
Dynamic Slot Allocation Technique for MapReduce Clusters

Shanjiang Tang, Bu-Sung Lee, Bingsheng He

School of Computer Science&Technology

Nanyang Technological University

{stang5, ebslee, bshe}@ntu.edu.sg

Abstract-MapReduce is a popular parallel computing
paradigm for large-scale data processing in clusters and data
centers. However, the slot utilization can be low, especially when
Hadoop Fair Scheduler is used, due to the pre-allocation of slots
among map and reduce tasks, and the order that map tasks
followed by reduce tasks in a typical MapReduce environment. To
address this problem, we propose to allow slots to be dynamically
(re)allocated to either map or reduce tasks depending on their
actual requirement. Specifically, we have proposed two types
of Dynamic Hadoop Fair Scheduler (DHFS), for two different
levels of fairness (i.e., cluster and pool level). The experimental
results show that the proposed DHFS can improve the system
performance significantly (by 32% � 55% for a single job and
44% � 68% for multiple jobs) while guaranteeing the fairness.

Keywords-MapReduce, Hadoop, Fair Scheduler, Dynamic
Scheduling, Slots Allocation.

I. INT RODUCTION

In recent years, Map Reduce has become the parallel com

puting paradigm of choice for large-scale data processing in

clusters and data centers. A MapReduce job consists of a set of

map and reduce tasks, where reduce tasks are performed after

the map tasks. Hadoop [1], an open source implementation of

MapReduce, has been deployed in large clusters containing

thousands of machines by companies such as Yahoo! and

Facebook to support batch processing for large jobs submitted

from multiple users (i.e., MapReduce workloads).

In a Hadoop cluster, the compute resources are abstracted

into map (or reduce) slots, which are basic compute units and

statically configured by administrator in advance. Due to 1)

the slot allocation constraint assumption that map slots can

only be allocated to map tasks and reduce slots can only

be allocated to reduce tasks, and 2) the general execution

constraints that map tasks are executed before reduce tasks,

we have two observations: (I). there are significantly different

performance and system utilization for a MapReduce workload

under different job execution orders and map/reduce slots

configurations, and (II). even under the optimal job submission

order as well as the optimal map/reduce slots configuration,

there can be many idle reduce (or map) slots while map (or

reduce) slots are not enough during the computation, which

adversely affects the system utilization and performance.

In our work, we address the problem of how to improve

the utilization and performance of MapReduce cluster without

any prior knowledge or information (e.g., the arriving time

of MapReduce jobs, the execution time for map or reduce

tasks) about MapReduce jobs. Our solution is novel and

978-1-4799-0898-1/13/$31.00 ©2013 IEEE

straightforward: we break the former first assumption of slot

allocation constraint to allow (1). Slots are generic and can be
used by map and reduce tasks. (2). Map tasks will prefer to use
map slots and likewise reduce tasks prefer to use reduce slots.
In other words, when there are insufficient map slots, the map

tasks will use up all the map slots and then borrow unused

reduce slots. Similarly, reduce tasks can use unallocated map

slots if the number of reduce tasks is greater than the number

of reduce slots. In this paper, we will focus specifically on

Hadoop Fair Scheduler (HFS). This is because the cluster

utilization and performance for the whole MapReduce jobs

under HFS are much poorer (or more serious) than that under

FIFO scheduler. But it is worth mentioning that our solution

can be used for FIFO scheduler as well.

HFS is a two-level hierarchy, with task slots allocation

across "pools" at the top level, and slots allocation among

multiple jobs within the pool at the second level [2]. We pro

pose two types of Dynamic Hadoop Fair Scheduler (DHFS),

with the consideration of different levels of fairness (i.e., pool

level and cluster-level). They are as follows:

• Pool-independent DHFS (PI-DHFS). It considers the

dynamic slots allocation from the cluster-level, instead

of pool-level. More precisely, it is a typed phase-based

dynamic scheduler, i.e., the map tasks have priority in

the use of map slots and reduce tasks have priority to

reduce slots (i.e., intra-phase dynamic slots allocation).

Only when the respective phase slots requirements are

met can excess slots be used by the other phase(i.e., inter

phase dynamic slots allocation).

• Pool-dependent DHFS (PD-DHFS). It is based on the

assumption that each pool is selfish, i.e., each pool will

always satisfy its own map and reduce tasks with its

shared map and reduce slots between its map-phased

pool and reduce-phased pool (i.e., intra-pool dynamic

slots allocation) first, before sharing the unused slots

with other overloaded pools (i.e., inter-pool dynamic slots

allocation).

We have designed and implemented the two DHFSs on top

of default HFS. We evaluate the performance and fairness

of our proposed algorithms with synthetic workloads. Both

schedulers, PI-DHFS and PD-DHFS, have shown promising

results. The experimental results show that the proposed

DHFS can improve the system performance significantly (by

32% � 55% for a single job and 44% � 68% for multiple

jobs) while guaranteeing the fairness.

Organization. The rest of the paper is organized as follows.

Section II reviews the MapReduce background and related

work. Section III introduces our two types of Dynamic Hadoop

Fair Scheduler, namely, PI-DHFS and PD-DHFS. Section IV

reports on the perfonnance improvement of proposed DHFS

obtained from our experiments. Section V discusses fairness

and slots movement for PI-DHFS and PD-DHFS. Finally,

Section VI concludes the paper and gives our future work.

II. PRELIMINARY AND RELATED WORK

A. MapReduce

MapReduce is a popular programming model for processing

large data sets, initially proposed by Google [16]. Now it has

been a de facto standard for large scale data processing on the

cloud. Hadoop [1] is an open-source java implementation of

MapReduce. When a user submits jobs to the Hadoop cluster,

Hadoop system breaks each job into multiple map tasks and

reduce tasks. Each map task processes (i.e. scans and records)

a data block and produces intermediate results in the form

of key-value pairs. Generally, the number of map tasks for a

job is detennined by input data. There is one map task per

data block. The execution time for a map task is detennined

by the data size of an input block. The reduce tasks consists

of shuffle/sort/reduce phases. In the shuffle phase, the reduce

tasks fetch the intermediate outputs from each map task. In the

sort/reduce phase, the reduce tasks sort intennediate data and

then aggregate the intennediate values for each key to produce

the final output. The number of reduce tasks for a job is not

determined, which depends on the intermediate map outputs.

We can empirically set the number of reduce tasks for a job

to be 0.95x or 1.75x reduce tasks capacity [17].

There are several job schedulers for Hadoop, i.e., FIFO,
Hadoop Fair Scheduler [2] , Capacity Scheduler [18]. The

job scheduling in Hadoop is performed by the jobTracker

(master), which manages a set of taskTrackers (slaves). Each

taskTracker has a fixed number of map slots and reduce slots,

configured by the administrator in advance. Typically, there is

one slot per CPU core in order to make CPU and memory

management on slave nodes easy [2]. The taskTrackers report

periodically to the jobTracker the number of free slots and the

progress of the running tasks. The jobTracker allocates the

free slots to the tasks of running jobs. In particular, the map

slots can only be allocated to map tasks and reduce slots can

only be allocated to reduce tasks.

Hadoop Fair Scheduler [2] is a multi-user MapReduce job

scheduler that enables organizations to share a large cluster

among multiple users and ensure that all jobs get roughly an

equal share of slot resources at each phase. It organizes jobs

into pools and shares resources fairly across all pools based

on max-min fairness [3]. By default, each user is allocated a

separate pool and, therefore, gets an equal share of the cluster

no matter how many jobs they submit. Each pool consists

of two parts: map-phase pool and reduce-phase pool. Within

each map/reduce-phase pool, fair sharing is used to share

map/reduce slots between the running jobs at each phase.

Pools can also be given weights to share the cluster non

proportionally in the configuration file.

B. Related Work

There is a large body of research work that focuses on the

performance optimization for MapReduce jobs. Broadly, it can

be classified into the following two categories.

• Data Access and Sharing Optimization.

Jiang et a1. [4] propose a set of general low-level opti

mizations including improving 110 speed, utilizing indexes,

using fingerprinting for faster key comparisons, and block

size tuning. Thus, they were focused on fine-grain tuning on

different parameters to achieve performance improvements.

Agrawal et al. [5] proposed a method to maximize scan sharing

by grouping MapReduce jobs into batches so that sequential

scans of large files are shared among as many simultaneous

jobs as possible. MRShare [6] is a sharing framework that

provides three possible work-sharing opportunities, including

scan sharing, mapped outputs sharing, and Map function

sharing across multiple MapReduce jobs, to avoid performing

redundant work and thereby reduce total processing time.

MapReduce Online [7] is such a modified MapReduce system

to support online aggregation for MapReduce jobs that run

continuously by pipelining data within a job and between jobs.

LEEN [21] addresses the fairness and data localities.

All these studies are complementary to our study and our

approach can be incorporated into these modified MapReduce

frameworks (e.g., MRShare [6] , MapReduce Online [7]) for

further performance improvement. In contrast, our work be

longs to the computation and scheduling optimization. Specifi

cally, we focus on improving the perfonnance for MapReduce

workloads by maximizing the cluster computation utilization.

• Computation and Scheduling Optimization.

There are some computation optimization and job schedul

ing work that are related to our work. [8] , [9] , [10], [19],

[20] consider job ordering optimization for MapReduce work

loads. They model the MapReduce as a two-stage hybrid

flow shop with multiprocessor tasks [13], where different job

submission orders will result in varied cluster utilization and

system performance. However, there is an assumption that

the execution time for map and reduce tasks for each job

should be known in advance, which may not be available in

many real-world applications. Moreover, it is only suitable

for independent jobs, but fails to consider those jobs with

dependency, e.g., MapReduce workflow. In comparison, our

DHFS is not constraint by such assumption and can be used

for any types of MapReduce workloads (i.e., independent and

dependent jobs).

Hadoop configuration optimization is another approach,

including [11] , [12]. For example, Starfish [11] is a self

tuning framework that can adjust the Hadoop's configuration

automatically for a MapReduce job such that the utilization

of Hadoop cluster can be maximized, based on the cost

based model and sampling technique. However, even under

an optimal Hadoop configuration, e.g., Hadoop map/reduce

slots configuration, there is still room for perfonnance im

provement of a MapReduce job or workload, by maximizing

the utilization of map and reduce slots.

Guo et al. [15] propose a resource stealing method to

enable running tasks to steal resources reserved for idle slots

and give them back proportionally whenever new tasks are

assigned, by adopting multithreading technique for running

tasks on multiple CPU cores. However, it cannot work for

the utilization improvement of those purely idle slave nodes

without any running tasks. Polo et al. [14] present a resource

aware scheduling technique for MapReduce multi-job work

loads that aims at improving resource utilization by extending

the abstraction of traditional 'task slot' of Hadoop to 'job

slot', which is an execution slot that is bound to a particular

job, and a particular task type (map or reduce) within that

job. In contrast, in our proposed schedulers, we keep the

traditional task slot model and maximize the system utilization

by dynamically allocating unused map (or reduce) slots to

overloaded reduce (or map) tasks.

III. DYNAMIC HADOOP FAIR SCHEDULER (OHFS)

In MapReduce, each job consists of a set of map and reduce

tasks, with reduce tasks performed after map tasks. Map tasks

are run on map slots and reduce tasks are run on reduce

slots. However, this leads to severe under-utilizations of the

respective slots. As the number of map and reduce tasks varies

over time, the number of slots allocated for map/reduce can

be greater than the number of map/reduce tasks. Our dynamic

slots allocation policy is based on the observation that at

different periods of time there may be idle map (or reduce)

slots, as the job proceeds from map phase to reduce phase.

We can use the unused map slots for those overloaded reduce

tasks to improve the performance of the MapReduce workload,

and vice versa. For example, at the beginning of MapReduce

workload computation, there will be only computing map

tasks and no computing reduce tasks. In that case, an ideal

MapReduce framework should utilize the idle reduce slots for

running map tasks, whereas current MapReduce does not. That

is, we break the implicit assumption of current MapReduce

framework that the map tasks can only run on map slots and

reduce tasks can only run on reduce slots. Instead, we modify

it as follows: both map and reduce tasks can be run on either
map or reduce slots.

In addition to utilization, fairness is also another important

consideration for Hadoop clusters. Based on different levels

of fairness for our OHFS, in this section, we first propose two

kinds of Dynamic Hadoop Fair Scheduler (DHFS), namely,

pool-independent OHFS(PI-DHFS) and pool-dependent OHFS

(PO-OHFS).

A. Pool-Independent DHFS (PI-DHFS)

Traditional Hadoop Fair Scheduler (HFS) is a two-level

hierarchy. At the first level, HFS allocates task slots across

pools, and at the second level, each pool allocates its slots

among multiple jobs within its pool [2]. It adopts max-min

fairness [3] to allocate slots across pools with minimum

guarantees at the map-phase and reduce-phase, respectively.

Pool-Independent DHFS (PI-DHFS) extends the Hadoop Fair

Scheduler by allocating slots from the cluster global level, i.e.,

.................................... \

M,pPh'� i
: map slots :
� ----)c

� reduce slots �
;c:- - ---:

....i 1.. ,
Fig. 1: Example of the fairness-based slots allocation flow for PI
DHFS. The black arrow line and dash line show movement of slots
between the map-phase pools and the reduce-phase pools.

independent of pools. As shown in Figure 1, it presents the

slots allocation flow for PI-OHFS. It is a typed phase-based

dynamic slots allocation policy. The allocation process consists

of two parts, as shown in Figure 1:

(1). Intra-Phase dynamic slots allocation. Each pool is split

into two SUb-pools, i.e., map-phase pool and reduce-phase

pool. At each phase, each pool will receive its share of slots.

An overloaded pool, whose slot demand exceeds its share, can

dynamically borrow some unused slots from other pools of

the same phase. For example, an overloaded map-phase PooH

can borrow map slots from map-phase Pool 2 when Pool 2 is

under-utilized, and vice versa.

(2). Inter-Phase dynamic slots allocation. After the intra

phase dynamic slots allocation for both the map-phase and

reduce-phase, we can now perform dynamic slots allocation

across typed phases. That is, when there are some unused

reduce slots at the reduce phase and the number of map slots

at the map phase is insufficient for map tasks, it will borrow

some idle reduce slots for map tasks, to maximize the cluster

utilization, and vice versa.

Thus, there are four possible scenarios. Let N M and N R be

the number of map and reduce tasks respectively, while SM
and S R be the number of map and reduce slots configured by

users respectively. The four scenarios are as follows:

Case 1: When NM :(SM and NR :(SR, the map tasks

are run on map slots and reduce tasks are run on reduce slots,

i.e., no borrow is needed across map and reduce slots.

Case 2: When NM > SM and NR < SR, we satisfy reduce

tasks for reduce slots first and then use those idle reduce slots

for running map tasks.

Case 3: When NM < SM and NR> SR, we can schedule

those unused map slots for running reduce tasks.

Case 4: When N M > S M and N R > S R, the system should

be in completely busy state, and similar to (1), there will be

no movement of map and reduce slots.

Next, it will perform intra-phase dynamic slots allocation for

those borrowed map or reduce slots using max-min fairness

within the phase.

The pseudocode for this algorithm is shown in Algorithm 1.

Whenever a heartbeat is received from a compute node, we

first compute the total demand for map slots and reduce

slots for the current Map Reduce workload. Particularly, the

demand for map slots is computed based on the number of

pending map tasks plus the total number of currently used

map slots, rather than the number of running map tasks.

The reason is that in our dynamic slot allocation policy,

the map slots can be used by reduce tasks, and map tasks

can be running using reduce slots. For each tasktracker, the

number of used map slots can be calculated based on the for

mula: min {runningM apTasks, tracker M apCapacity} +

max{runningReduceTasks -tracker ReduceCapacity, O}.
The formula is similarly used in the computation for reduce

slots. We can then compute load factors for map tasks and

reduce tasks. We next detennine dynamically the need to

borrow map (or reduce) slots for reduce (or map) tasks based

on the demand for map and reduce slots, in terms of the above

four scenarios. The specific number of map (or reduce) slots

to be borrowed is determined based on the number of unused

reduce (or map) slots and its map (or reduce) slots required.

To minimize the possible starvation of slots for each phase,

instead of borrowing all unused map (or reduce) slots, we

add configuration variables percentageOjBorrowedMapSlots
and percentageOjBorrowedReduceSlots for the percentage of

unused map and reduce slots that can be borrowed. The

updated map (or reduce) load factor can be computed with

the inclusion of borrowed map (or reduce) slots. Finally, we

can compute the number of available map and reduce slots that

should be allocated for map and reduce tasks at this heartbeat

for that tasktracker, based on the current map and reduce slots

capacity as well as used map and reduce slots.

B. Pool-dependent DHFS (PD-DHFS) [�"i" """ ""' :.:.':::: ,;�:;,.:::::""" ""� '"":.:.:1 .1' I� .1' I�
.31 I� ,31 I:
g. I� � I ��

............. 51 :f ... -il ,
: Po 12 . :

1 :==: 1
Fig. 2: Example of the fairness-based slots allocation flow for PD
DHFS. The black arrow line and dash line show the borrow flow for
slots across pools.

In contrast to PI-DHFS that considers the fairness in its dy

namic slots allocation independent of pools, but rather across

typed-phases, there is another alternative fairness consideration

for the dynamic slots allocation across pools, as we call

Pool-dependent DHFS (PD-DHFS), as shown in Figure 2. It

assumes that each pool, consisting of two parts: map-phase

Algorithm 1 The dynamic task assignment policy for tasktracker
under PI-DHFS.
When a heartbeat is received from a compute node n:

I: compute its c!usterUsedMapSlots, clusterUsedReduceSlots, mapSlotsDe
Oland, reduceSlotsDemand, mapSlotsLoadFactor and reduceSlotsLoad
Factor.

2: I*Case l: both map slots and reduce slots are sufficient *1
3: if (mapSlolsLoadFaclor � I and reduceSlolsLoadFaclOr � I) then
4: fiNo borrow operation is needed.
5: I*Case 2: both map slots and reduce slots are not enough *1
6: if (mapSlolsLoadFaclOr ;:, I and reduceSlolsLoadFaclOr ;:, I) then

7: fiNo borrow operation is needed.
8: I*Case 3: map slots are enough, while reduce slots are insufficient. It

calculates borrowed map slots for reduce tasks*1
9: if (mapSlolsLoadFaclOr < I and reduceSlolsLoadFaclOr > I) then

10: currentBorrowedMapSlols = ciuslerUsedMapSlols - ciuSlerRun-
ningMapTasks;

11: eXlraReduceSlolsDemand = min{ max{ tloor{ ciuslerMapCapacily
* percentage0.fBorrowedMapSlols} - currentBorrowedMapSlots, O}, re
duceSlolsDemand - ciuslerReduceCapacily}

12: updaledMapSlolsLoadFaclOr = (mapSlolsDemand + extraReduceS-
lotsDemand) I cillslerMapCapacily;

13: I*Case 4: map slots are insufficient, while reduce slots are enough. It
calculates borrowed reduce slots for map tasks.*1

14: if (mapSlotsLoadFaclOr > I and reduceSlolsLoadFaclor < I) then
15: currentBorrowedReduceSlots = ciusterUsedReduceSlols - cillslerRun-

ningReduceTasks;
16: extraMapSlotsDemand = min{ max{ floor{ ciusterReduceCapacity *

percenlage0.fBorrowedReduceSlols} - currentBorrowedReduceSlots, O},
mapSlolsDemand - ciuslerMapCapacily}

17: updaledReduceSlolsLoadFaclOr = (reduceSlolsDemand + eXlraMap-
SlolsDemand) I ciuslerReduceCapacilY;

18: compute availableMapSlots and availableReduceSlots based on the up
dated map/reduce load factor and used slots.

pool and reduce-phase pool, is selfish. That is, it always tries

to satisfy its own shared map and reduce slots for its own

needs at the map-phase and reduce-phase as much as possible

before lending them to other pools. PD-DHFS will be done

with the following two processes:

(1). Intra-Pool dynamic slots allocation. First, each typed

phase pool will receive its share of typed-slots based on

max-min fairness at each phase. There are four possible

relationships for each pool regarding its demand (denoted as

mapSlotsDemand, reduceSlotsDemand) and its share (marked

as mapShare, reduceShare) between two phases:

Case (a). mapSlotsDemand < mapShare, and reduceSlots
Demand > reduceShare. We can borrow some unused map

slots for its overloaded reduce tasks from its reduce-phase pool

first before yielding to other pools.

Case (b). mapSlotsDemand > mapShare, and reduceSlots
Demand < reduceShare. In contrast, we can satisfy some

unused reduce slots for its map tasks from its map-phase pool

first before giving to other pools.

Case (c). mapSlotsDemand :(mapShare, and reduceSlots
Demand :(reduceShare. Both map slots and reduce slots are

enough for its own use. It can lend some unused map slots

and reduce slots to other pools.

Case (d). mapSlotsDemand > mapShare, and reduceSlots
Demand> reduceShare. Both map slots and reduce slots for a

pool are insufficient. It might need to borrow some unused map

or reduce slots from other pools through inter-Pool dynamic

slots allocation below.

(2). Inter-Pool dynamic slots allocation. It is obvious that,

(i). for a pool, when its mapSlotsDemand + reduceSlotsDe
mand � mapShare + reduceShare. The slots are enough for

the pool and there is no need to borrow some map or reduce

slots from other pools. It is possible for the cases: (a), (b), (c)

mentioned above. (ii). On the contrary, when mapSlotsDemand
+ reduceSlotsDemand > mapShare + reduceShare, the slots

are not enough even after Intra-Pool dynamic slots allocation.
It will need to borrow some unused map and reduce slots

from other pools, i.e., Inter-Pool dynamic slots allocation, to

maximize its own need if possible. It can occurs for pools in

the following cases: (a), (b), (d) above.

The pseudocode for PD-DHFS implementation is shown in

Algorithm 2. When tasktracker receives a heartbeat, instead

of allocating map and reduce slots separately, it treats them

as a whole to allocate for pools. That is, it first computes

the total slots demand totalSlotsDemand for all map and

reduce tasks from all pools. The running number of tasks

trackerRunningTasksNum and current slots capacity tracker
CurrentSlotsCapacity for a tasktracker can be determined by

considering the load balance for a cluster as well as its own

maximum slots capacity trackerSlotsCapacity. Then we can

compute the maximum number of free slots that can be allo

cated at each round of heartbeat for a tasktracker by subtract

ing trackerRunningTasksNum from trackerCurrentSlotsCapac
ity. For each slot allocation, we first scan sorted pools. For

each pool, we try the following possible slot allocations:

Case (1): We first try the map tasks allocation if there

are idle map slots for the tasktracker (i.e., trackerRun
ningMapTasksNum < trackerMapCapacity), and there are

pending map tasks for the pool (i.e., p.getMapDemand >
p.getRunningMapTasks).

Case (2): If the attempt of Case (1) fails since the con

dition does not hold or it cannot find a map task satisfy

ing the valid data-locality level, we continue to try reduce

tasks allocation when the following conditions hold: track
erRunningReduceTasksNum < trackerReduceCapacity and

p.getReduceDemand > p.geIRunningReduceTasks.
Case (3): If Case (2) still fails due to the required condition

does not hold, we try for map task allocation again. Case

(1) fails might be that there are no idle map slots available

(i.e., trackerRunningMapTasksNum � trackerMapCapacity).
In contrast, Case (2) fails might be due to no pending reduce

tasks (i.e., p.getReduceDemand � p.getRunningReduceTasks).
In this case, we can try reduce slots for map tasks of the pool.

Case (4): If Case (3) still fails, we try for reduce task

allocation again. Both Case (1) and Case (3) fail might

be that there are no valid locality-level pending map tasks

available, whereas there are idle map slots. In contrast, Case

(2) might be that there are no idle reduce slots available (i.e.,

trackerRunningReduceTasksNum � trackerReduceCapacity).
In that case, we can allocate map slots for reduce tasks of

the pool.

The slot allocation flow for the above cases is shown

in Figure 3. The number labeled in the graph denotes the

corresponding case. Moreover, there is a special case that

needs to be particularly considered:

Case (5): Note it is possible that all the above four possible

slot allocation attempts fail for all pools, due to the data

locality consideration for map tasks. For example, it is possible

that there is a new compute node added to the Hadoop cluster.

It may be empty and does not contain any data. Thus, the

data locality for all map tasks might not be satisfied and all

pending map tasks cannot be issued. The failures of both Case

(2) and Case (4) indicate that there are no pending reduce

tasks available for all pools. However, there might be some

pending map tasks available. Therefore, there is a need to run

some map tasks by ignoring the data locality consideration on

that new compute node to maximize the system utilization.

To implement this, we make a mark visitedForMap for each

job visited for map tasks. The data locality will be considered

when visitedForMap does not contain scanned job. Otherwise,

it will relax the data locality constrain for map tasks.

Algorithm 2 The dynamic task assignment policy for tasktracker
under PO-OHFS.
When a heartbeat is received from tasktracker its:

I: Compute its totalSlotsDemand, totaiSlotsCapacity, trackerSlotsCapacity,
trackerRunningTasksNum and trackerCurrentSlotsCapacity.

2: /* Return when there are no idle slots. */
3: if trackerRunningTasksNum � trackerCurrentSlotsCapacity then
4: return NULL;
5: for (i = 0; i < trackerCurrentSlotsCapacity - trackerRunningTasksNum;

i++) do

6: Sort pools by distance below min and fair share
7: for (Pool p : pools) do
8: /* Case (\): allocate map slots for map tasks from Pool p*/
9: if (there are pending map tasks and idle map slots) then

10: Task task = assignTask(tts, currentTime, visitedForMap);
I I: if (task != null) then
12: foundTask = true; tasks.add(task); break;
13: /* Case (2): allocate reduce slots for reduce tasks from Pool p*/
14: if (there are pending reduce tasks and idle reduce slots) then

15: Task task = assignTask(tts, currentTime, visitedForReduce);
16: if (task != null) then
17: foundTask = true; tasks.add(task); break;
18: /* Case (3): allocate reduce slots for map tasks from Pool p*/
19: if (there are pending map tasks) then
20: Task task = assignTask(tts, currentTime, visitedForMap);
2 1: if (task != null) then
22: foundTask = true; tasks.add(task); break;
23: /* Case (4): allocate map slots for reduce tasks from Pool p*/
24: if (there are pending reduce tasks) then
25: Task task = assignTask(tts, currentTime, visitedForReduce);
26: if (task != null) then
27: foundTask = true; tasks.add(task); break;
28: /* Case (5): schedule the non-local map tasks when its node-local

tasks cannot be satisfied. */
29: if (!foundTask) then

30: for (Pool p : pools) do

3 \: if (there are pending map tasks) then
32: Task task = assignTask(tts, currentTime, visitedForMap);
33: if (task != null) then

34: foundTask = true; tasks.add(task); break;

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance benefit of our

proposed dynamic slot allocation techniques.

Map task
assignment

Fig. 3: The slot allocation flow for each pool under PD-DHFS.

A. Experiments Setup

We ran our experiments in a cluster consisting of 10 com

pute nodes, each with two Intel X5675 CPUs (6 CPU cores per

CPU with 3.07 GHz), 24GB memory and 56GB hard disks.

We configure one node as master and namenode, and the other

9 nodes as slaves and datanodes. Moreover, we configure 10

map and 2 reduce slots per slave node. We generate our testbed

workloads by using three representative applications, i.e.,

wordcount application (computes the occurrence frequency of

each word in a document), sort application (sorts the data in

the input files in a dictionary order) and grep application (finds

the matches of a regex in the input files). We take wikipedia

article history dataset) with four different sizes, e.g., 10GB,

20GB, 30GB, 40GB as application input data. As there is one

map task per data block in Hadoop, we upload each data into

HDFS with different block sizes of 64MB, 128MB, 256MB to

have different number of data blocks and varied block sizes.

Table I lists the job information for our testbed workloads. It

is a mix of three benchmarks together with different sizes of

input data and varied block sizes.

B. Peiformance Improvement Evaluation

Figure 4 presents the evaluation results for our proposed

DHFS for a single MapReduce job (e.g., J1, J2, h) as well

as MapReduce workloads with multiple jobs, e.g., 5 jobs

(J1 � J5), 10 jobs (J1 � JlO) and 20 jobs (J1 � J20). All

speedups are calculated with respect to the original Hadoop.

We can see that both PI-DHFS and PD-DHFS can improve

the performance of MapReduce jobs significantly, i.e., there

are about 32% � 55% for a single job and 44% � 68% for

MapReduce workloads with multiple jobs. For the traditional

Hadoop, the map/reduce slot configuration has a big influence

in the cluster utilization and performance for MapReduce

jobs, whereas our DHFS is not influenced by map/reduce slot

configuration.

Take a single job for example. Let N M and N R denote

the number of map tasks and reduce tasks. Let t M and t R
denote the execution time for a single map task and reduce

) http://dumps.wikimedia.org/enwik:i/

Ji Benchmark I DataSize (GB) B10ckSize (MB) I 1Jf111 IJr'11 ;
h wordcount 10 64 160 30

12 sort 20 64 320 200

h grep 30 64 480 120

J4 wordcount 40 64 640 100

J5 sort 30 64 480 200

J6 wordcount 10 128 80 15

h sort 20 128 160 100

J8 grep 30 128 240 80

J9 wordcount 40 128 320 50

ho grep 10 128 80 40

J11 wordcount 30 64 480 60

h2 sort 30 64 480 200

h3 grep 20 64 320 80

h4 wordcount 20 128 160 30

h5 sort 10 128 80 60

h6 wordcount 10 256 40 20

J17 sort 20 256 80 40

h8 grep 30 256 120 60

h9 wordcount 40 256 160 40

120 sort 10 256 40 10

TABLE I: The job information for testbed workloads.

task. Let SM and SR denote the number of map slots and

reduce slots. Moreover, we assume that there is one slot per

CPU core and thus the sum of map slots and reduce slots

is fixed for a given cluster. Then for the traditional Hadoop

cluster, the execution time will be r � 1 . t M + r � 1 . t R·
In contrast, it will be r S::SR 1· tM + r S::SR 1· tR for our

DHFS. Based on the formula, we can see varied performance

from the traditional Hadoop under different slot configurations.

However, there is little impact on the performance for different

slot configurations under DHFS.

C. Dynamic Tasks Execution Processes for PI-DHFS and PD
DHFS

To show different levels of fairness for the dynamic tasks

allocation algorithms, PI-DHFS and PD-DHFS, we perform

an experiment by considering two pools, each with one job

submitted. Figure 5 shows the execution flow for the two

DHFSs, with 10 sec per time step. The number of running map

and reduce tasks for each pool at each time step is recorded.

For PI-DHFS, as illustrated in Figure 5(a), we can see that, at

the beginning, there are only map tasks, with all slots used by

map tasks under PI-DHFS. Each pool shares half of the total

slots (i.e., 54 slots out of 108 slots), until the 3th time step.

The map slots demand for pool 1 begins to shrink and the

unused map slots of its share are yielded to pool 2 from the

4th time step to the 7th time step. Next from 9th to 15th time

step, the map tasks from pool 2 takes all map slots and the

reduce tasks from pool 1 possess all reduce slots, based on the

typed-phase level fairness policy of PI-DHFS(i.e., intra-phase

dynamic slots allocation). Later there are some unused map

slots from pool 2 and they are used by reduce tasks from pool

I from 16th to 18th time step(i.e., inter-phase dynamic slots

allocation).

For PD-DHFS, similar to PI-DHFS at the beginning, each

pool obtains half of the total slots from the 1 th to 3rd time

1.6 +------------------

1.4 +----------
1.2

Co � 1

8. 0.8
OIl

0.6

0.4

0.2

Sort WordCount
(a) A single MapReduce job

Grep

1.6 +----

Co

1.4

1.2

.g 1
..
8. 0.8

OIl
0.6

0.4

0.2

S jobs 10 jobs 20 jobs
(b) Map Reduce workloads with multiple jobs

Fig. 4: The performance improvement with our dynamic scheduler for MapReduce workloads.

00 re uce as s -

�100 +---���,������L� ruu��-4-;12 redllceTasks ,-\ - , , i \ I! i \ � 80 +----I�-----�-----_+-;__

� 60 +=�� -------�----_+-�
,
,
,

15 ,
• 40 t--�-------��---_r-_+_

�
z 20 t---�-�,�

-�-�-�-�-_T-���-�

123456789WllUGU�UnU�mnnBu��n

TIme Steps
(a) PI-DHFS

120

� 100 "
i " � i
i \

11 80

j
\
\

60
'0

1
40

z 20 +--�-�---+-----���--T-

123456789WllUGU�UnUHmnnBU�

Time Steps
(b) PD-DHFS

Fig. 5: The execution flow for the two DHFSs. There are two pools, with one running job each.

step, as shown in Figure 5(b). Some unused map slots from

pool 1 are yielded to pool 2 from 4th to the 7th time step.

However, from the 8th to 11th, each of the map tasks from

pool 2 and the reduce tasks from pool 1 takes half of the total

slots, subject to the pool-level fairness policy of PD-DHFS

(i.e., intra-pool dynamic slots allocation). Finally, the unused

slots from pool 1 begins to yield to pool 2 since 12th time

step (i.e., inter-pool dynamic slots allocation).

D. Discussion on the Performance of Different Percentages of
Borrowed Map and Reduce Slols

1.35 �=M'O;- P�O Or---� __ p�ao;-PeQ1�Or----

1.3 _�. Pec M-lQO Pee R-O->100 Pee M-O->100 Pee R-lQO

-

0.95 +----------------------
0.9 t------r---...-----.----.----..-----,

20 40 60 80 100

percentage of map (or reduce) slots borrowed (%)

Fig. 6: The performance results with different percentages of map
(or reduce) slots borrowed.

In Section III-A, instead of borrowing all unused map

(or reduce) slots for overloaded reduce (or map) tasks, we

provide users with two configuration arguments percentageOf
BorrowedMapSlots and percentageOfBorrowedReduceSlols to

limit the amount of borrowed map/reduce slots, and ensure that

tasks at the map/reduce phase are not starved. It is meaningful

and important when users want to reserve some unused slots

for incoming tasks, instead of lending all of them to other

phases or pools. To show its impact on the performance, we

perform an experiment with sort benchmark (320 map tasks

and 200 reduce tasks) by varying values of arguments.

Let Pec_M and Pec_R denote percentageOfBor
rowedMapSlots and percentageOfBorrowedReduceSlots
respectively. Figure 6 presents the performance results under

varied argument configurations. All speedup results are

calculated with respect to the case when Pec_M = 0 and

Pec_R = O. We consider four cases: (1). Vary the value

of Pec_R from 0 to 100 while fix Pec_M = 0; (2). Vary

the value of Pec_R while set Pec_M = 100; (3). Vary

the value of Pec_M while fix Pec_R = 0; (4). Vary the

value of Pec_M while fix Pec_R = 100. We can see

that, the performance improves by increasing either Pec_M
or Pec_R. Particularly, there is a significant performance

improvement(i.e., approximate 29%) when we fix the value of

Pec_R and increase the value of Pec_M. It is because there

are plenty of reduce tasks (e.g., 200 reduce tasks) but only

18 reduce slots. Thus increasing the percentage value of map

slots (Pec_M) that can be borrowed would let more reduce

tasks be scheduled using borrowed map slots, reducing the

number of computation waves of reduce tasks and improving

the utilization as well as perfonnance of the Hadoop cluster.

V. DISCUSSION

The goal of our work is to improve the utilization and

perfonnance for MapReduce clusters while guaranteeing the

fairness across pools. PI-DHFS and PD-DHFS are our first

two attempts of achieving this goal with two different fairness

definitions. PI-DHFS follows strictly the definition of fairness

given by traditional HFS, i.e., the slots are fairly shared across

pools within each phase (i.e., map phase or reduce phase).

However, the slot allocations are independent across phases.

In contrast, PD-DHFS gives a new definition of fairness from

the perspective of pools, i.e., each pool shares the total number

of map and reduce slots from the map phase and reduce phase

fairly with other pools.

Because of different definitions of fairness, the possibility

of slots movement between map-phase and reduce-phase in

dynamic slots allocation is different between PI-DHFS and

PD-DHFS. For PI-DHFS, the slots movement can only occur

when one typed slots (e.g., map slots) are enough while the

other typed slots (e.g., reduce slots) are insufficient, Le., two

cases: Case 2 and Case 3 in Section III-A. However, for PD

DHFS, the slots movement can occur in all four possible

scenarios (e.g., Case 1, Case 2, Case 3, Case 4) mentioned

in Section III-A, i.e., there are slots movements even in the

case that both total map slots and reduce slots are sufficient

(or insufficient) for PD-DHFS. Thus, PD-DHFS tends to have

more slot movement than PI-DHFS.

VI. CONCLUSION AND FUT URE WORK

This paper proposes Dynamic Hadoop Fair Schedulers

(DHFS) to improve the utilization and perfonnance of MapRe

duce clusters while guaranteeing the fairness. The core tech

nique is dynamically allocating map (or reduce) slots to map

and reduce tasks. Two types of DHFS are presented, namely,

PI-DHFS and PD-DHFS, based on fairness for cluster and

pools, respectively. The experimental results show that our

proposed DHFS can improve the perfonnance and utilization

of the Hadoop cluster significantly. As for future work, we are

interested in extending our dynamic slot allocation algorithms

to heterogeneous environments. Cluster/cloud has become

heterogeneous with different architectures. We plan to extend

our previous study [22] to handle the slot configuration on

CPUs and GPUs.

The DHFS source code is publicly available for download

ing at http://sourceforge.netlprojectsldhfsl.

VII. ACKNOWLEDGMENT

This work was supported by the "User and Domain driven

data analytics as a Service framework" project under the

A *STAR Thematic Strategic Research Programme (SERC

Grant No. 1021580034).

Bingsheng He was partly supported by a startup Grant of

Nanyang Technological University, Singapore.

REFERENCES

[I] Hadoop. http://hadoop.apache.org.
[2] M. Zaharia. D. Borthakur. J. Sarma. K. Elmeleegy.S. Schenker.1. Stoica.

Job Scheduling for Mu/ii-user Mapreduce ChlSlers. Technical Report
EECS-2009-55. UC Berkeley Technical Report (2009).

[3] Max-Min Fairness (Wikipedia). http://en.wikipedia.org/wikjJMax
min_fairness.

[4] D.W. Jiang. B.C. Ooi. L. Shi. and S. Wu.The Performance of Map Reduce:
An Indepth Study. PVLDB, 3:472-483, 2010.

[5] P. Agrawal, D. Kifer, and C. Olston. Scheduling Shared Scans of Large
Data Files. In VLDB, 2008.

[6] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. MRShare:
Sharing Across Multiple Queries in MapReduce . Proc. of the 36th VLDB
crVLDB), Singapore, September 2010.

[7] T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein. MapReduce online.
In Proceedings of the 7th USENIX conference on Networked systems
design and implementation, pp. 21C21, 2010.

[8] B. Moseley, A. Dasgupta, R. Kumar, T. Sarl, On scheduling in map-reduce
and flow-shops. SPAA, pp. 289-298, 20 I I.

[9] A. Verma, L. Cherkasova, R.H. Campbell, Orchestrating an Ensemble of
Map Reduce Jobs for Minimizing Their Makespan, IEEE Transaction on
dependency and secure computing, 2013.

[10] A. Verma, L. Cherkasova, R. Campbell. Two Sides of a Coin: Optimizing
the Schedule of MapReduce Jobs to Minimize Their Make,pan and
Improve Cluster Performance. MASCOTS 2012.

[I I] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu. Starfish: A Self-tuning System for Big Data Analytics. In ClDR,
pages 261 C272, 20 I I.

[12] H. Herodotou and S. Babu, Profiling, W hat-if Analysis, and Costbased
Optimization of Map Reduce Programs. in Proc. of the VLDB Endow
ment, Vol. 4, No. 11,2011.

[13] c. Ojl;uz, M.F. Ercan, Scheduling multiprocessor tasks in a two-stage
flow-shop environment. Proceedings of the 21st international conference
on Computers and industrial engineering, pp. 269-272, 1997.

[14] J. Polo, C. Castillo, D. Carrera, et al. Resource-aware Adaptive Schedul
ing for MapReduce Clusters. Proceeding Middleware' II Proceedings of
the 12th ACMI lFlP/uSENIX international conference on Middleware, pp.
187-207, 2011.

[15] Z.H. Guo, G. Fox, M. Zhou, Y. Ruan.lmproving Resource Utilization in
MapReduce. 2012 IEEE International Conference on Cluster Computing
(CLUSTER). pp. 402-410, 2012.

[16] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters, In Proceedings of the 6th Symposiumon Operating
Systems Design and Implementation (OSDJ), 2004.

[17] HowManyMapsAndReduces. http://wiki.apache.orglhadoop/HowMany
MapsAndReduces.

[18] Capacity Scheduler Guide. http://hadoop.apache.org/common/docs/rO.
20. l I capacity scheduler.html, 2010.

[19] S.J. Tang, B.S. Lee, and B.S. He. MROrder: Flexible Job Ordering
Optimization for Online MapReduce Workloads. in Euro-Par, pp. 291-
304,2013.

[20] S.J. Tang, B.S. Lee, R. Fan and B.S. He. Performance Optimization for
MapReduce Workloads, CORR (Technical Report), 2013.

[21] Shadi Ibrahim, Hai Jin, Lu Lu, Song Wu, Bingsheng He and Li Qi:
LEEN: Locality/Fairness-Aware Key Partitioning for Map Reduce in the
Cloud, In Proc. of CloudCom 2010, pp. 17-24.

[22] Yu S. Tan, Bu-Sung Lee, Bingsheng He and Roy H. Campbell. A Map
Reduce Based Framework for Heterogeneous Processing Element Cluster
Environments. In Proc. of CCGRID 2012, pp. 57-64.

