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Abstract. MapReduce has become a widely used computing model for large-
scale data processing in clusters and data centers. A MapReduce workload gen-
erally contains multiple jobs. Due to the general execution constraints that map
tasks are executed before reduce tasks, different job execution orders in a MapRe-
duce workload can have significantly different performance and system utiliza-
tion. This paper proposes a prototype system called MROrder to dynamically
optimize the job order for online MapReduce workloads. Moreover, MROrder
is designed to be flexible for different optimization metrics, e.g., makespan and
total completion time. The experimental results show that MROrder is able to im-
prove the system performance by up to 31% for makespan and 176% for total
completion time.

1 Introduction

MapReduce [1] is a popular computing paradigm for large-scale data intensive process-
ing. A map-reduce job computation generally contains two phases: 1) a map phase,
consisting of many map tasks, and 2) a reduce phase, consisting of many reduce tasks.
Apache Hadoop, an open source framework of MapReduce, has been widely deployed
on large clusters consisting of thousands of machines by companies such as Facebook,
Amazon, and Yahoo. Generally, MapReduce and Hadoop are used to support batch
processing for multiple large jobs (i.e., MapReduce workloads). Despite many research
efforts have been devoted to improve the performance of a single MapReduce job (e.g.,
[1,2]), there is relatively little attention that has been paid to the system performance
of MapReduce workloads. Therefore, this paper attempts to improve the system perfor-
mance of MapReduce workloads.

The job execution order in a MapReduce workload is important for the system perfor-
mance. To show the importance of job ordering, Figure 1 gives an example illustrating
that the performance can differ by nearly 100% for two varied job submission orders for
a batch of jobs. However, the job ordering optimization for MapReduce workloads is
challenging, due to the following facts: (i). There is a strong data dependency between
the map tasks and reduce tasks of a job, i.e., reduce tasks can only perform after the map
tasks, (ii). map tasks have to be allocated with map slots and reduce tasks have to be
allocated with reduce slots, (iii). Both map slots and reduce slots are limited computing
resources, configured by hadoop administrator in advance [3].
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Fig. 1. Performance comparison for a batch of jobs under different job submission orders

The job ordering optimization for MapReduce workloads is important as well as
challenging, due to the following facts: (i). There is a strong data dependency between
the map tasks and reduce tasks of a job, i.e., reduce tasks can only perform after the map
tasks, (ii). map tasks have to be allocated with map slots and reduce tasks have to be
allocated with reduce slots, (iii). Both map slots and reduce slots are limited computing
resources, configured by hadoop administrator in advance [3].

In this paper, we propose a prototype system MROrder1 that can perform job or-
dering automatically for arriving jobs queued in Hadoop FIFO buffer. There are two
core components for MROrder, namely, policy module and ordering engine. The policy
module decides when and how to perform job ordering. The ordering engine, consisting
of two approaches (i.e., simulation-based ordering approach and algorithm-based order-
ing approach), gives the job ordering. MROrder is designed to be flexible for different
performance metrics, such as makespan and total completion time.

We evaluate our MROrder system using both synthetic workloads. Both makespan
and total completion time are considered. Experimental results show that there is about
11–31% performance improvement based on MROrder system, depending on the char-
acteristic of testbed workloads. Moreover, for synthetic Facebook workloads which
contain lots of small-size jobs, the MROrder can improve the performance of the to-
tal completion time up to 176%.

2 Related Work

The batch job ordering optimization has been extensively researched in HPC litera-
ture [4]. In those studies, parallel tasks can be classified into three types: rigid (the
number of processors to execute the task is fixed a priori), moldable (the number of
processors to execute the task is not fixed but determined before the execution) and
malleable (the number of processors for a task may change during the execution) [5]. In
contrast, the malleable task is the most popular and widely studied. Its has been proved
to be NP-hard for makespan optimization [4], and a number of approximation and
heuristic algorithms (e.g., [5,10]) were proposed. Meanwhile, there are some bi-criteria
optimization algorithms proposed for optimizing makespan and total completion time
simultaneously, such as [6].

1 MROrder is open source and available at http://sourceforge.net/projects/
mrorder/

http://sourceforge.net/projects/mrorder/
http://sourceforge.net/projects/mrorder/
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The previous optimization works in HPC are implicitly targeted at the single-stage
parallelism. In contrast, MapReduce is an interleaved parallel and sequential compu-
tation model [7]. It is close to the two-stage hybrid flow shop (HFS) [8]. Specifically,
when each job contains only one map task and one reduce task, the MapReduce job or-
dering problem turns to be a two-stage HFS. The makespan optimization for two-stage
HFS is strongly NP-hard when at least one stage contains multiple processors [11].
There has been a large body of approximation and heuristic algorithms (e.g., [12,13])
for it. Besides, for HFS, there are also works (e.g., [15,14]) targeted at the bi-criteria
optimization of both makespan and total completion time.

However, a MapReduce job runs multiple map/reduce tasks concurrently in each
phase, which is different from the traditional HFS that allows only at most one task
to be processed at a time. The MapReduce is more similar to the two-stage Hybrid
flow shop with multiprocessor tasks (HFSMT) [16,17], which allows a task at each
stage to be processed on multiple processors simultaneously. However, there is a strict
requirement for HFSMT that a task at each stage can only be scheduled to execute
only when there are enough idle processors for the task [17]. In contrast, the number of
running map/reduce tasks for a MapReduce job is dynamically scaling up and down at
runtime by allocating the tasks with available map/reduce slots.

In summary, this paper has taken into account all of these similarities to HFS as well
as differences for MapReduce jobs. The most related work to us for MapReduce are
[3,18]. Moseley et al. [3] presented a 12-approximation algorithm for the offline work-
loads of minimizing the total flow time, which is the sum of the time between the arrival
and the completion of each job. Verma et al. [18] proposed two algorithms for makespan
optimization of offline jobs. One is a greedy algorithm based on Johnson’s Rule. The
other one is a heuristic algorithm called BalancedPool. They evaluated their strength
experimentally. In contrast, our work considers both makespan and total completion
time optimization for online recurring MapReduce workloads, where jobs arrive over
time and perform recurring computations in different time windows. Particularly, pre-
vious study showed that 75% of queries from Microsoft are recurring workloads [24].
MROrder is designed to optimize the performance for such scenarios.

3 Definition and Performance Metrics

Variable Definition. In an Hadoop cluster, letM denote the map phase andR denote the
reduce phase. Let its slot configuration beS � �SM,SR�, where SM denotes the set of
map slots andSR denotes the set of reduce slots. Therefore, the map task capacity is �SM�
and the reduce task capacity is �SR�. For a batch of online jobs J � �J1, J2, ..., Jn�, let
tai denote the arriving time. Let tMi be the average processing time of a map task and tRi
be the average processing time of a reduce task for each job Ji. Moreover, the set of its
map tasks is denoted as JM

i and the set of its reduce tasks is denoted as JR
i . Then the

number of map tasks for Ji is �JM
i � and the number of reduce tasks is �JR

i �.

Performance Metrics. There are several classical performance metrics for job order-
ing optimization, e.g., makespan, total completion time and total flow time. Let ci denote
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the completion time of the job Ji. The makespan for the whole jobs J is defined as
the maximum completion time of any job, i.e., Cmax � max�ci�. The total completion
time (TCT) for the whole jobs J is defined as Ctct �

�
ci.

Problem Definition. Our goal is to minimize makespan and total completion time. That
is, how to order the online arriving jobs automatically such that the makespan (or the
total completion time) for all the jobs is minimized?

4 MROrder System

This section describes the design and implementation of the MROrder system.

4.1 System Overview

Figure 2 presents the overall design architecture for MROrder system. It gives the job
order for arriving jobs, which can be submitted by a user or from other softwares such
as Pig, Hive, Mahout, Oozie, etc. Particularly, the jobs are submitted in an ad hoc man-
ner from users. We do not have assumption for the arrival order as well as arrival rate
of jobs. There is a JobDispatchingQueue for queueing arriving jobs before submit-
ting them to the MapReduce cluster. The MROrder job ordering manager handles the
job ordering for arriving jobs queued in JobDispatchingQueue automatically. For each
MapReduce job, the MROrder system needs to know the following information, i.e., the
number of map (or reduce) tasks, the average time for each map (or reduce) task, and
its arriving time. There are two key components for MROrder job ordering manager,
namely, Policy Module and Ordering Engine. The policy module determines when and
how to perform job ordering for MapReduce jobs. Once a policy command is issued,
the ordering engine then deals with the job ordering work automatically. The specific
description for each component is detailed in the following sections.

JobDispatchingQueue MROrder Job Ordering Manager  

MapReduce 
cluster 

Pig  Hive  Mahout  Oozie  

Client 2  Client 3  Client 4 Client 5  

b O

Simulation-based 
Approach 

Algorithm-based 
Approach 

(1) Job subm
ission  

MROrder System   
(2) Policy module decides when and how to      perform job ordering  

atchin

su j gp( ) y s g

(3) Ordering Engine performs the job ordering  

(4)  Return  job’s result  

Policy 
Module 

Ordering 
Engine 

Fig. 2. The overall architecture for MROrder system
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4.2 Policy Module

The policy module is invoked when there are arriving jobs queued in the JobDispatch-
ingQueue, pending to be dispatched to the MapReduce cluster. It determines a good
job ordering strategy to optimize target performance metrics (e.g., makespan or to-
tal completion time). The strategy is a combination of the choice of job ordering ap-
proach, the policy for the number of jobs for ordering and time policy (when to perform
job ordering). It chooses the job ordering approaches (e.g., simulation-based approach,
algorithm-based approach) based on their accuracy and efficiency characteristics (Sec-
tion 4.3). Particularly, since simulation-based job ordering is a brute-force method, it
can provide an optimal result but its efficiency is quite low, indicating that it is suitable
for a small number of jobs. In contrast, the algorithm-based job ordering approach is
efficient but it can only provide a sub-optimal result, which is suitable for a large num-
ber of jobs. Furthermore, the policy for the number of ordering jobs (PNJ) and time
policy (TP) are correlated. We need to consider them together. We have the following
two solutions:

PNJ-Dominated Solution. The user sets a threshold (n0) for the number of jobs re-
quired to perform ordering. The ordering engine is triggered automatically when the
number of arriving jobs reaches that threshold (n � n0). The TP completely depends
on the PNJ. It can be dynamically determined and computed by subtracting the latest-
round job ordering time (or the starting time) by the current time.

TP-dominated Solution. Given a time interval Δt, the ordering engine is invoked at
the time t � Δt � t

�

, where t
�

is the latest-round time when the ordering engine was
activated (or the starting time). The number of jobs n is thus equivalent to the num-
ber of arriving jobs during this time interval. The TP-dominated solution is shown in
Algorithm 1.

Algorithm 1. TP-dominated Solution with Fixed Time Interval (TP-FTI)

1. Assume that MapReduce cluster start at the time tcurr � 0. For each arriving job Ji, it will
be first queued in the JobDispatchingQueue. There is a boolean attribute orderflagi for
each Ji. It is initialized to be orderflagi � false by default.

2. The MROrder job ordering manager waits for a time interval Δt until the current time
tcurr � tcurr � Δt. The policy module checks the arriving jobs queued in the JobDis-
patchingQueue to filter out sub-set JA, where JA � �Ji��Ji � J� � �tai 	 tcurr� �
�orderflagi � false�
. Thus the number of jobs at this job ordering round is �JA�.

3. The job ordering engine is triggered by the policy module. It does job ordering and marks
orderflagi � true for jobs in JA.

4. The MROrder system dispatches those jobs Ji with orderflagi � true in the JobDispatch-
ingQueue and goes back to step 2.

Given Δt � 60 sec configured by the user, for example, the MROrder job ordering
engine is activated every 60 secs, ordering the arriving jobs queued in the JobDispatch-
ingQueue and dispatching them into MapReduce cluster. The value of Δt has a big
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impact on the whole performance. Too small value of Δt can make the MROrder job
ordering engine work so frequently that there may be a very few jobs available (e.g., 0,
1 or 2 jobs at each job ordering round) in the JobDispatchingQueue at each job ordering
round, losing the effect of job ordering. However, too large value of Δt will make Job-
DispatchingQueue hold lots of jobs without distributing it to the MapReduce cluster,
causing MapReduce cluster keep idle without running jobs and in turn have a adverse
effect on the performance. Moreover, even we have a fine configuration for Δt, it is
still inflexible and not adapted to the job arrival rate. We further propose an adaptive TP
solution to solve this problem, as shown in Algorithm 2.

Algorithm 2. TP-dominated Solution with Adaptive Time Interval (TP-ATI)

1. Let MapReduce cluster start at the time tcurr � 0. For each arriving job Ji, it will be first
queued in the JobDispatchingQueue. There is a boolean attribute orderflagi for each Ji. It
is initialized to be orderflagi � false by default. Initially, let twait � Δt.

2. The MROrder job ordering manager waits for a time interval twait until the current time
tcurr � tcurr � twait. The policy module checks the arriving jobs queued in the JobDis-
patchingQueue to filter out sub-set JA, where JA � �Ji��Ji � J� � �tai 	 tcurr� �
�orderflagi � false�
. Thus the number of jobs at this job ordering round is �JA�.

3. The job ordering engine is triggered by the policy module. It does job ordering and marks
orderflagi � true for jobs in JA.

4. The MROrder system dispatches those jobs Ji with orderflagi � true in the JobDispatch-
ingQueue.

5. The policy module updates twait as follows: twait � max
�
Δt, TA

�
, where TA �

max1�k��JA�

��k
i�1

�JM
i ��tMi
�SM�

�
��JA�

i�k
�JR

i ��tRi
�SR�

�
.

6. Go back to Step 2.

The rationale for the adaptive waiting time adjustment based on the algorithm TP-
ATI is that, user provides a relatively small threshold Δt for waiting time. The policy
module adjusts it dynamically according to the estimated running time TA of those
workloads JA that have been distributed to MapReduce cluster at the previous dis-
patching round. The MROrder tries to queue as many jobs as possible in the JobDis-
patchingQueue at each job ordering round while keeping the MapReduce cluster busy.

4.3 Ordering Engine

The ordering engine (OE) is triggered according to the policies in the policy module.
The MROrder system provides two types of job ordering approaches, i.e., simulation-
based ordering approach and algorithm-based ordering approach. The policy module
is responsible for selecting the suitable ordering engine dynamically based on the num-
ber of jobs at each job ordering round. The basic idea is that the simulation-based order-
ing approach is chosen when there are a small number of jobs (e.g., 7 jobs), considering
that it can produce an optimal result but is time-consuming. The algorithm-based order-
ing approach is selected for a large number of jobs.
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Simulation-Based Ordering Approach (SIM). To enable simulation-based job order-
ing, we developed a Hadoop simulator named HSim. It is a tailored simulator aiming
to evaluate the performance of varied job orders with a file input consisting of jobs
information each with five arguments: job’s ID, the number of map tasks, the number
of reduce tasks, the average running time of a map task, the average running time of
a reduce task. We build our simulation-based ordering approach based on HSim. It is
a brute-force method that can enumerate all possible job orders to explore the optimal
job order for a given performance metric (e.g., makespan, total completion time). Note
that there are n! possible job orders for n jobs. For example, there are 9! � 362880
possible job orders for n � 9 jobs, which however takes 97.179 sec (refer to Table 2)
for enumerating all job orders. It indicates that the simulation-based ordering approach
is only feasible for a small number of jobs in practice. Moreover, instead of searching
the whole space of all job orders, one might consider the Monte Calo method combined
with HSim for suboptimal (rough) results by searching the partial space statistically for
a large number of jobs (e.g., 50 jobs, 100 jobs). However, we argue that it is still not
meaningful for a large number of jobs in practice. For example, assume that we want
to control the maximum execution time of simulation not exceeding 97.179 sec (i.e.,
our sample space of job orders is 362880). When it comes to 20 jobs, it can only cover

362880
20!�2432902008176640000 � 1.49� 10�13, which is very tiny and unmeaningful. There-
fore, there is a need to explore an efficient solution for a large number of jobs in the
following subsection.

Algorithm-Based Ordering Approach (ALG). We develop an algorithm-based order-
ing approach to deal with the job ordering for MapReduce workloads with a large number
of jobs. It contains some job ordering greedy algorithms for different performance met-
rics. Particularly, we incorporate a greedy algorithm MK based on Johnson’s Rule [9], as
shown in Algorithm 3for makespan optimization. It is an optimal and efficientO�n logn	
job ordering algorithm for the makespan optimization for the two-stage flow shop with

Algorithm 3. Greedy algorithm based on Johnson’s Rule (MK)

1. For each job Ji, we first estimate its map-phase processing time TM
i and reduce-phase pro-

cessing time TR
i by using the following formula:

�
TM
i , TR

i

�
�
�	 �JM

i �

�SM�
� tMi ,

�JR
i �

�SR�
� tRi


�.

2. We order jobs in J based on the following principles:
a). Partition jobs set J into two disjoint sub-sets JA and JB :

JA � �Ji��Ji � J� � �TM
i 	 TR

i �
, JB � �Ji��Ji � J� � �TM
i � TR

i �
.

b). Sort all jobs in JA from left to right by non-decreasing TM
i . Order all jobs in JB from

left to right by non-increasing TR
i .

c). Make an ordered jobs set J
�

by joining all jobs in JA first and then JB in order, i.e.,
φ1 : J

�

� ��JA
, �JB

.
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one processor per stage. The details of Johnson’s rule is as follows. Divide the jobs
set J into two disjoint sub-sets JA and JB . Set JA consists of those jobs Ji for which
TM
i 
 TR

i . Set JB contains the remaining jobs (i.e. J�JA). Sequence jobs in JA in
non-decreasing order of TM

i and those in JB in non-increasing order of TR
i . The opti-

mized job order is obtained by appending the sorted set JB to the end of sorted set JA.
Moreover, we also include a greedy algorithm TCT for the total completion time opti-
mization, as shown in Algorithm 4, based on shortest processing time first. In compar-
ison to the simulated-based ordering approach, the algorithm-based ordering approach
is much more efficient, but it can only produce the sub-optimal result. Moreover, to sup-
port user’s job ordering algorithms, MROrder system also provides a user interface in
the algorithm-based ordering approach. Therefore, based on our MROrder system, user
can extend the algorithm-based ordering approach for other’s performance metrics.

Algorithm 4. Greedy algorithm based on Shortest Processing Time First (TCT)

1. For each job Ji, we first compute its processing time Ti by using the formula below:

Ti � TM
i � TR

i �
�JM

i �

�SM�
� tMi �

�JR
i �

�SR�
� tRi .

2. Order all jobs in J from left to right by non-decreasing Ti.

4.4 Implementation

We have developed a prototype of the MROrder system. The prototype implements
all components of the MROrder job ordering manager. The policy module provides
users with all policy solutions mentioned above for choices and adopts TP-ATI by de-
fault. Several user’s arguments are provided, including the optimization targets (e.g.,
makespan, total completion time), the threshold for waiting-time interval as well as the
maximum number of jobs allowed at each job ordering round. The MROrder system
automates the corresponding job ordering policy in runtime based on user’s argument
configuration. Moreover, our prototype adopted our simulator HSim as the computing
component of the MapReduce cluster to simulate the computation process of online
MapReduce batch jobs. The current prototype primarily aims to study various auto-
mated policy solutions for online workloads under different performance metrics. It
remains as ongoing work to incorporate it into Hadoop framework for practical use.

Data Skew. In our MROrder system, we assume that the sizes and processing time of
all data blocks are the same, i.e., there is no data skew among data blocks. For the case
of data skew, user can use the model provided by [26] to diminish it.

Overhead. The overhead of MROrder mainly comes from the ordering engine to per-
form job ordering. The detailed results are given in Section 5.3. Generally, SIM takes
longer time than ALG, but it provides better performance result. Thus, there is a trade-
off between the performance result and overhead for the dynamic choice of job ordering
approach.
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5 Experimental Evaluation

In this section, we evaluate MROrder prototype and its associated policies. The detailed
evaluation method is that: first, we discuss and compare the effectiveness of proposed
policy solutions (e.g., TP-FTI, TP-ATI). Then we evaluate and discuss the suitable value
of threshold (of the number of jobs) as the condition for switching of job ordering
approach. Third, we evaluate the performance for MROrder with regard to makespan as
well as total completion time. Finally, we evaluate the accuracy of our simulator Hsim
adopted by MROrder experimentally.

5.1 Workloads

Our experiment consists of two types of synthetic workloads. One is the synthetic Face-
book workload, generated based on [19,20]. Specifically, the number of map/reduce
tasks as well as the arriving time for each job are based the input/output data sizes of
workloads provided by [19]. We estimate the running time of map and reduce tasks
per job based on the map and reduce durations in Figure 1 of [20]. More precisely, we
follow the LogNormal distribution [21] with LN(9.9511,1.6764) for map task duration
and LN(12.375,1.6262) for reduce task duration that fits best the Facebook task dura-
tion, given and demonstrated by [22]. It contains lots of small-size jobs (more than 58%
in the number of jobs) [20]. We use it primarily to evaluate the total completion time
for MROrder system.

Our second workload is a testbed workload. In contrast to synthetic Facebook work-
load, most of its jobs are large-size. The makespan is seriously affected primarily by the
positions of large-size jobs. We use it mainly to evaluate the makespan for MROrder
system.

5.2 Evaluation and Analysis of Policy Solutions

Recall that in the policy module of MROrder system, we provided several policy so-
lutions to determine when and how to perform job ordering dynamically. Table 1 il-
lustrates the comparison results of two policy solutions TP-FTI and TP-ATI for their
suitable threshold Δt and the corresponding performance improvement of total com-
pletion time under varied sizes of synthetic Facebook workloads. Particularly, we eval-
uate different Δt from 10 sec, 20 sec, 30 sec till to 400 sec. We can observe that, (1).
the suitable value of Δt for TP-FTI, TP-ATI is 230 � 350 sec, and 10 � 30 sec,
respectively. It indicates that the threshold for the fixed-time interval method TP-FTI
should be large, whereas it should be small for the adaptive method TP-ATI, relying on
its adaptive mechanism to change the waiting time interval between two successive job
ordering dynamically; (2). Under the suitable value of Δt, we note that the performance
improvement of TP-ATI is much better than that of TP-FTI. This is because the TP-ATI
is smarter than TP-FTI. Therefore, we take TP-ATI as the policy solution for the policy
module in the following experiments.
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Table 1. The comparison results of two different policy solutions for their suitable threshold
Δt and the corresponding performance improvement of total completion time (PITCT) under
varied sizes of synthetic Facebook workloads. The PITCT is a normalized ratio of performance
improvement with MROrder to the unoptimized one.

JobNum
TP-FTI TP-ATI

Δt�sec� PITCT (%) Δt (sec) PITCT (%)

50 230 41.91 10 44.31
100 230 14.81 10 28.30
150 230 9.28 30 14.13
200 230 6.98 30 10.83
250 310 24.08 30 123.74
300 350 19.49 30 186.29
350 350 13.11 20 89.7
400 350 9.81 20 56.91

5.3 Switching Threshold for the Number of Jobs for Job Ordering Approach

In our MROrder prototype, we provide two types of job ordering approaches, namely,
SIM and ALG. There is a tradeoff between the accuracy and overhead (i.e., the erased
time it takes.) for these two ordering approaches (See Section 4.3 for details).

Table 2. Performance and overhead comparison of ALG versus SIM

JobNum
Makespan
for ALG

(sec)

Makespan
for SIM

(sec)

Total Completion
Time for ALG

(sec)

Total Completion
Time for SIM

(sec)

Erased
Time for

ALG (sec)

Erased
Time for
SIM (sec)

1 45 45 45 45 0.001 0.002
2 170 170 240 240 0.001 0.003
3 200 198 456 453 0.003 0.003
4 338 324 799 796 0.003 0.003
5 399 394 1342 1274 0.003 0.028
6 399 396 1450 1363 0.003 0.123
7 440 437 1766 1736 0.003 0.952
8 475 471 2107 2050 0.003 9.305
9 573 564 2728 2596 0.004 97.179

Table 2 presents the comparison results under different numbers of jobs (e.g., 1-9)
from our testbed workload. It consists of three parts. Column 2 and 3 give the results for
makespan. Column 4 and 5 show the results for total completion time. Column 6 and 7
give the overheads for ALG and SIM ordering engines. We can observe that, (1). The
results based on SIM ordering engine are better (more minimal) than that of ALGs for
both makespan and total completion time. This is because SIM is a brute-force method
that searches all possible job orders to get an optimal one, whereas ALGs are greedy
algorithms that can only produce suboptimal results. (2). The results produced by ALG
are close to SIM results, especially for makespan produced by algorithm MK. (3). The
erased time (i.e., the overhead) consumed by ALG is very small and does not grow much
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as the number of jobs increases. However, the erased time for SIM grows exponentially
as the number of jobs increases, especially when the number of jobs equals to 9 (e.g.,
97.179 sec). It is because ALGs are n logn algorithms, whereas SIM is an n! brute-
force method. Based on the experimental erased time and performance results, we set
the threshold for the number of jobs to be 7 as a threshold for the dynamical choice of
job ordering engines.

5.4 Performance Evaluation of MROrder System

We evaluate the performance of MROrder system by considering two metrics (i.e.,
makespan, and total completion time) and two kinds of workloads (e.g., Facebook
workloads and testbed workloads). In our MROrder, we take TP-ATI for the policy
module with Δt of 10 sec.

Figure 3 presents optimized performance results based on MROrder system, under
varied sizes of online workloads. Specifically, the results for testbed workloads are
shown in Figure 3 (a) and Figure 3 (b). The results for synthetic Facebook workloads
are shown in Figure 3 (c) and Figure 3 (d). There is about 11%  31% makespan im-
provement for testbed workloads in Figure 3 (a), whereas there is only 3% for Facebook
workloads on average in Figure 3 (c). It is because that the makespan is affected primar-
ily by the position of large-size jobs. The testbed workloads contain lots of large-size
jobs. In contrast, the Facebook workloads consist of a large number of small-size jobs.
On the other hand, for total completion time, Figure 3 (d) illustrates that the maximum
performance improvement can be up to 176% for synthetic Facebook workloads. In
contrast, there is a maximum of 24% performance improvement for total completion
time of testbed workloads. The reason is that the total completion time is primarily
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Fig. 3. The optimized performance results for MROrder system under different sizes of testbed
workloads and synthetic Facebook workloads
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dominated by the positions of small-size jobs. The total completion time might be poor
when there are lots of small-size jobs in a workload, e.g., Facebook workload.

5.5 Accuracy Evaluation for Hsim

We validate the accuracy of our Hsim by comparing the simulation results with the
experimental results of a MapReduce workload. We generate our MapReduce workload
by using three representative applications, i.e., wordcount application (computes the
occurrence frequency of each word in a document), sort application (sorts the data in
the input files in a dictionary order) and grep application (finds the matches of a regex
in the input files). We take Wikipedia article history dataset2 of 10GB, as application
input data. We ran experiments in Amazon’s Elastic Compute Cloud(EC2) [23]. Our
EC2 Hadoop cluster consists of 20 nodes each belonging to a ”Extra Large” VM. We
configure one node as master and namenode, and the other 19 nodes as slaves and
datanodes. Each ”Extra Large” instance has 4 virtual cores with 2 EC2 compute units
each [23]. We configure 3 map and 1 reduce slots per slave node.

We consider the makespan as well as total completion time for all possible job orders
of the MapReduce workload. Figure 4 (a) and Figure 4 (b) present the results for all 4! �
24 job orders of a batch of 4 jobs. We note that the simulated results of both makespan
and total completion time are very close (errors within 8%) to the experimental results,
which validates the accuracy of our Hsim.
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Fig. 4. Simulated results versus experimental results for a MapReduce workload

6 Conclusion and Future Work

This paper proposed a prototype system named MROrder to perform job ordering opti-
mization automatically for online MapReduce workloads. Several policy solutions were
presented and evaluated to dynamically determine when and how to do job ordering.
The MROrder system is designed to be flexible for different optimization metrics. It has
implemented several algorithms to support the job ordering optimization for makespan
and total completion time. It also provides an interface for users to add their job ordering
algorithms into MROrder for optimization of other performance metrics.

2 http://dumps.wikimedia.org/enwiki/

http://dumps.wikimedia.org/enwiki/


MROrder: Flexible Job Ordering Optimization for Online MapReduce Workloads 303

We are integrating MROrder into Hadoop framework. Moreover, our prototype for
MapReduce only supports FIFO scheduling. In future, we will consider other schedulers
such as Fair Scheduler [20], and heterogeneous environments such as [25].
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