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Abstract—This paper studies the speedup for multi-level par-
allel computing. Two models of parallel speedup are considered,
namely, fixed-size speedup and fixed-time speedup. Based on
these two models, we start with the speedup formulation that
takes into account uneven allocation and communication latency,
and gives an accurate estimation. Next, we propose a high-
level abstract case with providing a global view of possible
performance enhancement, namely E-Amdahl’s Law for fixed-size
speedup and E-Gustafson’s Law for fixed-time speedup. These two
laws demonstrate seemingly opposing views about the speedup
of multi-level parallel computing. Our study illustrates that they
are not contradictory but unified and complementary. The results
lead to a better understanding in the performance and scalability
of multi-level parallel computing. The experimental results show
that E-Amdahl’s Law can be applied as a prediction model as
well as a guide for the performance optimization in multi-level
parallel computing.

Keywords-E-Amdahl’s Law, E-Gustafson’s Law, Multi-Level
Parallel Computing

I. INTRODUCTION

High performance computing systems continue to grow

rapidly over the past few years. The rapid development of

multi/many-core technology in recent years has made it a

denser parallel architecture (i.e. more processing elements

per physical node) [1]. For instance, more than 80% of the

systems of the Top500 supercomputers [2] belong to the

multi/many-core processor family. That is, most systems have

featured a hierarchical hardware design: computing nodes with

multi/many-core CPUs are connected via network infrastruc-

ture. They have evolved to support parallelism of multiple

levels (e.g., at levels of physical machines, CPUs and cores),

in contrast with a single level of physical machines.

To fully exploit the potential of multi-level parallelism of

hardware architecture, it is natural to employ the multi-level

parallel computing paradigm which takes processes for coarse-

grained parallelism across the nodes and threads for fine-

grained parallelism within the node at the same time [3]. For

example, it is quite suitable for a cluster of SMP nodes that

MPI is needed for parallelism across nodes and OpenMP can

be used to exploit the parallelism within a node [4].

Speedup has been a classical metric to measuring the perfor-

mance and scalability of parallel processing [5]. It is generally

defined as sequential execution time over parallel execution

time. There are two well-known speedup models, Amdahl’s
Law [6] and Gustafson’s Law [7]. Amdahl’s Law models the

speedup of parallelized implementations under the assumption

that the problem size remains the same when parallelized.

In contrast, Gustafson’s Law models the speedup involving

arbitrarily large data sets can be efficiently parallelized.

Both speedups captured by Amdahl’s Law and Gustafson’s
Law are indeed based on the single-level parallelism, whereas

multi-level parallelism is not considered. In comparison to

single-level parallelism, multi-level parallelism is more com-

plicated, involving a nested parallelism with granularity from

coarse to fine. Neither Amdahl’s Law nor Gustafson’s Law
is able to differentiate the varying granularity of multi-level

parallel computing, from coarse-grained parallelism to fine-

grained parallelism. To evaluate the speedup for the multi-level

parallel computing, we need to combine speedups at different

levels of parallelism. That motivates us to study speedup for

multi-level parallel computing.

In this paper, we propose a general multi-level parallelism

model. Based on this model, the fixed-size speedup and fixed-

time speedup are studied. With both uneven workload alloca-

tion and communication latency considered, the formulations

of generalized fixed-sized speedup and fixed-time speedup are

derived, giving accurate performance estimations for different

applications. In order to facilitate model the speedup of multi-

level parallelism, we propose a fixed-size speedup named E-
Amdahl’s Law and a fixed-time speedup named E-Gustafson’s
Law, with assumptions that the communication overhead is

zero and the workload only consists of sequential and perfectly

parallel portion. Those models can be viewed as extensions of

Amdahl’s Law and Gustafson’s Law respectively to multi-level

parallel computing.

We further study the implications of E-Amdahl’s Law and

E-Gustafson’s Law on performance optimization of multi-

level parallel computing. E-Amdahl’s Law indicates that if

the degree of parallelism at the first level is not large, in-

creasing the degree of parallelism at the second level will not

significantly increase the overall performance. It is important

but easily ignored by users during the programming and

optimization of the multi-level computing. For example, in

multi-GPU programming [8], programmers often focus most

of their attentions on optimizing intra-GPU parallelism, since

they generally regard the intra-GPU parallelism as the key part

for performance optimization. Thus, the optimization work of

parallelism across different GPUs might be neglected. On the

other hand, E-Gustafson’s Law suggests that the speedup of

multi-level parallel computing is unbounded. While the two

laws look conflictive, they are unified and complementary with

each other, and reflect different viewpoints and different types

of applications.
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Since E-Gustafson’s Law and E-Amdahl’s Law are unified,

we take E-Amdahl’s Law as a case study to evaluate the

performance of NAS parallel benchmark with multi-zone ver-

sion [14]. The results show that the estimated speedup based

on E-Amdahl’s Law is much more accurate than that with

Amdahl’s Law for multi-level parallel computing. Moreover,

E-Amdahl’s Law always gives out the upper bound for the

speedup. Thus, E-Amdahl’s Law can be used as a prediction

model as well as a guide to users on performance optimization

of multi-level parallel computing.

This paper is organized as follows. Section II reviews the

related work. Section III presents the multi-level parallelism

model, followed by the description of the generalized multi-

level parallel speedups. The high-level abstract multi-level

parallel speedups are presented in Section V. Section VI

presents the performance evaluation. Section VII concludes

the paper and gives out the future work.

II. RELATED WORK

Speedup is a key performance metric for parallel computing.

Two basic definitions of speedup are available, namely, abso-
lute speedup and relative speedup [9]. The absolute speedup
refers to how much faster a problem can be solved with N
processors by comparing the best sequential algorithm with the

parallel algorithm under consideration. The relative speedup
is defined as the ratio of elapsed time of the parallel algorithm

on one processor to elapsed time of the parallel algorithm on

N processors. It focuses on the inherent parallelism of the

parallel algorithm under consideration. Moreover, there are

other kinds of speedup definitions such as real speedup and

asymptotic speedup. All types of speedup mentioned, together

with their advantages and disadvantages, are surveyed in [16].

However, all those definitions of speedup are based on the the

single-level parallelism.

Assuming that the problem size is fixed, Amdahl’s Law [6]

was proposed. It describes how much performance enhance-

ment can be achieved when increasing the number of pro-

cessing elements. It pessimistically indicates that the maxi-

mum speedup is bounded by the sequential fraction of the

workload and massively parallel processing may not obtain

high performance. Later, Gustafson’s Law [7] was proposed.

It is concerned with the fixed-time scenario and interested in

the scale of a problem that can be handled within a given

time. It optimistically suggests that the speedup is unbounded

and increases linearly with the number of processing elements

available. The above laws are simple and have great influences

on the performance optimizations of parallel computing. Sun

and Ni’s work [5], [11] has also described other speedup

models for memory-bounded scenarios. However, all the pre-

vious works of speedup model are implicitly based on the

single-level parallelism, which are unsuitable for the multi-

level parallelism. In contrast, our work in this paper extends

the fixed-size and fixed-time speedup models for the multi-

level parallelism, giving both the generalized formulations as

well as high-level abstract formulations.

III. MODEL AND MOTIVATION

In this section, we present the concept of multi-level parallel

computing and the motivation for new speedup models.

A. Multi-level Parallel Computing
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Fig. 1: Multi-level parallelism model.

Figure 1 illustrates a general parallelism model for the

multi-level parallel computing. It is a nested parallelism from

coarser granularity to finer granularity. The number of par-

allelism levels is m(m ≥ 1). We call each processing part

as a parallelism unit. Let PEi,j denote the parallelism unit

with the id of j at the ith level. The model assumes that a

parallel program can be separated into two parts: sequential
part and parallel part. For the parallel part, we parallelize

it in multiple levels of parallelism. The parallel part of the

coarse-grained parallelism can be further parallelized with

fine-grained parallelism implementations. For example, we can

write a two-level program with MPI/OpenMP programming

paradigm for SMP clusters. The first-level parallelism (L1) is a

process-level parallelism with MPI across the compute nodes.

The second-level parallelism (L2) is a thread-level parallelism

using OpenMP within a process. More levels of parallelism

can also be considered, e.g., instruction-level parallelism from

the compiler aspect.

B. A Motivating Example

Multi-level parallelization has been widely adopted in many

applications. To motivate the importance of extending the

traditional concept and formula of speedup for the multi-level

parallelism, we take as a case study benchmark LU-MZ [14],

implemented with MPI/OpenMP programming paradigm.

We compare the performance estimation using Amdahl’s
Law1 and with our proposed E-Amdahl’s Law, as illustrated

in Figure 2. The details on E-Amdahl’s Law is presented in

Section V. The performance of the benchmark is measured

on a SMP cluster consisting of 8 compute nodes, each with

two quad-core chips. Let p denote the number of processes

1Amdahl’s Law: speedup= 1

1−F+ F
N

, where F is the parallel fraction of

the workload, N is the number of processors used.

568531538
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Fig. 2: Experimental and estimated speedups for NAS multi-level
parallel computing benchmark LU-MZ, implemented with hybrid
MPI/OpenMP programming paradigm. p denotes the number of
processes, t denotes the number of threads per process. We estimate
the speedup with E-Amdahl’s Law by using Formula (17). We
estimate that α = 0.9892, β = 0.8161 with Algorithm 1 (in Section
VI(A)), where β is the parallel fraction of the thread-level parallelism.

and t denote the number of threads per process. With the

perspective of the number of processors (i.e. CPU cores) used

for the multi-level parallelism, we estimate the speedup based

on Amdahl’s Law by using the formula: 1
1−α+ α

p×t
, where α

is the parallel portion at the process-level parallelism. Note

that Amdahl’s Law cannot well estimate the speedup for the

benchmark with multi-level parallelism. Particularly, Amdahl’s
Law is unable to differentiate the coarse-grained and fine-

grained parallelism. For example, there is no difference in

speedup when p × t = 1 × 8, 2 × 4, 4 × 2, 8 × 1 using

Amdahl’s Law. Moreover, the estimated speedup of Amdahl’s
Law becomes more inaccurate when the number of threads

per process (t) increase. For instance, the estimation error at

point p× t = 8× 8 is much larger than that of p× t = 8× 4.

In contrast, E-Amdahl’s Law is able to well distinguish the

coarse-grained and fine-grained parallelism, and estimate the

speedup for the multi-level parallelism. Specifically, in this

example, the average ratio of estimation error2 for Amdahl’s
Law is 55%. In comparison, the average ratio of estimation
error for E-Amdahl’s Law is 11%. This significant estimation

error difference motivates us to model the speedup of multi-

level parallelism.

IV. GENERALIZED MULTI-LEVEL PARALLEL SPEEDUP

The parallelism within an application can be character-

ized in different ways [5]. Two major degradation factors

for effecient parallelism are considered in the paper, uneven
allocation (load unbalance) and communication latency. Both

degradations should be well considered in order to get an

accurate estimation. The uneven allocation is measured by

degree of parallelism [5].

2Average ratio of estimation error = 1
n

∑ |R−E|
R

, where R is the
experimental result, E is the estimated result, n is the number of testings.
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Fig. 3: Parallelism profile of a
hypothetical application.
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Fig. 4: Shape of the application.

Definition 1. The degree of parallelism is an integer which
indicates the number of processing elements in a parallelism
level that are busy during the execution of the program, given
an unbounded number of available processing elements (e.g.
computing nodes, CPUs).

Figure 3 shows a graph of the degree of parallelism in a

parallelism level over the execution time for a hypothetical

parallel application. We refer to this as the parallelism profile.

It can be rearranged to form the shape (See Figure 4) of

the application execution by gathering the time taken at each

degree of parallelism [10].

In Figure 1, we assume that parallelism units at the same

level are identical. Thus we only need to consider one multi-

level parallelism path (e.g.
∑

PEi,1, (1 ≤ i ≤ m)) for

the whole computation. Let W be the whole amount of

computation (work) for an application. Let p(i) be the number

of processing elements used to execute the parallelism units

at the ith level, which are spawned from the same PE. For

example, in Figure 1, we have p(1) = 1, p(2) = 2, p(3) = 4.

Let P represent the whole processing elements. Formally,

the speedup for a multi-level hardware architecture with P
processing elements and with the total amount of work W is

defined as

SPP (W ) =
T1(W )

TP (W )
, (1)

where Ti(W ) is the time needed to complete W amount

of work on i processing elements. Let Wi,j be the amount

of work for each node at the ith level with the degree of

parallelism j, and mi be the maximum degree of parallelism

at the ith level. Thus, W =
∑m1

j=1 W1,j . For each PEi,i′ (1 ≤
i < m), the sequential portion of work Wi,1 is computed and

the parallel portion of work Wi,j(1 < j < mi) is distributed

to its low-level nodes. Thus, it has:

mi∑
j=2

Wi,j

j
=

mi+1∑
j=1

Wi+1,j , (1 ≤ i < m). (2)

Let Δ be the computing capacity of each processing ele-

ment, the execution time on a single processing element for

the total work W will be

T1(W ) =
W

Δ
. (3)

The multi-level parallelism is a recursive master-slave exe-

cution process. When one node PEi,i′ (1 ≤ i < m) completes

569532539



its sequential execution, it will wait until its parallel portion

is solved by its low-level nodes. In contrast, PEm,i′ at the

bottom level will not dispatch its parallel portion, but instead

it completes its execution of sequential and parallel portions

by itself. By the definition of degree of parallelism, any two

subtasks (e.g. Wi,j and Wi,k, j �= k) at the ith level with dif-

ferent degrees of parallelism cannot be solved simultaneously.

The total execution time on a multi-level hardware platform

with an unbounded number of processing elements available

will be

T∞(W ) =
W1,1 +W2,1 + · · ·+Wm−1,1

Δ
+

mm∑
j=1

Wm,j

jΔ
. (4)

Thus, the speedup will be

SP∞(W ) =
T1(W )

T∞(W )

=
W
Δ

W1,1+W2,1+···+Wm−1,1

Δ +
∑mm

j=1
Wm,j

jΔ

=
W∑m−1

i=1 Wi,1 +
∑mm

j=1
Wm,j

j

=

∑m1

j=1 W1,j∑m−1
i=1 Wi,1 +

∑mm

j=1
Wm,j

j

. (5)

When the communication overhead is considered and the

number of processing elements for each node in each par-

allelism level is finite, the speedup will be smaller than the

speedup SP∞. For each node PEi,i′ at the ith level, if the

number of its parallel processing elements is p(i) and p(i) < j,

then some processing elements have to do
Wi,j

j � j
p(i)� work and

the remaining ones will do
Wi,j

j � j
p(i)� work. We assume that

at each level, the allocation of work strictly follows an order

of the ids of PE from small to large and distributes the work

with
Wi,j

j � j
p(i)� first and later the work with

Wi,j

j � j
p(i)�. Then

for the nodes in the path
∑

PEi,1, (1 ≤ i ≤ m), it holds:

mi∑
j=2

Wi,j

j
� j

p(i)
� =

mi+1∑
j=1

Wi+1,j , (1 ≤ i < m). (6)

The execution time on the multi-level hardware architecture,

with work W and limited number of processing elements, is

TP (W ) =
W1,1 +W2,1 + · · ·+Wm−1,1

Δ
+

mm∑
j=1

Wm,j

jΔ
� j

p(m)
�.

(7)

Hence, the speedup is

SPP (W ) =
T1(W )

TP (W )

=
W
Δ

W1,1+W2,1+···+Wm−1,1

Δ +
∑mm

j=1
Wm,j

jΔ � j
p(m)�

=
W∑m−1

i=1 Wi,1 +
∑mm

j=1
Wm,j

j � j
p(m)�

=

∑m1

j=1 W1,j∑m−1
i=1 Wi,1 +

∑mm

j=1
Wm,j

j � j
p(m)�

. (8)

Another important degradation factor of performance is

communication latency. In contrast to unbalance workload,

communication latency is communication network depen-

dent [11], e.g, routing schemes and switching techniques, etc.

Let QP (W ) be the communication overhead of the multi-

level parallel computing when P processing elements of the

multi-level hardware architecture are used to complete P
amount of work. QP (W ) depends on lots of factors including

the communication pattern, message sizes of the application,

system-dependent communication latency, etc. Assuming the

degree of parallelism is not affected by the communication

overhead, the general speedup is

SPP (W ) =

∑m1

j=1 W1,j∑m−1
i=1 Wi,1 +

∑mm

j=1
Wm,j

j � j
p(m)�+QP (W )

.

(9)
Note that all above derivations for speedup of the multi-

level parallel computing are indeed for the fixed problem

size, or the fixed workload. The speedup emphasizes the time

reduction of a given problem. This speedup formulation is

called fixed-size speedup [11]. Equation (9) is the general

speedup formula for fixed-size speedup. It is suitable for

many applications whose sizes cannot be scaled. In contrast,

another speedup model called fixed-time speedup [7], where

the workload of application is scaled up with the number

of processing elements available. One typical application for

this is weather broadcasting [12]. Given more computation

power, we may not want to get the result earlier. Instead,

we may want to increase the problem size by adding more

relevant factors into the weather model and obtain a more

accurate solution, which in turn gives a more precise forecast.

Moreover, it assumes that the workload scaling occurs only at

the parallel portion. Let W
′

be the total amount of scaled work.

Let W
′
i,j be the amount of scaled work for each node at the

ith parallelism level with the degree of parallelism j, and m
′
i

be the maximum degree of parallelism of the scaled workload

with p(i) processing elements available at the ith level. Then

it has: W
′
=

∑m
′
1

j=1 W
′
1,j and Wi,1 = W

′
i,1, (1 ≤ i ≤ m). For

the nodes in the path
∑

PEi,1, (1 ≤ i ≤ m), it holds:

m
′
i∑

j=2

W
′
i,j

j
� j

p(i)
� =

m
′
i+1∑

j=1

W
′
i+1,j , (1 ≤ i < m). (10)
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mi∑
j=2

Wi,j =

mi+1∑
j=1

Wi+1,j , (1 ≤ i < m). (11)

In the lowest level, i = m, in order to keep the same

turnaround time as the sequential version, its scaled workload

must hold

mm∑
j=1

Wm,j =

m
′
m∑

j=1

W
′
m,j

j
� j

p(m)
�, (i = m). (12)

Thus, based on Equations (10), (11), (12), the generalized

speedup formula for fixed-time speedup is

SPP (W
′
) =

T1(W
′
)

Tp(W
′)

=
W

′

Δ

W
′
1,1+W

′
2,1+···+W

′
m−1,1

Δ +
∑m′

m
j=1

W
′
m,j

jΔ � j
p(m)�+QP (W

′)

=
W

′

∑m−1
i=1 W

′
i,1 +

∑m′
m

j=1

W
′
m,j

j � j
p(m)�+QP (W

′)

=
W

′

∑m−1
i=1 Wi,1 +

∑mm

j=1 Wm,j +QP (W
′)

=
W

′

W +QP (W
′)
. (13)

V. HIGH-LEVEL ABSTRACT MULTI-LEVEL PARALLEL

SPEEDUP

The generalized speedup formulations have been proposed

for the fixed-size speedup model and the fixed-time speedup

model. The formulations consider the performance degradation

due to uneven allocation and communication latency. The

generalized speedups are application dependent and much

closer to the real speedup. However, it is very complicated

and difficult to understand and to have a global view of

possible performance gains since they contain lots of detailed

information for each application. In this section, we make

some assumptions to have a high-level speedup model, focus-

ing on the essential characteristic of the multi-level parallel

computing. We assume that the communication overhead cost

is zero (i.e. QP = 0), and that the workload at each parallelism

level only consists of two portions, a sequential portion and

a perfectly parallel portion. Thus, Wi,j = W
′
i,j = 0, for

1 ≤ i ≤ m, j �= 1 and j �= p(i). We call the high-level abstract

fixed-size speedup as E-Amdahl’s Law, as an extension of

Amdahl’s Law and the high-level abstract fixed-time speedup

as E-Gustafson’s Law, as an extension of Gustafson’s Law for

the multi-level parallel computing. In the following, let f(i)
be the portion of the workload at the ith level that can be

parallelized, and sp(i) denote the multi-level speedup at the

ith level.

A. E-Amdahl’s Law

The multi-level speedup can be viewed as the relative com-

puting capacity of a multi-level hardware platform with respect

to an uniprocessor. To figure out the high-level abstract fixed-

size speedup for the multi-level parallel computing model, a

bottom-up method is adopted. That is, we first compute the

lowest-level result and then deduce the nearest upper-level one

based on current level result. Such process continues until the

final result(first-level speedup) is obtained. Specifically, it is

as follows:

1). When i = m, it is the bottom level. Since there is no

more level below it, its speedup can be obtained directly in

terms of Amdahl’s Law, that is:

sp(i) =
1

1− f(m) + f(m)
p(m)

, (i = m). (14)

2).When 1 ≤ i < m, the speedup at the ith level directly

depends on the (i+ 1)th level. It is:

sp(i) =
1

1− f(i) + f(i)
p(i)sp(i+1)

, (1 ≤ i < m). (15)

In summary, we obtain E-Amdahl’s Law with the following

formula:

sp(i) =

⎧⎪⎪⎨
⎪⎪⎩

1

1−f(m)+
f(m)
p(m)

(i = m)

1

1−f(i)+
f(i)

p(i)sp(i+1)

(1 ≤ i < m).
(16)

Generally, we often consider the multi-level parallel com-

puting with two levels(m = 2). Let’s consider clusters of

SMP nodes. It often takes hybrid MPI/OpenMP programming

model [13], which uses MPI for parallelism across the nodes

and OpenMP for parallelism within a node. Suppose it is one

process per node and the number of processes(nodes) is p.

For each process(node), we assume the number of threads is

t. In the process level, the fraction of computation that can

concurrently execute is α(0 ≤ α ≤ 1). The parallelizable

portion of computation in the thread level is β(0 ≤ β ≤ 1).
In terms of Formula (16), we have the multi-level speedup as

follows:

ŝp(α, β, p, t) = sp(i = 1) =
1

1− α+
α(1−β+ β

t )

p

. (17)

Some properties can be attained for Formula (17):

a). ŝp(α, β, 1, 1) = 1: The sequential condition holds.

b). ŝp(α, β, p, 1) = 1
1−α+α

p
: It turns to be a traditionally

single-level Amdahl’s Law with parallelizable percent of

α when t = 1.

c). ŝp(α, β, 1, t) = 1
1−αβ+αβ

t

: It becomes a single-level

Amdahl’s Law with parallelizable portion of αβ when

p = 1.

Figure 5 presents fixed-size speedup curves under E-
Amdahl’s Law of Equation (17) when m = 2. The x-axis

denotes the number of processes (p). The y-axis gives the

speedup for the multi-level parallel computing. Curves within

571534541
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Fig. 5: Speedup under E-Amdahl’s Law. The graphs from left to
right in each row give the variation of speedup when increasing the
value of α. The graphs from top to down in each column present the
variation of speedup when we increase the number of threads (t).
The curves within each graph show speedups under different values
of β.

each graph show speedups under different values of β. The

graphs from left to right in each row give the variation of

speedup when increasing the value of α. The graphs from top

to down in each column present the variation of speedup when

we increase the number of threads (t).
Result 1: For fixed-size applications, the results of E-

Amadahl’s Law indicate that exploring parallelism at each

level of the multi-level parallel computing is crucial for perfor-

mance improvement. However, if the degree of parallelism (α)
at the first (process) level is not large, increasing the degree of

parallelism at the second (thread) level cannot have a signifi-

cant contribution to the whole performance improvement. For

example, in Figure 5(a), the curves are very close to each other

when increasing β from 0.5 to 0.999 in the case of α = 0.9. In

contrast, it will have a significant performance improvement

when increasing the parallelism β at the second level if the

parallelism (α) at the first level is large enough. Considering

α = 0.999, p = 100, t = 8 in Figure 5(c) for instance, the

performance is significantly improved when the parallelism β
at the second level increases from 0.5 to 0.999.

Result 2: The maximum fixed-size speedup is bounded

by the degree of parallelism at the first level. For example,

if α = 0.9, its maximum speedup is 10. As shown in

Figure 5(a),5(d),5(g), no matter how to increase the number

of processes (p), the number of threads (t), and the degree

of parallelism β at the second level, the speedup infinitely

approximates to 10.

B. E-Gustafson’s Law

The fixed-time speedup can be regarded as the ratio of

scaled workload in parallel hardware to the workload of

uniprocessor. A bottom-up method is adopted to get the high-

level abstract fixed-time speedup for the multi-level parallel

computing model,. We first figure out the fixed-time speedup

at the bottom level and then deduce the nearest upper-level

one based on current level result. The process continues until

the final result (first-level speedup) is obtained. That is,

1). When i = m, it is the bottom level. Its speedup can be

obtained directly in terms of Gustafson’s Law3. that is:

sp(i) = 1− f(m) + f(m)p(m), (i = m). (18)

2).When 1 ≤ i < m, the speedup(workload) at the ith level

directly depends on the (i + 1)th level. Note that Equation

(18) can be viewed as the normalized scaled workload when

the workload of uniprocessor is 1. Then it holds that

sp(i) = 1− f(i) + f(i)p(i)sp(i+ 1), (1 ≤ i < m). (19)

Therefore, we obtain E-Gustafson’s Law with the following

formula:

sp(i) =

⎧⎨
⎩

1− f(m) + f(m)p(m) (i = m)

1− f(i) + f(i)p(i)sp(i+ 1) (1 ≤ i < m).
(20)

In general, it is common to have two levels of parallelism for

the multi-level parallel computing(m = 2). Given clusters of

SMP nodes, for example, it often takes hybrid MPI/OpenMP

programming model [13]. We assume the number of processes

is p and the number of threads per process is t. The portion of

computation at the first(process) level that can be parallelized

is α(0 ≤ α ≤ 1) and that at the second(thread) level is β(0 ≤
β ≤ 1). According to Formula (20), the multi-level fixed-time

speedup is:

ŝp(α, β, p, t) = sp(i = 1) = 1− α+ (1− β + βt)αp. (21)

There are some properties for Formula (21) as follows:

a). ŝp(α, β, 1, 1) = 1: The sequential condition holds.

b). ŝp(α, β, p, 1) = 1 − α + αp: It turns out to be a tradi-

tionally single-level Gustafson’s Law with parallelizable

percent of α when t = 1.

c). ŝp(α, β, 1, t) = 1− αβ + αβt: It becomes a single-level

Gustafson’s Law with parallelizable portion of αβ when

p = 1.

Equation (21) indicates that there is a positive linear re-

lationship between the speedup and performance factor θ ∈
{α, β, p, t}. Figure 6 gives fixed-time speedup curves under E-
Gustafson’s Law of Equation (21). From the fixed-time point

of view, E-Gustafson’s Law implies that,

3Gustafson’s Law: speedup = 1 − F + F × N , where F is the parallel
fraction of the workload, N is the number of processors used.
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Fig. 6: Speedup under E-Gustafson’s Law. The graphs from left to
right in each row give the variation of speedup when increasing the
value of α. The graphs from top to down in each column present the
variation of speedup when we increase the number of threads (t).
The curves within each graph show speedups under different values
of β.

Result 3: For applications with scaled workload, the max-

imum speedup of the multi-level parallel computing is un-

bounded. For instance, in Figure 6(a), the speedup is scaled

up linearly with p.

Note that E-Amdahl’s Law(Result 2) and E-Gustafson’s
Law(Result 3) give totally opposite viewpoints towards the

maximum speedup of the multi-level parallel computing.

However, E-Amdahl’s Law and E-Gustafson’s Law are not

conflictive but unified. They just consider the speedup from

different perspectives. Indeed, E-Gustafson’s Law is implicitly

based on the assumption that the problem size is scaled and the

parallel portion is unfixed, whereas E-Amdahl’s Law supposes

that the problem size is fixed and the parallel portion is

unchanged. The equivalent proof is given in APPENDIX A.

VI. EXPERIMENTAL EVALUATION

In the previous section, we have demonstrated the equiva-

lence of E-Amdahl’s Law and E-Gustafson’s Law. Therefore,

we take E-Amdahl’s Law as a case study to evaluate the

speedup model. In particular, we choose the NAS Parallel

Benchmark (NPB) Multi-Zone (MZ) [14], [15] codes BT-MZ,

SP-MZ and LU-MZ, with hybrid MPI+OpenMP programming

model. They are executed on a Linux cluster consisting of

eight compute nodes, each with two 3.0 GHz Intel Xeon quad-

core chips and 16 GB of memory. We do experiments by

setting one MPI process per compute node and increasing the

number of OpenMP threads for each process from 1 up to 8.

In the following, we first present the argument estimation

for E-Amdahl’s Law, and then present the experimental results.

A. Argument Estimation

To evaluate the speedup based on E-Amdahl’s Law of For-

mula (17), it needs to estimate the exact values of arguments

α, β for a given application first. It is a challenging issue and

no optimal solution is readily available, since it depends on

lots of factors such as program implementation, input data

and arguments, hardware platform, etc. In this paper, we give

a possible argument estimation method in our experiment.

This method tries to estimate the values of α, β through

the multi-level program execution. It figures out the esti-

mated value of α, β by solving Equation (17) with sampling

experimental results. This method can well contain various

overhead costs such as process creation cost, communication

and synchronization cost, etc. Its estimated result is much close

to the actual value. The detailed estimation process is given

by Algorithm 1.

Algorithm 1 Argument Estimation for α, β.

1: Execute the program k times in the multi-level par-

allel execution mode with the chosen parameters

(p1, t1), (p2, t2), ..., (pk, tk) respectively. Then it gets

(p1, t1, sp1), (p2, t2, sp2), ..., (pk, tk, spk).
2: Choose all possible combinations of two arrays

(pi, ti, spi) and (pj , tj , spj) to figure out the value

(αs, βs) based on Equation (17), where s denotes the

sth combination and 1 ≤ i, j ≤ k & i �= j.

3: Check all possible pairs of value (αs, βs) to guarantee

that the pair of estimated values is valid(i.e. 0 ≤ αs ≤
1, 0 ≤ βs ≤ 1). Otherwise, discards it.

4: Collect all valid pairs of (αi, βi), (i = 1, 2, ..., k
′
), where

k
′

represents the number of valid pairs. Remove the noise

pairs by clustering with the guard condition: |αi−αj | < ε
& |βi − βj | < ε.

5: The exact value of α, β can thereby be estimated with

the formula: ⎧⎨
⎩

α̂ = 1
̂k

∑̂k
i=1 αi

β̂ = 1
̂k

∑̂k
i=1 βi,

where k̂ is the number of clustered pairs.

Notable, the correct choice of pi and ti is very crucial for

estimation. Particularly, we should avoid those pairs which

may cause workload unbalance during the parallel execution.

For example, for the benchmark SP-MZ, the suitable value of

pi and ti should be 1, 2, 4, 8, 16, ..., since the workload is well

balanced in these cases. In contrast, it is unbalanced when pi
or ti equals to 3, 7.

B. Results Evaluation

The experimental and estimated speedup results are shown

in Figure 7. To estimate the values of α, β with Algorithm 1,

the values of pi and ti are set to be 1, 2, 4 respectively, and ε =
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0.01. The graphs in the first column present the experimental

speedups. The estimated speedup results with E-Amdahl’s Law
are given in the second column. The comparison graphs of the

corresponding experimental and estimated results are shown in

the third column respectively.
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(e) Estimated result of SP-MZ.
α = 0.9790, β = 0.7263
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(h) Estimated result of LU-MZ.
α = 0.9892, β = 0.8161
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Fig. 7: Experimental and estimated speedup results for NAS Parallel
Benchmarks of Multi-Zone Versions. p is the number of MPI pro-
cesses spawned. t is the number of OpenMP threads for each process.
The estimated speedup is based on the proposed E-Amdahl’s Law.

Figures 7(a) ∼ 7(c) present speedup results for the appli-

cation benchmark BT-MZ with class W4. It is a block tri-

diagonal simulated CFD algorithm. The number of zones for

class W is 4×4. However, the size of zones varies significantly,

with a ratio of about 20 between the largest and smallest zone.

This poses a problem for workload balancing. Its estimated

coarse-grained parallelism portion is α = 0.9771 and fine-

grained parallelism portion is β = 0.5822. With E-Amdahl’s
Law, the upper bound speedup result can be estimated. The

comparison result in Figure 7(c) indicates that the workload

unbalance problem is becoming increasingly serious as the

number of processes increases. In this scenario, E-Amdahl’s
Law can be used to evaluate the quality of the algorithm.

Meanwhile, it can be a guidance to users on how much

4Class W refers to a type of problem size in NAS benchmark. It classifies
the types of problem size into S, W, A, B, C, etc

performance improvement space is available for performance

optimization.

SP-MZ is a scalar penta-diagonal simulated CFD algorithm.

LU-MZ is a lower-upper symmetric gauss-seidel simulated

CFD algorithm. In contrast to BT-MZ, the partitioned zones

are identical in size for the two algorithms. The workload

should be more balanced than BT-MZ. The number of zones

for class A is 4 × 4. The corresponding speedup results

for each algorithm are shown in Figure 7(d) ∼ 7(f), 7(g)

∼ 7(i) respectively. The estimated parallelism portions are

α = 0.9790, β = 0.7263 for SP-MZ, and α = 0.9892, β =
0.8161 for LU-MZ. The workloads are well balanced when

the number of zones (e.g. 16) is divisible by the number of

processes. The comparison results in Figure 7(f) and 7(i) show

that the experimental results are very close to estimated results

when p = 1, 2, 4, 8, indicating that the performance is fine and

E-Amdahl’s Law can be applied as a prediction model in these

cases. However, the workload is not balanced (i.e. the number

of zones cannot be evenly distributed among processes) when

the number of processes p equals to 3, 5, 6, 7. It leads to a

negatively big impact on the overall parallel performance (as

illustrated in Figure 7(d),7(g)). With E-Amdahl’s Law, users

can have an intuitive understanding of how much performance

influence it has through comparisons of experimental and

estimated results as shown in Figure 7(f) and 7(i).

C. Comparison on Estimated Speedup

Figure 8 shows the performance results of NPB-MZ bench-

marks under different process-thread combinations with a

fixed number of 8 CPUs. The experimental speedups as well

as the estimated speedups based on Amdahl’s Law and our

proposed E-Amdahl’s Law are illustrated. We estimate speedup

based on Amdahl’s Law with the formula: 1
1−α+ α

p×t
. The

estimated speedup based on E-Amdahl’s Law is figured out by

using Formula (17). It can be noted that for Amdahl’s Law,

there is no any difference in estimated speedups for diverse

combinations of p × t under a fixed number of processors.

The reason is that, Amdahl’s Law is based on the single-level

parallelism. There is no concept of combined coarse-grained

and fine-grained parallelism in the single-level parallelism. For

Amdahl’s Law, it treats all sizes of granularity of parallelism to

be the same. However, the multi-level parallelism is a nested

parallelism with the granularity of parallelism from coarse to

fine. For the multi-level parallelism, Amdahl’s Law is unable

to differentiate its coarse-grained and fine-grained parallelism.

The speedup results based on Amdahl’s Law become more

inaccurate when there are more number of processors used for

fine-grained parallelism. For example, for benchmark SP-MZ,

shown in Figure 8(b), when p×t = 8×1, 4×2, 2×4, 1×8, the

ratio of estimation errors5 are 0.6%, 31.0%, 86.7%, 207.5%
respectively. In contrast, E-Amdahl’s Law can well identify the

coarse-grained and fine-grained parallelism and accurately es-

timate the speedup for the multi-level parallelism. Note that the

5Ratio of estimation error =
|R−E|

R
, where R is the experimental result,

E is the estimated result.
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Fig. 8: Experimental and estimated speedups of NPB-MZ for different combinations of p× t under a given total number of 8 processors.
The speedup based on Amdahl’s Law is estimated with the formula 1

1−α+ α
p×t

. The speedup based on E-Amdahl’s Law is estimated by using

Formula (17).

speedup curves of E-Amdahl’s Law in Figure 8 are very close

to the experimental results. For the same example of bench-

mark SP-MZ, under speedup estimation of E-Amdahl’s Law,

the ratio of estimation errors are 0.6%, 6.2%, 9.8%, 16.7%
respectively for p× t = 8× 1, 4× 2, 2× 4, 1× 8. Moreover,

for these sampling cases, the average ratio of estimation
errors with E-Amdahl’s Law for benchmarks BT-MZ, SP-

MZ and LU-MZ are 25.5%, 8.3%, 13.1% respectively. In

contrast, the average ratio of estimation errors by using

Amdahl’s Law for benchmarks BT-MZ, SP-MZ and LU-MZ

are 134.5%, 81.5%, 62.5% respectively. Particularly, we can

note that the estimated speedup curves of BT-MZ are a bit

far from the experimental results in comparison to other two

benchmarks based on E-Amdahl’s Law. This is because the

data size of zones for BT-MZ varies significantly, causing the

workload unbalanced among processes and in turn reducing

the overall performance. In contrast, for benchmarks SP-MZ

and LU-MZ, the data size of zones are the same, making

workload well balanced among processes and thereby with

a good performance in parallelism.

VII. CONCLUSION AND FUTURE WORK

This paper studies speedup for multi-level parallel comput-

ing. Both fixed-sized speedup model and fixed-time speedup

model are considered. Moreover, we have derived E-Amdahl’s
Law for the high-level abstract fixed-size speedup, and E-
Gustafson’s Law for the high-level abstract fixed-time speedup

for multi-level parallel computing. The experiment results

illustrate that E-Amdahl’s Law is much more accurate in

performance estimation than Amdahl’s Law for multi-level par-

allelism in NPB benchmarks. Developers can use E-Amdahl’s
Law in performance prediction and performance optimization

for multi-level parallelism.

In this paper, our multi-level speedup models is targeted at

the homogeneous multi-level parallelism, which requires that

all the processing elements of hardware architectures are iden-

tical. It is our future work to extend the speedup model to the

heterogeneous multi-level parallelism by taking into account

the different computing capacities of heterogeneous process-

ing elements. For example, GPGPU has attracted significant

amount of research in HPC systems [18], [19], [20]. The

multi-GPUs parallelism with the heterogeneous paradigm [21]

belongs to a heterogeneous multi-level parallelism. Consider

a GPU cluster [17] of computing nodes each equipped with

multiple GPUs. User need to consider different computing

capacities of CPU cores and GPUs in such heterogeneous

processing environments.
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APPENDIX A

EQUIVALENCE PROOF OF E-AMDAHL’S LAW AND

E-GUSTAFSON’S LAW

The following is the proof of the equivalence between

Equation (16) and (20) by the induction method with the

reverse order.

Proof: (i). Base Case: When i = m, in terms of Equation

(20), the scaled portion of parallelism is

f
′
(m) =

f(m)p(m)

1− f(m) + f(m)p(m)
. (22)

According to E-Amdahl’s Law of Equation (16), it holds:

sp(i = m) =
1

1− f ′(m) + f ′ (m)
p(m)

=
1

1− f(m)p(m)
1−f(m)+f(m)p(m) +

f(m)p(m)
1−f(m)+f(m)p(m)

p(m)

= 1− f(m) + f(m)p(m). (23)

Note that Equation (23) is identical to Equation (20).

Thereby, Equation (16) and (20) are equivalent when i = m.

(ii). Induction Step: Suppose it is true that Equation (16)

and (20) are equivalent for i = k, (1 < k ≤ m). We need to

prove the proposition is true when i = k − 1:

In terms of Equation (20), the scaled portion of parallelism

at i = k − 1 level is

f
′
(i = k − 1) =

f(k − 1)p(k − 1)sp(k)

1− f(k − 1) + f(k − 1)p(k − 1)sp(k)
.

(24)
Based on E-Amdahl’s Law of Equation (16), there is,

sp(i = k − 1) =
1

1− f ′(k − 1) + f ′ (k−1)
p(k−1)sp(k)

=
1

1− f(k−1)p(k−1)sp(k)
1−f(k−1)+f(k−1)p(k−1)sp(k) +

f(k−1)p(k−1)sp(k)
1−f(k−1)+f(k−1)p(k−1)sp(k)

p(k−1)sp(k)

= 1− f(k − 1) + f(k − 1)p(k − 1)sp(k). (25)

Note that when i = k − 1, Equation (20) is equivalent to

Equation (25). Hence, the proposition is true when i = k− 1.

(iii). Conclusion Step: according to (i) and (ii), it is true

that Equation (16) and (20) are equivalent for 1 ≤ i ≤ m.
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