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Abstract-MapReduce is a popular parallel computing 
paradigm for large-scale data processing in clusters and data 
centers. However, the slot utilization can be low, especially when 
Hadoop Fair Scheduler is used, due to the pre-allocation of slots 
among map and reduce tasks, and the order that map tasks 
followed by reduce tasks in a typical MapReduce environment. To 
address this problem, we propose to allow slots to be dynamically 
(re)allocated to either map or reduce tasks depending on their 
actual requirement. Specifically, we have proposed two types 
of Dynamic Hadoop Fair Scheduler (DHFS), for two different 
levels of fairness (i.e., cluster and pool level). The experimental 
results show that the proposed DHFS can improve the system 
performance significantly (by 32% � 55% for a single job and 
44% � 68% for multiple jobs) while guaranteeing the fairness. 

Keywords-MapReduce, Hadoop, Fair Scheduler, Dynamic 
Scheduling, Slots Allocation. 

I. INT RODUCTION 

In recent years, Map Reduce has become the parallel com­

puting paradigm of choice for large-scale data processing in 

clusters and data centers. A MapReduce job consists of a set of 

map and reduce tasks, where reduce tasks are performed after 

the map tasks. Hadoop [1], an open source implementation of 

MapReduce, has been deployed in large clusters containing 

thousands of machines by companies such as Yahoo! and 

Facebook to support batch processing for large jobs submitted 

from multiple users (i.e., MapReduce workloads). 

In a Hadoop cluster, the compute resources are abstracted 

into map (or reduce) slots, which are basic compute units and 

statically configured by administrator in advance. Due to 1) 

the slot allocation constraint assumption that map slots can 

only be allocated to map tasks and reduce slots can only 

be allocated to reduce tasks, and 2) the general execution 

constraints that map tasks are executed before reduce tasks, 

we have two observations: (I). there are significantly different 

performance and system utilization for a MapReduce workload 

under different job execution orders and map/reduce slots 

configurations, and (II). even under the optimal job submission 

order as well as the optimal map/reduce slots configuration, 

there can be many idle reduce (or map) slots while map (or 

reduce) slots are not enough during the computation, which 

adversely affects the system utilization and performance. 

In our work, we address the problem of how to improve 

the utilization and performance of MapReduce cluster without 

any prior knowledge or information (e.g., the arriving time 

of MapReduce jobs, the execution time for map or reduce 

tasks) about MapReduce jobs. Our solution is novel and 
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straightforward: we break the former first assumption of slot 

allocation constraint to allow (1). Slots are generic and can be 
used by map and reduce tasks. (2). Map tasks will prefer to use 
map slots and likewise reduce tasks prefer to use reduce slots. 
In other words, when there are insufficient map slots, the map 

tasks will use up all the map slots and then borrow unused 

reduce slots. Similarly, reduce tasks can use unallocated map 

slots if the number of reduce tasks is greater than the number 

of reduce slots. In this paper, we will focus specifically on 

Hadoop Fair Scheduler (HFS). This is because the cluster 

utilization and performance for the whole MapReduce jobs 

under HFS are much poorer (or more serious) than that under 

FIFO scheduler. But it is worth mentioning that our solution 

can be used for FIFO scheduler as well. 

HFS is a two-level hierarchy, with task slots allocation 

across "pools" at the top level, and slots allocation among 

multiple jobs within the pool at the second level [2]. We pro­

pose two types of Dynamic Hadoop Fair Scheduler (DHFS), 

with the consideration of different levels of fairness (i.e., pool­

level and cluster-level). They are as follows: 

• Pool-independent DHFS (PI-DHFS). It considers the 

dynamic slots allocation from the cluster-level, instead 

of pool-level. More precisely, it is a typed phase-based 

dynamic scheduler, i.e., the map tasks have priority in 

the use of map slots and reduce tasks have priority to 

reduce slots (i.e., intra-phase dynamic slots allocation). 

Only when the respective phase slots requirements are 

met can excess slots be used by the other phase(i.e., inter­

phase dynamic slots allocation). 

• Pool-dependent DHFS (PD-DHFS). It is based on the 

assumption that each pool is selfish, i.e., each pool will 

always satisfy its own map and reduce tasks with its 

shared map and reduce slots between its map-phased 

pool and reduce-phased pool (i.e., intra-pool dynamic 

slots allocation) first, before sharing the unused slots 

with other overloaded pools (i.e., inter-pool dynamic slots 

allocation). 

We have designed and implemented the two DHFSs on top 

of default HFS. We evaluate the performance and fairness 

of our proposed algorithms with synthetic workloads. Both 

schedulers, PI-DHFS and PD-DHFS, have shown promising 

results. The experimental results show that the proposed 

DHFS can improve the system performance significantly (by 

32% � 55% for a single job and 44% � 68% for multiple 

jobs) while guaranteeing the fairness. 

Organization. The rest of the paper is organized as follows. 



Section II reviews the MapReduce background and related 

work. Section III introduces our two types of Dynamic Hadoop 

Fair Scheduler, namely, PI-DHFS and PD-DHFS. Section IV 

reports on the perfonnance improvement of proposed DHFS 

obtained from our experiments. Section V discusses fairness 

and slots movement for PI-DHFS and PD-DHFS. Finally, 

Section VI concludes the paper and gives our future work. 

II. PRELIMINARY AND RELATED WORK 

A. MapReduce 

MapReduce is a popular programming model for processing 

large data sets, initially proposed by Google [16]. Now it has 

been a de facto standard for large scale data processing on the 

cloud. Hadoop [1] is an open-source java implementation of 

MapReduce. When a user submits jobs to the Hadoop cluster, 

Hadoop system breaks each job into multiple map tasks and 

reduce tasks. Each map task processes (i.e. scans and records) 

a data block and produces intermediate results in the form 

of key-value pairs. Generally, the number of map tasks for a 

job is detennined by input data. There is one map task per 

data block. The execution time for a map task is detennined 

by the data size of an input block. The reduce tasks consists 

of shuffle/sort/reduce phases. In the shuffle phase, the reduce 

tasks fetch the intermediate outputs from each map task. In the 

sort/reduce phase, the reduce tasks sort intennediate data and 

then aggregate the intennediate values for each key to produce 

the final output. The number of reduce tasks for a job is not 

determined, which depends on the intermediate map outputs. 

We can empirically set the number of reduce tasks for a job 

to be 0.95x or 1.75x reduce tasks capacity [17]. 

There are several job schedulers for Hadoop, i.e., FIFO, 
Hadoop Fair Scheduler [2] , Capacity Scheduler [18]. The 

job scheduling in Hadoop is performed by the jobTracker 

(master), which manages a set of taskTrackers (slaves). Each 

taskTracker has a fixed number of map slots and reduce slots, 

configured by the administrator in advance. Typically, there is 

one slot per CPU core in order to make CPU and memory 

management on slave nodes easy [2]. The taskTrackers report 

periodically to the jobTracker the number of free slots and the 

progress of the running tasks. The jobTracker allocates the 

free slots to the tasks of running jobs. In particular, the map 

slots can only be allocated to map tasks and reduce slots can 

only be allocated to reduce tasks. 

Hadoop Fair Scheduler [2] is a multi-user MapReduce job 

scheduler that enables organizations to share a large cluster 

among multiple users and ensure that all jobs get roughly an 

equal share of slot resources at each phase. It organizes jobs 

into pools and shares resources fairly across all pools based 

on max-min fairness [3]. By default, each user is allocated a 

separate pool and, therefore, gets an equal share of the cluster 

no matter how many jobs they submit. Each pool consists 

of two parts: map-phase pool and reduce-phase pool. Within 

each map/reduce-phase pool, fair sharing is used to share 

map/reduce slots between the running jobs at each phase. 

Pools can also be given weights to share the cluster non­

proportionally in the configuration file. 

B. Related Work 

There is a large body of research work that focuses on the 

performance optimization for MapReduce jobs. Broadly, it can 

be classified into the following two categories. 

• Data Access and Sharing Optimization. 

Jiang et a1. [4] propose a set of general low-level opti­

mizations including improving 110 speed, utilizing indexes, 

using fingerprinting for faster key comparisons, and block 

size tuning. Thus, they were focused on fine-grain tuning on 

different parameters to achieve performance improvements. 

Agrawal et al. [5] proposed a method to maximize scan sharing 

by grouping MapReduce jobs into batches so that sequential 

scans of large files are shared among as many simultaneous 

jobs as possible. MRShare [6] is a sharing framework that 

provides three possible work-sharing opportunities, including 

scan sharing, mapped outputs sharing, and Map function 

sharing across multiple MapReduce jobs, to avoid performing 

redundant work and thereby reduce total processing time. 

MapReduce Online [7] is such a modified MapReduce system 

to support online aggregation for MapReduce jobs that run 

continuously by pipelining data within a job and between jobs. 

LEEN [21] addresses the fairness and data localities. 

All these studies are complementary to our study and our 

approach can be incorporated into these modified MapReduce 

frameworks (e.g., MRShare [6] , MapReduce Online [7]) for 

further performance improvement. In contrast, our work be­

longs to the computation and scheduling optimization. Specifi­

cally, we focus on improving the perfonnance for MapReduce 

workloads by maximizing the cluster computation utilization. 

• Computation and Scheduling Optimization. 

There are some computation optimization and job schedul­

ing work that are related to our work. [8] , [9] , [10], [19], 

[20] consider job ordering optimization for MapReduce work­

loads. They model the MapReduce as a two-stage hybrid 

flow shop with multiprocessor tasks [13], where different job 

submission orders will result in varied cluster utilization and 

system performance. However, there is an assumption that 

the execution time for map and reduce tasks for each job 

should be known in advance, which may not be available in 

many real-world applications. Moreover, it is only suitable 

for independent jobs, but fails to consider those jobs with 

dependency, e.g., MapReduce workflow. In comparison, our 

DHFS is not constraint by such assumption and can be used 

for any types of MapReduce workloads (i.e., independent and 

dependent jobs). 

Hadoop configuration optimization is another approach, 

including [11] ,  [12]. For example, Starfish [11] is a self­

tuning framework that can adjust the Hadoop's configuration 

automatically for a MapReduce job such that the utilization 

of Hadoop cluster can be maximized, based on the cost­

based model and sampling technique. However, even under 

an optimal Hadoop configuration, e.g., Hadoop map/reduce 

slots configuration, there is still room for perfonnance im­

provement of a MapReduce job or workload, by maximizing 

the utilization of map and reduce slots. 



Guo et al. [15] propose a resource stealing method to 

enable running tasks to steal resources reserved for idle slots 

and give them back proportionally whenever new tasks are 

assigned, by adopting multithreading technique for running 

tasks on multiple CPU cores. However, it cannot work for 

the utilization improvement of those purely idle slave nodes 

without any running tasks. Polo et al. [14] present a resource­

aware scheduling technique for MapReduce multi-job work­

loads that aims at improving resource utilization by extending 

the abstraction of traditional 'task slot' of Hadoop to 'job 

slot', which is an execution slot that is bound to a particular 

job, and a particular task type (map or reduce) within that 

job. In contrast, in our proposed schedulers, we keep the 

traditional task slot model and maximize the system utilization 

by dynamically allocating unused map (or reduce) slots to 

overloaded reduce (or map) tasks. 

III. DYNAMIC HADOOP FAIR SCHEDULER (OHFS) 

In MapReduce, each job consists of a set of map and reduce 

tasks, with reduce tasks performed after map tasks. Map tasks 

are run on map slots and reduce tasks are run on reduce 

slots. However, this leads to severe under-utilizations of the 

respective slots. As the number of map and reduce tasks varies 

over time, the number of slots allocated for map/reduce can 

be greater than the number of map/reduce tasks. Our dynamic 

slots allocation policy is based on the observation that at 

different periods of time there may be idle map (or reduce) 

slots, as the job proceeds from map phase to reduce phase. 

We can use the unused map slots for those overloaded reduce 

tasks to improve the performance of the MapReduce workload, 

and vice versa. For example, at the beginning of MapReduce 

workload computation, there will be only computing map 

tasks and no computing reduce tasks. In that case, an ideal 

MapReduce framework should utilize the idle reduce slots for 

running map tasks, whereas current MapReduce does not. That 

is, we break the implicit assumption of current MapReduce 

framework that the map tasks can only run on map slots and 

reduce tasks can only run on reduce slots. Instead, we modify 

it as follows: both map and reduce tasks can be run on either 
map or reduce slots. 

In addition to utilization, fairness is also another important 

consideration for Hadoop clusters. Based on different levels 

of fairness for our OHFS, in this section, we first propose two 

kinds of Dynamic Hadoop Fair Scheduler (DHFS), namely, 

pool-independent OHFS(PI-DHFS) and pool-dependent OHFS 

(PO-OHFS). 

A. Pool-Independent DHFS (PI-DHFS) 

Traditional Hadoop Fair Scheduler (HFS) is a two-level 

hierarchy. At the first level, HFS allocates task slots across 

pools, and at the second level, each pool allocates its slots 

among multiple jobs within its pool [2]. It adopts max-min 

fairness [3] to allocate slots across pools with minimum 

guarantees at the map-phase and reduce-phase, respectively. 

Pool-Independent DHFS (PI-DHFS) extends the Hadoop Fair 

Scheduler by allocating slots from the cluster global level, i.e., 
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Fig. 1: Example of the fairness-based slots allocation flow for PI­
DHFS. The black arrow line and dash line show movement of slots 
between the map-phase pools and the reduce-phase pools. 

independent of pools. As shown in Figure 1, it presents the 

slots allocation flow for PI-OHFS. It is a typed phase-based 

dynamic slots allocation policy. The allocation process consists 

of two parts, as shown in Figure 1: 

(1). Intra-Phase dynamic slots allocation. Each pool is split 

into two SUb-pools, i.e., map-phase pool and reduce-phase 

pool. At each phase, each pool will receive its share of slots. 

An overloaded pool, whose slot demand exceeds its share, can 

dynamically borrow some unused slots from other pools of 

the same phase. For example, an overloaded map-phase PooH 

can borrow map slots from map-phase Pool 2 when Pool 2 is 

under-utilized, and vice versa. 

(2). Inter-Phase dynamic slots allocation. After the intra­

phase dynamic slots allocation for both the map-phase and 

reduce-phase, we can now perform dynamic slots allocation 

across typed phases. That is, when there are some unused 

reduce slots at the reduce phase and the number of map slots 

at the map phase is insufficient for map tasks, it will borrow 

some idle reduce slots for map tasks, to maximize the cluster 

utilization, and vice versa. 

Thus, there are four possible scenarios. Let N M and N R be 

the number of map and reduce tasks respectively, while SM 
and S R be the number of map and reduce slots configured by 

users respectively. The four scenarios are as follows: 

Case 1: When NM :( SM and NR :( SR, the map tasks 

are run on map slots and reduce tasks are run on reduce slots, 

i.e., no borrow is needed across map and reduce slots. 

Case 2: When NM > SM and NR < SR, we satisfy reduce 

tasks for reduce slots first and then use those idle reduce slots 

for running map tasks. 

Case 3: When NM < SM and NR> SR, we can schedule 

those unused map slots for running reduce tasks. 

Case 4: When N M > S M and N R > S R, the system should 

be in completely busy state, and similar to (1), there will be 

no movement of map and reduce slots. 

Next, it will perform intra-phase dynamic slots allocation for 

those borrowed map or reduce slots using max-min fairness 

within the phase. 

The pseudocode for this algorithm is shown in Algorithm 1. 



Whenever a heartbeat is received from a compute node, we 

first compute the total demand for map slots and reduce 

slots for the current Map Reduce workload. Particularly, the 

demand for map slots is computed based on the number of 

pending map tasks plus the total number of currently used 

map slots, rather than the number of running map tasks. 

The reason is that in our dynamic slot allocation policy, 

the map slots can be used by reduce tasks, and map tasks 

can be running using reduce slots. For each tasktracker, the 

number of used map slots can be calculated based on the for­

mula: min {runningM apTasks, tracker M apCapacity} + 

max{runningReduceTasks -tracker ReduceCapacity, O}. 
The formula is similarly used in the computation for reduce 

slots. We can then compute load factors for map tasks and 

reduce tasks. We next detennine dynamically the need to 

borrow map (or reduce) slots for reduce (or map) tasks based 

on the demand for map and reduce slots, in terms of the above 

four scenarios. The specific number of map (or reduce) slots 

to be borrowed is determined based on the number of unused 

reduce (or map) slots and its map (or reduce) slots required. 

To minimize the possible starvation of slots for each phase, 

instead of borrowing all unused map (or reduce) slots, we 

add configuration variables percentageOjBorrowedMapSlots 
and percentageOjBorrowedReduceSlots for the percentage of 

unused map and reduce slots that can be borrowed. The 

updated map (or reduce) load factor can be computed with 

the inclusion of borrowed map (or reduce) slots. Finally, we 

can compute the number of available map and reduce slots that 

should be allocated for map and reduce tasks at this heartbeat 

for that tasktracker, based on the current map and reduce slots 

capacity as well as used map and reduce slots. 
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Fig. 2: Example of the fairness-based slots allocation flow for PD­
DHFS. The black arrow line and dash line show the borrow flow for 
slots across pools. 

In contrast to PI-DHFS that considers the fairness in its dy­

namic slots allocation independent of pools, but rather across 

typed-phases, there is another alternative fairness consideration 

for the dynamic slots allocation across pools, as we call 

Pool-dependent DHFS (PD-DHFS), as shown in Figure 2. It 

assumes that each pool, consisting of two parts: map-phase 

Algorithm 1 The dynamic task assignment policy for tasktracker 
under PI-DHFS. 
When a heartbeat is received from a compute node n: 

I: compute its c!usterUsedMapSlots, clusterUsedReduceSlots, mapSlotsDe­
Oland, reduceSlotsDemand, mapSlotsLoadFactor and reduceSlotsLoad­
Factor. 

2: I*Case l: both map slots and reduce slots are sufficient *1 
3: if (mapSlolsLoadFaclor � I and reduceSlolsLoadFaclOr � I) then 
4: fiNo borrow operation is needed. 
5: I*Case 2: both map slots and reduce slots are not enough *1 
6: if (mapSlolsLoadFaclOr ;:, I and reduceSlolsLoadFaclOr ;:, I) then 

7: fiNo borrow operation is needed. 
8: I*Case 3: map slots are enough, while reduce slots are insufficient. It 

calculates borrowed map slots for reduce tasks*1 
9: if (mapSlolsLoadFaclOr < I and reduceSlolsLoadFaclOr > I) then 

10: currentBorrowedMapSlols = ciuslerUsedMapSlols - ciuSlerRun-
ningMapTasks; 

11: eXlraReduceSlolsDemand = min{ max{ tloor{ ciuslerMapCapacily 
* percentage0.fBorrowedMapSlols} - currentBorrowedMapSlots, O}, re­
duceSlolsDemand - ciuslerReduceCapacily} 

12: updaledMapSlolsLoadFaclOr = (mapSlolsDemand + extraReduceS-
lotsDemand) I cillslerMapCapacily; 

13: I*Case 4: map slots are insufficient, while reduce slots are enough. It 
calculates borrowed reduce slots for map tasks.*1 

14: if (mapSlotsLoadFaclOr > I and reduceSlolsLoadFaclor < I) then 
15: currentBorrowedReduceSlots = ciusterUsedReduceSlols - cillslerRun-

ningReduceTasks; 
16: extraMapSlotsDemand = min{ max{ floor{ ciusterReduceCapacity * 

percenlage0.fBorrowedReduceSlols} - currentBorrowedReduceSlots, O}, 
mapSlolsDemand - ciuslerMapCapacily} 

17: updaledReduceSlolsLoadFaclOr = (reduceSlolsDemand + eXlraMap-
SlolsDemand) I ciuslerReduceCapacilY; 

18: compute availableMapSlots and availableReduceSlots based on the up­
dated map/reduce load factor and used slots. 

pool and reduce-phase pool, is selfish. That is, it always tries 

to satisfy its own shared map and reduce slots for its own 

needs at the map-phase and reduce-phase as much as possible 

before lending them to other pools. PD-DHFS will be done 

with the following two processes: 

(1). Intra-Pool dynamic slots allocation. First, each typed­

phase pool will receive its share of typed-slots based on 

max-min fairness at each phase. There are four possible 

relationships for each pool regarding its demand (denoted as 

mapSlotsDemand, reduceSlotsDemand) and its share (marked 

as mapShare, reduceShare) between two phases: 

Case (a). mapSlotsDemand < mapShare, and reduceSlots­
Demand > reduceShare. We can borrow some unused map 

slots for its overloaded reduce tasks from its reduce-phase pool 

first before yielding to other pools. 

Case (b). mapSlotsDemand > mapShare, and reduceSlots­
Demand < reduceShare. In contrast, we can satisfy some 

unused reduce slots for its map tasks from its map-phase pool 

first before giving to other pools. 

Case (c). mapSlotsDemand :( mapShare, and reduceSlots­
Demand :( reduceShare. Both map slots and reduce slots are 

enough for its own use. It can lend some unused map slots 

and reduce slots to other pools. 

Case (d). mapSlotsDemand > mapShare, and reduceSlots­
Demand> reduceShare. Both map slots and reduce slots for a 

pool are insufficient. It might need to borrow some unused map 

or reduce slots from other pools through inter-Pool dynamic 



slots allocation below. 

(2). Inter-Pool dynamic slots allocation. It is obvious that, 

(i). for a pool, when its mapSlotsDemand + reduceSlotsDe­
mand � mapShare + reduceShare. The slots are enough for 

the pool and there is no need to borrow some map or reduce 

slots from other pools. It is possible for the cases: (a), (b), (c) 

mentioned above. (ii). On the contrary, when mapSlotsDemand 
+ reduceSlotsDemand > mapShare + reduceShare, the slots 

are not enough even after Intra-Pool dynamic slots allocation. 
It will need to borrow some unused map and reduce slots 

from other pools, i.e., Inter-Pool dynamic slots allocation, to 

maximize its own need if possible. It can occurs for pools in 

the following cases: (a), (b), (d) above. 

The pseudocode for PD-DHFS implementation is shown in 

Algorithm 2. When tasktracker receives a heartbeat, instead 

of allocating map and reduce slots separately, it treats them 

as a whole to allocate for pools. That is, it first computes 

the total slots demand totalSlotsDemand for all map and 

reduce tasks from all pools. The running number of tasks 

trackerRunningTasksNum and current slots capacity tracker­
CurrentSlotsCapacity for a tasktracker can be determined by 

considering the load balance for a cluster as well as its own 

maximum slots capacity trackerSlotsCapacity. Then we can 

compute the maximum number of free slots that can be allo­

cated at each round of heartbeat for a tasktracker by subtract­

ing trackerRunningTasksNum from trackerCurrentSlotsCapac­
ity. For each slot allocation, we first scan sorted pools. For 

each pool, we try the following possible slot allocations: 

Case (1): We first try the map tasks allocation if there 

are idle map slots for the tasktracker (i.e., trackerRun­
ningMapTasksNum < trackerMapCapacity), and there are 

pending map tasks for the pool (i.e., p.getMapDemand > 
p.getRunningMapTasks). 

Case (2): If the attempt of Case (1) fails since the con­

dition does not hold or it cannot find a map task satisfy­

ing the valid data-locality level, we continue to try reduce 

tasks allocation when the following conditions hold: track­
erRunningReduceTasksNum < trackerReduceCapacity and 

p.getReduceDemand > p.geIRunningReduceTasks. 
Case (3): If Case (2) still fails due to the required condition 

does not hold, we try for map task allocation again. Case 

(1) fails might be that there are no idle map slots available 

(i.e., trackerRunningMapTasksNum � trackerMapCapacity). 
In contrast, Case (2) fails might be due to no pending reduce 

tasks (i.e., p.getReduceDemand � p.getRunningReduceTasks). 
In this case, we can try reduce slots for map tasks of the pool. 

Case (4): If Case (3) still fails, we try for reduce task 

allocation again. Both Case (1) and Case (3) fail might 

be that there are no valid locality-level pending map tasks 

available, whereas there are idle map slots. In contrast, Case 

(2) might be that there are no idle reduce slots available (i.e., 

trackerRunningReduceTasksNum � trackerReduceCapacity). 
In that case, we can allocate map slots for reduce tasks of 

the pool. 

The slot allocation flow for the above cases is shown 

in Figure 3. The number labeled in the graph denotes the 

corresponding case. Moreover, there is a special case that 

needs to be particularly considered: 

Case (5): Note it is possible that all the above four possible 

slot allocation attempts fail for all pools, due to the data 

locality consideration for map tasks. For example, it is possible 

that there is a new compute node added to the Hadoop cluster. 

It may be empty and does not contain any data. Thus, the 

data locality for all map tasks might not be satisfied and all 

pending map tasks cannot be issued. The failures of both Case 

(2) and Case (4) indicate that there are no pending reduce 

tasks available for all pools. However, there might be some 

pending map tasks available. Therefore, there is a need to run 

some map tasks by ignoring the data locality consideration on 

that new compute node to maximize the system utilization. 

To implement this, we make a mark visitedForMap for each 

job visited for map tasks. The data locality will be considered 

when visitedForMap does not contain scanned job. Otherwise, 

it will relax the data locality constrain for map tasks. 

Algorithm 2 The dynamic task assignment policy for tasktracker 
under PO-OHFS. 
When a heartbeat is received from tasktracker its: 

I: Compute its totalSlotsDemand, totaiSlotsCapacity, trackerSlotsCapacity, 
trackerRunningTasksNum and trackerCurrentSlotsCapacity. 

2: /* Return when there are no idle slots. */ 
3: if trackerRunningTasksNum � trackerCurrentSlotsCapacity then 
4: return NULL; 
5: for (i = 0; i < trackerCurrentSlotsCapacity - trackerRunningTasksNum; 

i++) do 

6: Sort pools by distance below min and fair share 
7: for (Pool p : pools) do 
8: /* Case (\): allocate map slots for map tasks from Pool p*/ 
9: if (there are pending map tasks and idle map slots) then 

10: Task task = assignTask(tts, currentTime, visitedForMap); 
I I: if (task != null) then 
12: foundTask = true; tasks.add(task); break; 
13: /* Case (2): allocate reduce slots for reduce tasks from Pool p*/ 
14: if (there are pending reduce tasks and idle reduce slots) then 

15: Task task = assignTask(tts, currentTime, visitedForReduce); 
16: if (task != null) then 
17: foundTask = true; tasks.add(task); break; 
18: /* Case (3): allocate reduce slots for map tasks from Pool p*/ 
19: if (there are pending map tasks) then 
20: Task task = assignTask(tts, currentTime, visitedForMap); 
2 1: if (task != null) then 
22: foundTask = true; tasks.add(task); break; 
23: /* Case (4): allocate map slots for reduce tasks from Pool p*/ 
24: if (there are pending reduce tasks) then 
25: Task task = assignTask(tts, currentTime, visitedForReduce); 
26: if (task != null) then 
27: foundTask = true; tasks.add(task); break; 
28: /* Case (5): schedule the non-local map tasks when its node-local 

tasks cannot be satisfied. */ 
29: if (!foundTask) then 

30: for (Pool p : pools) do 

3 \: if (there are pending map tasks) then 
32: Task task = assignTask(tts, currentTime, visitedForMap); 
33: if (task != null) then 

34: foundTask = true; tasks.add(task); break; 

IV. EXPERIMENTAL EVALUATION 

In this section, we evaluate the performance benefit of our 

proposed dynamic slot allocation techniques. 
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Fig. 3: The slot allocation flow for each pool under PD-DHFS. 

A. Experiments Setup 

We ran our experiments in a cluster consisting of 10 com­

pute nodes, each with two Intel X5675 CPUs (6 CPU cores per 

CPU with 3.07 GHz), 24GB memory and 56GB hard disks. 

We configure one node as master and namenode, and the other 

9 nodes as slaves and datanodes. Moreover, we configure 10 

map and 2 reduce slots per slave node. We generate our testbed 

workloads by using three representative applications, i.e., 

wordcount application (computes the occurrence frequency of 

each word in a document), sort application (sorts the data in 

the input files in a dictionary order) and grep application (finds 

the matches of a regex in the input files). We take wikipedia 

article history dataset) with four different sizes, e.g., 10GB, 

20GB, 30GB, 40GB as application input data. As there is one 

map task per data block in Hadoop, we upload each data into 

HDFS with different block sizes of 64MB, 128MB, 256MB to 

have different number of data blocks and varied block sizes. 

Table I lists the job information for our testbed workloads. It 

is a mix of three benchmarks together with different sizes of 

input data and varied block sizes. 

B. Peiformance Improvement Evaluation 

Figure 4 presents the evaluation results for our proposed 

DHFS for a single MapReduce job (e.g., J1, J2, h) as well 

as MapReduce workloads with multiple jobs, e.g., 5 jobs 

(J1 � J5), 10 jobs (J1 � JlO) and 20 jobs (J1 � J20). All 

speedups are calculated with respect to the original Hadoop. 

We can see that both PI-DHFS and PD-DHFS can improve 

the performance of MapReduce jobs significantly, i.e., there 

are about 32% � 55% for a single job and 44% � 68% for 

MapReduce workloads with multiple jobs. For the traditional 

Hadoop, the map/reduce slot configuration has a big influence 

in the cluster utilization and performance for MapReduce 

jobs, whereas our DHFS is not influenced by map/reduce slot 

configuration. 

Take a single job for example. Let N M and N R denote 

the number of map tasks and reduce tasks. Let t M and t R 
denote the execution time for a single map task and reduce 

) http://dumps.wikimedia.org/enwik:i/ 

Ji Benchmark I DataSize (GB) B10ckSize (MB) I 1Jf111 IJr'11 ; 
h wordcount 10 64 160 30 

12 sort 20 64 320 200 

h grep 30 64 480 120 

J4 wordcount 40 64 640 100 

J5 sort 30 64 480 200 

J6 wordcount 10 128 80 15 

h sort 20 128 160 100 

J8 grep 30 128 240 80 

J9 wordcount 40 128 320 50 

ho grep 10 128 80 40 

J11 wordcount 30 64 480 60 

h2 sort 30 64 480 200 

h3 grep 20 64 320 80 

h4 wordcount 20 128 160 30 

h5 sort 10 128 80 60 

h6 wordcount 10 256 40 20 

J17 sort 20 256 80 40 

h8 grep 30 256 120 60 

h9 wordcount 40 256 160 40 

120 sort 10 256 40 10 

TABLE I: The job information for testbed workloads. 

task. Let SM and SR denote the number of map slots and 

reduce slots. Moreover, we assume that there is one slot per 

CPU core and thus the sum of map slots and reduce slots 

is fixed for a given cluster. Then for the traditional Hadoop 

cluster, the execution time will be r � 1 . t M + r � 1 . t R· 
In contrast, it will be r S::SR 1· tM + r S::SR 1· tR for our 

DHFS. Based on the formula, we can see varied performance 

from the traditional Hadoop under different slot configurations. 

However, there is little impact on the performance for different 

slot configurations under DHFS. 

C. Dynamic Tasks Execution Processes for PI-DHFS and PD­
DHFS 

To show different levels of fairness for the dynamic tasks 

allocation algorithms, PI-DHFS and PD-DHFS, we perform 

an experiment by considering two pools, each with one job 

submitted. Figure 5 shows the execution flow for the two 

DHFSs, with 10 sec per time step. The number of running map 

and reduce tasks for each pool at each time step is recorded. 

For PI-DHFS, as illustrated in Figure 5(a), we can see that, at 

the beginning, there are only map tasks, with all slots used by 

map tasks under PI-DHFS. Each pool shares half of the total 

slots (i.e., 54 slots out of 108 slots), until the 3th time step. 

The map slots demand for pool 1 begins to shrink and the 

unused map slots of its share are yielded to pool 2 from the 

4th time step to the 7th time step. Next from 9th to 15th time 

step, the map tasks from pool 2 takes all map slots and the 

reduce tasks from pool 1 possess all reduce slots, based on the 

typed-phase level fairness policy of PI-DHFS(i.e., intra-phase 

dynamic slots allocation). Later there are some unused map 

slots from pool 2 and they are used by reduce tasks from pool 

I from 16th to 18th time step(i.e., inter-phase dynamic slots 

allocation). 

For PD-DHFS, similar to PI-DHFS at the beginning, each 

pool obtains half of the total slots from the 1 th to 3rd time 
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Fig. 4: The performance improvement with our dynamic scheduler for MapReduce workloads. 
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Fig. 5: The execution flow for the two DHFSs. There are two pools, with one running job each. 

step, as shown in Figure 5(b). Some unused map slots from 

pool 1 are yielded to pool 2 from 4th to the 7th time step. 

However, from the 8th to 11th, each of the map tasks from 

pool 2 and the reduce tasks from pool 1 takes half of the total 

slots, subject to the pool-level fairness policy of PD-DHFS 

(i.e., intra-pool dynamic slots allocation). Finally, the unused 

slots from pool 1 begins to yield to pool 2 since 12th time 

step (i.e., inter-pool dynamic slots allocation). 

D. Discussion on the Performance of Different Percentages of 
Borrowed Map and Reduce Slols 
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Fig. 6: The performance results with different percentages of map 
(or reduce) slots borrowed. 

In Section III-A, instead of borrowing all unused map 

(or reduce) slots for overloaded reduce (or map) tasks, we 

provide users with two configuration arguments percentageOf 
BorrowedMapSlots and percentageOfBorrowedReduceSlols to 

limit the amount of borrowed map/reduce slots, and ensure that 

tasks at the map/reduce phase are not starved. It is meaningful 

and important when users want to reserve some unused slots 

for incoming tasks, instead of lending all of them to other 

phases or pools. To show its impact on the performance, we 

perform an experiment with sort benchmark (320 map tasks 

and 200 reduce tasks) by varying values of arguments. 

Let Pec_M and Pec_R denote percentageOfBor­
rowedMapSlots and percentageOfBorrowedReduceSlots 
respectively. Figure 6 presents the performance results under 

varied argument configurations. All speedup results are 

calculated with respect to the case when Pec_M = 0 and 

Pec_R = O. We consider four cases: (1). Vary the value 

of Pec_R from 0 to 100 while fix Pec_M = 0; (2). Vary 

the value of Pec_R while set Pec_M = 100; (3). Vary 

the value of Pec_M while fix Pec_R = 0; (4). Vary the 

value of Pec_M while fix Pec_R = 100. We can see 

that, the performance improves by increasing either Pec_M 
or Pec_R. Particularly, there is a significant performance 

improvement(i.e., approximate 29%) when we fix the value of 

Pec_R and increase the value of Pec_M. It is because there 

are plenty of reduce tasks (e.g., 200 reduce tasks) but only 

18 reduce slots. Thus increasing the percentage value of map 

slots (Pec_M) that can be borrowed would let more reduce 

tasks be scheduled using borrowed map slots, reducing the 

number of computation waves of reduce tasks and improving 



the utilization as well as perfonnance of the Hadoop cluster. 

V. DISCUSSION 

The goal of our work is to improve the utilization and 

perfonnance for MapReduce clusters while guaranteeing the 

fairness across pools. PI-DHFS and PD-DHFS are our first 

two attempts of achieving this goal with two different fairness 

definitions. PI-DHFS follows strictly the definition of fairness 

given by traditional HFS, i.e., the slots are fairly shared across 

pools within each phase (i.e., map phase or reduce phase). 

However, the slot allocations are independent across phases. 

In contrast, PD-DHFS gives a new definition of fairness from 

the perspective of pools, i.e., each pool shares the total number 

of map and reduce slots from the map phase and reduce phase 

fairly with other pools. 

Because of different definitions of fairness, the possibility 

of slots movement between map-phase and reduce-phase in 

dynamic slots allocation is different between PI-DHFS and 

PD-DHFS. For PI-DHFS, the slots movement can only occur 

when one typed slots (e.g., map slots) are enough while the 

other typed slots (e.g., reduce slots) are insufficient, Le., two 

cases: Case 2 and Case 3 in Section III-A. However, for PD­

DHFS, the slots movement can occur in all four possible 

scenarios (e.g., Case 1, Case 2, Case 3, Case 4) mentioned 

in Section III-A, i.e., there are slots movements even in the 

case that both total map slots and reduce slots are sufficient 

(or insufficient) for PD-DHFS. Thus, PD-DHFS tends to have 

more slot movement than PI-DHFS. 

VI. CONCLUSION AND FUT URE WORK 

This paper proposes Dynamic Hadoop Fair Schedulers 

(DHFS) to improve the utilization and perfonnance of MapRe­

duce clusters while guaranteeing the fairness. The core tech­

nique is dynamically allocating map (or reduce) slots to map 

and reduce tasks. Two types of DHFS are presented, namely, 

PI-DHFS and PD-DHFS, based on fairness for cluster and 

pools, respectively. The experimental results show that our 

proposed DHFS can improve the perfonnance and utilization 

of the Hadoop cluster significantly. As for future work, we are 

interested in extending our dynamic slot allocation algorithms 

to heterogeneous environments. Cluster/cloud has become 

heterogeneous with different architectures. We plan to extend 

our previous study [22] to handle the slot configuration on 

CPUs and GPUs. 

The DHFS source code is publicly available for download­

ing at http://sourceforge.netlprojectsldhfsl. 
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