 12 files with differen size: 
128KB-1GB with different threads number 6- 
512 threads 

Te
st

in
g 

 
Sequential 
write (Seq Wr) Writing sequentially 2 GB of data 

PostMark (PM) Write 5 GB (1000 files with 5000 KB each) 

FFSB[31] 
Multi threaded benchmarks that provide I/O op-
erations, we configured FFSB with 128 threads 
and write operation of 5GB of data. 

 
2) Predication Validation 

To evaluate the accuracy of our model, we choose three 
different widely-used I/O applications in the cloud: 
sequential write, Postmark, and Flexible File System 
Benchmark (FFSB) [31] (shown in Table II). We use libsvm 
[13] to evaluate the feasibility of our model in predicting the 
interference. Table III shows the prediction accuracy of our 
model, for the three aforementioned test workloads, with 
other VMs that are running I/O workloads chosen from our 
trained workload. 

We observe that, for the case of seq write which is one of 
the training model workloads, it is expected to get 97%-
100% accuracy, but surprisingly, the accuracy varies 
between 94% and 97%, which can be explained due to the 
instability of the VMs performance under Xen [11]. For the 
rest of applications our model can achieve a prediction 
accuracy of 87% on average, where the best is 93% and the 
worst is 82%. As shown in Table III, our prediction model 
can achieve better accuracy when the interference score is 
relatively high, which can be explained due to the less noise 
caused by the interference amongst the different VCPUs of 
domains U and domain 0. 

TABLE III.  PREDICATION VALIDATION 

 Real I0  Predicted I0 Accuracy 
(Seq Wr, Seq Wr) 1.35 1.27 94% 
(FFSB, Seq Wr) 0.24 0.28 83% 
(Seq Wr, Seq Wr, Seq Wr) 2.9 2.81 97% 
(PM, , Seq Wr, Seq Wr) 0.72 0.67 93% 
(FFSB, Ran Wr, Ran Wr) 2.48 2.2 88.7% 
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3) Discussion on Users Cost Fairness 
To quantify the effectiveness of our prediction model 

under our pay-as-you-consume pricing scheme using 
effective resource consumption charging methods, we study 
the fairness using an example of two VMs running within the 
same host, each of them representing one user and running 
two different I/O applications, Postmark and sequential 
write. As shown in Fig. 3, our pay-as-you-consume pricing 
scheme can achieve a personal fairness of 3% in the case of 
the Postmark application and 2% in the case of the sequential 
write application which is very small compared to the pay-
as-you-go scheme (28% and 50% for both aforementioned 
applications). Moreover, with the social fairness given by the 
fairness of the interference cost of the different VMs within 
the same physical node, as shown in Fig. 3, we can achieve 
98% while the pay-as-you-go model achieves 86%. We 
observe that both the personal and social fairness of our 
model is strongly proportional to the prediction accuracy. 
For example, the best personal fairness (the extra cost caused 
by interference) is achieved when the accuracy is 100% and 
thus the personal interference is zero. 

One may expect that the new proposed model brings 
fairness to the cloud users, while it could lead to a loss in 
profit for the providers (i.e. the provider may not be able to 
recover even the cost of operating). However, previous work 
demonstrated that virtualization, featured with server 
consolidation, can significantly benefit the system providers, 
by achieving reduced server power consumption and close to 
optimal system throughput [11]. In summary, cloud 
providers, using our pay-as-you-consume model, can provide 
users with stable and fair cost, in particularly personal 
fairness and social fairness, while gaining considerable 
positive profit because they have increased trust from users 
by having more consistent charging. In addition, provider 
can gain a competitive advantage through pay-as-you-
consume pricing scheme in the market of multiple providers. 

V. RELATED WORK 

A. User’s Cost in the Cloud 
A number of studies [32, 33] have been dedicated to 

measure the cost of adopting the pay-as-you-go cloud in 
terms of monetary cost, performance, and availability. Some 
studies [11, 34] have reported on the cost variations in the 
cloud. Our work quantifies the variations with price fairness 
and investigates the reason of this variance. Recent studies 
[35] have demonstrated a case study of a consumer-centric 
resource accounting model to verify any discrepancies in 
consumer’s bills. Yao et al. [36] introduced an accountability 
service model to unambiguously identify the reason and the 
responsible party in case of faulty service. In contrast, this 
paper investigates the interplay between micro-economic 
issues and the system design and implementation. 

B. Interference in Shared Environment 
There have been a lot of studies on performance 

interference in virtualized or shared servers. Boutcher et al. 
[7] and Kesavan et al. [16] have examined the impacts of the 
choice of disk I/O scheduler in both VMM and VMs on 

application performance. Despite our work being focused on 
the monetary cost, a key difference between our work and 
their work is that we are studying the impact of a provider’s 
administration by selecting the VMM schedulers for I/O and 
CPU. Mei et al. [37] have measured the performance 
interference among two VMs running network I/O 
workloads that are either CPU bound or network bound and 
elaborated the impacts of co-locating applications in a 
virtualized cloud in terms of throughput and resource sharing 
effectiveness. Our work focuses on fairness in the monetary 
cost. Koh et al. [8] have elaborated the performance 
interference effects between two virtual machines by looking 
at the system-level workload characteristics. They identified 
clusters of applications that generate certain types of 
performance interference and developed mathematical 
models to predict the performance of a new application from 
its workload characteristics. 

VI. CONCLUSION AND FUTURE WORK 
With the pay-as-you-go charging, the public cloud has 

become an economic market for both cloud users and 
providers. However, virtualization with server consolidation 
can cause performance interference, leading to non-
guaranteed quality of service. In this study, we investigate 
the pricing fairness on the pay-as-you-go charging, and 
introduce the pay-as-you-consume model to resolve the 
unfairness in the current pay-as-you-go pricing scheme. 
While the pay-as-you-consume model seemingly reduces the 
cloud providers’ profit, it urges providers to improve their 
system design and optimization to provide good services and 
to gain competitive advantages. We have demonstrated a 
case study on I/O applications for validating the accuracy of 
our model; interestingly our predication model can achieve 
up to 90% accuracy regardless the VM consolidations or the 
I/O workloads. This paper is intended as a call for action, 
and its goal is to motivate further research on economic 
concepts in the cloud. We hope the findings in this paper will 
foster new techniques as well as new pricing schemes in the 
cloud to really reflect the spirit of economic markets. 

 

Figure 3.  An example of the effectiveness of our prediction model 
associated with the Pay-As-You-Consume pricing scheme, when 
running two VMs, each represents different users and runs different I/O 
applications (Postmark and Sequential write). In this example we 
achieved accuracy of 86% and 97% respectively. 
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