
Towards Economic Fairness for Big Data
Processing in Pay-as-you-go Cloud Computing

Shanjiang Tang, Bu-Sung Lee, Bingsheng He
School of Computer Engineering

Nanyang Technological University, Singapore
{stang5, bslee, bshe}@ntu.edu.sg

Abstract—Recent trends indicate that the pay-as-you-go
Infrastructure-as-a-Service (IaaS) cloud computing has become
a popular platform for big data processing applications, due to
its merits of accessibility, elasticity and flexibility. However, the
resource demands of processing workloads are often varying over
time for individual users, implying that it is hard for a user
to keep the high resource utilization for cost efficiency all the
time. Resource sharing is a classic and effective approach to
improve the resource utilization via consolidating multiple users’
workloads. However, we show that, current existing fair policies
such as max-min fairness, widely adopted and implemented in
many popular big data processing systems including YARN,
Spark, Mesos, and Dryad, are not suitable for pay-as-you-go
cloud computing. We show that it is because of their memoryless
allocation feature which can arise a series of problems in the pay-
as-you-go cloud environment, namely, cost-inefficient workload
submission, untruthfulness and resource-as-you-pay unfairness.
This paper presents these problems and outlines our plans to
address them for pay-as-you-go cloud computing. We introduce
our preliminary work done on the single-resource fairness and
our ongoing work for multi-resource fairness, and outline our
future work.

Keywords-Long-Term Resource Fairness, Multi-Resource Fair-
ness, Pay-as-you-go, Cloud Computing, YARN, LTYARN, Spark.

I. INTRODUCTION

We are in the era of ’big data’, which necessitates the need
of efficient big data processing platforms [11]. Infrastructure-
as-a-Service (IaaS) cloud computing has emerged as a promis-
ing platform for big data processing, due to the abundant
elastic computing resources and flexible billing models [34].
It has been widely supported by many cloud providers such
as Amazon EC2 and Rackspace. At any time, there are
tens to thousands of users running their data-intensive work-
loads (e.g., MapReduce [8], [26], [27], [28], Spark [36], log
processing [15], computational Biological processing [29],
[30] and graph processing systems [7], [37]) on IaaS cloud
concurrently.
Achieving the high resource utilization can improve the

cost efficiency and in turn lead to the cost saving for users.
However, in practice, the resource demand of a user is often
varying over time, indicating that it is difficult for individ-
ual users to keep the high resource utilization all the time.
Resource sharing has shown to be a classic and effective
approach to maximize the resource utilization [12]. With
resource sharing, a higher utilization can be achieved than

non-sharing by allowing overloaded users to use the unneeded
resources of underloaded users. To make users share their
resources willingly, fairness is an important issue in resource
allocation (e.g., sharing incentives).
Max-min fairness [22] is one of the most popular fair

allocation policies. It achieves the fairness by maximizing the
minimum allocated resources for users. It has been widely
adopted by many big data processing systems including
Hadoop [2], YARN [3], Spark [36] and Mesos [16]. Typically,
the policy implemented in these systems is memoryless [24],
i.e., it considers the fair allocation instantly without taking into
account the historical allocation.

A. Motivation
Because of the memoryless characteristic in existing fair

allocation policies, we argue that they are not suitable for pay-
as-you-go cloud computing by identifying the following severe
problems.
Resource-as-you-pay Unfairness Problem. In pay-as-you-

go environment, we should ensure that the total amount of
resources obtained by each user is proportional to her payment.
However, the memoryless max-min fairness cannot guarantee
this due to the varying resource demands of individual users
over time. Consider a computing system consisting of 100
resources (e.g., CPUs) shared by two users U1 and U2 equally.
At time t0, the demand for user U1 is 20, smaller than its share
of 50. Then U1’s unused resources of 30 will be given to U2

(i.e., U2 lends to U2) in terms of the work conserving property,
supposing that U2’s demand is 80. Next at time t1, assume that
U1’s resource demand is 70, larger than its share. However,
due to memoryless allocation, U1 can only get her share of
50 resources (i.e., U1 cannot get the lent resources of 30 back
from U2 at t0) if U2’s demand (e.g., 100) is larger than U2’s
share. If this scenario occurs frequently, it is unfair for U1 to
get the total amount of resources that she is entitled to from
a long-term view.
Untruthfulness Problem. In the real world, a good policy

should ensure that no cheating users can get benefits by falsely
reporting their demands to the system. However, we show
that the memoryless max-min fairness does not have such a
guarantee. Consider three users U1, U2, U3 share a computing
system of 120 resources equally. Assume the true demands for
U1, U2, and U3 are 40, 30, and 60, respectively. Suppose that
U2 and U3 are honest users whereas U1 is not. The allocation

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

978-1-4799-4093-6/14 $31.00 © 2014 IEEE

DOI 10.1109/CloudCom.2014.120

638

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

978-1-4799-4093-6/14 $31.00 © 2014 IEEE

DOI 10.1109/CloudCom.2014.120

638

results are shown in Figure 1. When U1 is honest, the resulting
allocation is illustrated in Figure 1(a). All 10 unused resources
of U2 will be given to the overloaded user U3. In contrast, if
U1 is cheating the system by falsely report her demands (e.g.,
100), then the final allocation will be Figure 1(b), where U1

and U3 equally get the same amount of 5 resources from U2

in competition. Thus, U1 get benefits by cheating the system,
violating the truthfulness requirement.

���

���

���

����

����

����

��

��
��
��������
��

�������	
��
��
�	���	
	������

���

���

���

����

�����

�����

��
���

�

�

���������	�
��
	�� ���������	��

������

Fig. 1: A counter-example to illustrate that the memoryless max-min
fair policy violates the truthfulness requirement.

Cost-inefficient Workload Submission Problem. Cloud re-
sources are not free. It is important for users to submit cost-
efficient workload1 for cost efficiency. Therefore, we should
have a mechanism to discourage users not to submit cost-
inefficient workload. However, we observe that the memory-
less policy does not have such a mechanism. Let’s consider
the example of Figure 1 in the paragraph of Untruthfulness
Problem. If U2 is a selfish user, it is possible that U2 might
possess its unneeded resources without doing anything or
submitting some dirty jobs (e.g., running some duplication
jobs). Because there is no benefit for U2 to release the
resources to others in memoryless allocation. Thus, it is prone
to have the cost-inefficient workload submission problem for
the memoryless fair policy.

B. Goals and Objectives

To address the above-mentioned problems, the goal of the
project is to propose new fair policies suitable for pay-as-
you-go cloud computing. To achieve that goal, we have the
following detailed objectives:

� Study existing fair allocation policies, including its clas-
sification, algorithms, and applications.

� Have a deep understanding of current pay-as-you-go
cloud computing, including its pricing plans, provided
services, and resource specification. All of these factors
can directly impact the design of cloud-oriented fair
polices.

� Have a comprehensive analysis and classification of spe-
cific scenarios that need to be considered with regard to
cloud computing and big data processing systems. It can
enable us to know numerous specific topic issues and
have a detailed project plan for them.

1Cost-efficient workload: refers to the non-trivial workload that users truly want to
submit and run on the cloud.

� Propose new fair policies for pay-as-you-go cloud com-
puting under different scenarios.

� Implement the proposed new fair policies in current big
data processing systems.

� Analyze and assess the proposed fair policies theoreti-
cally and experimentally.

The organization of the paper is as follows. Section II
reviews the related work. Section III presents several desirable
properties for pay-as-you-go cloud computing. We formulate
our research problems in Section IV. We introduce our prelim-
inary work and results in Section V, and describe our ongoing
work in Section VI. Finally, Section VII concludes the paper
and gives out our future work.

II. RELATED WORK

Fairness is an essential issue in resource allocation for any
shared computing system. In traditional High Performance
Computing (HPC) and grid computing, max-min fairness [22]
is a widely used allocation policy. The classical algorithms
such as round-robin, weighted fair queueing [9] and propor-
tional resource sharing [32], are all specific instances of max-
min fairness [12]. They have been used for the allocation
of single resources (e.g., CPU [6], memory [1], network
I/O [9] and disk storage [4]). Moreover, the max-min fairness
policy has been implemented in many current popular big data
processing and management systems, including Hadoop [2],
YARN [3], Spark [36], Mesos [16], Choosy [13], Quincy [19].
Hadoop [2] abstracts resources into map/reduce slots and
allocates them fairly between pools and jobs. In contrast,
YARN [3] organizes cluster resources into containers (i.e.,
a set of various resources such as memory, vcores), and
ensures the resource fairness across queues. Spark [36] groups
jobs into pools and guarantees resource fairness across pools.
Mesos [16] allows multiple diverse computing frameworks
such as Yarn, Spark to share a single psychical computing sys-
tem. Choosy [13] considers the constraint max-min fairness,
of which the placement constraints are taken into account.
Quincy [19], a fair scheduler for Dryad [20], achieves the fair
scheduling of multiple jobs by formulating it as a min-cost
flow problem.
Besides the single-resource allocation, there are other stud-

ies focused on the multi-resource allocation (i.e., resources of
multiple types). Dominant Resource Fairness (DRF) [12] is a
most popular fair policy. It is a generalization of max-min fair-
ness for multi-resource allocation by considering the fairness
of the dominant resource between users. The attractiveness of
DRF lies in its good properties including sharing incentive,
pareto-efficiency, envy-freeness. It has been supported by
current systems such as YARN [3], Mesos [16] for multi-
resource allocation. Moreover, there has been lots of extension
and generalization work for DRF, including [5], [21], [34],
[23]. Liu et al. [17] developed multi-resource fairness for
tenants in IaaS clouds.
Despite the various effort, all of these existing policies

and their implementation on existing systems are indeed
memoryless. We have shown in Section I-A that they are

639639

prone to suffering from three serious problems (i.e., cost-
inefficient workload submission, untruthfulness and resource-
as-you-pay unfairness). Thus, they are not suitable for pay-as-
you-go cloud computing. Therefore, there is a need for our
research project to propose new policies suitable for pay-as-
you-go cloud computing and implement them in existing big
data processing systems.

III. DESIRABLE PROPERTIES FOR CLOUD COMPUTING
We identify the following good properties that are desirable

for pay-as-you-go cloud computing. None of existing fairness
policies can satisfy all those properties.
Sharing Incentive: Each user in the shared system should

perform at least as good as that of exclusively using her own
partition of resources. Otherwise, users would prefer to use
her own partition of resources without sharing.
Truthfulness: Users should not be able to obtain benefits by

cheating the system. This property is consistent with sharing
incentive.
Resource-as-you-pay Fairness: In pay-as-you go environ-

ment, we should ensure that the total amount of resources
received by each user is proportional to her payment.
Cost-efficient Workload Incentive: Cloud resources are not

free. We should have a mechanism to discourage users to sub-
mit cost-inefficient workloads, especially in the case when they
have some unused resources. Otherwise, selfish users would
submit dirty workloads to possess idle resources, decreasing
the cost efficiency and in turn wasting the money.
Pareto Efficiency: This property refers that it is impossible

for a user to get more resources without reducing the resource
of at least one user. Any allocation policy satisfying this prop-
erty can guarantee that the resource utilization is maximized.

IV. RESEARCH PROBLEM FORMULATION
We investigate how the good properties given in Section III

can be used to guide the development of fair policies for
pay-as-you-go cloud computing. Moreover, we need to have
a summary of various scenarios in exploring fair policies
in a more systematic manner. Two major dimensions should
be considered, namely, IaaS cloud computing and big data
processing system.

A. IaaS Cloud Computing
To meet different users’ needs, current cloud providers

generally offer several options of pricing plans and instance
types. Consider the Amazon EC2 for example as follows:
Different Pricing Plans. There are three different pricing

plans provided by Amazon EC2, namely, on-demand price,
spot price, and reservation price. For on-demand price plan,
users pay for the compute resources (e.g., instances) by the
hour (i.e., less than an hour will be automatically rounded
to one hour). For reservation price plan, users need to pay
a one-time fee for a certain period of time and in turn get
a significant discount on the hourly charge. So far, Amazon
EC2 provides two types of reservation plans, namely, 1-year
term and 3-year term, to satisfy different users’ preferences. In

contrast, the spot price plan allows users to bid on the unused
resources and possess those resources for as long as their bid
exceeds the current spot price.
Heterogeneous Instance Types. To satisfy the needs for

different workloads, there are numerous types of instances
(e.g., virtual machines) offered by Amazon EC2. Broadly, it
classifies the instances into the following categories, namely,
general purpose, compute-optimized, memory-optimized, and
storage-optimized. For each category, it further refines them
into multiple specific instances. For example, the general
purpose instances includes t2.micro, t2.small, t2.medium, and
m3.large. Different instances are with distinct resource con-
figurations and different prices. Moreover, even for the same
instance, its price is different under different pricing plans.

B. Big Data Processing System

�	
�
�

�
���� �����

������
���
������ �
���� ����� �����
� ������

����	�����
�����	�����	��

������
����	

 ���

����	��

Fig. 2: The stack overview of big data processing systems for cloud
computing.

To support big data processing, in recent years, more and
more distributed data processing systems are being developed
and open source by industrial companies. Figure 2 shows an
emerging software stack for distributed data processing sys-
tems. Particularly, YARN (Hadoop MRv2) [3] and Spark [36]
are two of the most popular ones. YARN, as a new generation
of Hadoop, has become the de facto distributed resource
management and data operating system [10]. Besides the
MapReduce applications, it now can support a variety of other
applications and systems, such as Giraph, Storm, HIVE. In
contrast, Spark [36] is a lightning-fast in-memory data pro-
cessing system. It can support a variety of data processing in-
cluding streaming processing, batch processing and interactive
processing. Both YARN and Spark support the fair resource
allocation and task scheduling for multiple users. Moreover, to
achieve the resource sharing for multiple big data processing
systems/frameworks in a single physical cluster, a resource
management system called Mesos [16] is proposed for fair
resource allocation between multiple computing frameworks.
As illustrated in Figure 2, with Mesos, we can make both
Spark and YARN co-run in a single cluster.

C. Summary of Research Problems
The two dimensions (IaaS Cloud Computing and Big Data

Processing System) have significant impact on the design
of fair policy. For each of these aspects, we summarize the
challenging issues and their co-relationship in Figure 3.

640640

������������
���������� �!
��

"���#����$���
		����
�!	�
�� �!
��

%����&�
	����
��
'����(����������

�����
&�
	����
��
'����(����������

�����
�
��	��
$�������$����

�
�
���
�
��	��
$�������$���	�

�����
�
��	���	����
	� �
�
���
�
��	���	����
	�

� % ��� 	�
	� ��
�
	 % ��� �
	�
	

�$)�� �$*��

��)�� ��*��

��)�� ��*��

Fig. 3: The overview of undertaken research issues.

IaaS Cloud Computing Layer. Section IV-A tells us that
there can be same/different pricing plan(s) for same/different
instance(s) for users. We define Homogeneous Instances (I0)
when they are of the same type. Otherwise they belong to
Heterogeneous Instances (I1). If all instances provided by
users are from the same pricing plan, we say Homogeneous
Pricing Plan (P0). Otherwise, they are Heterogeneous Pricing
Plans (P1). Therefore, as illustrated in Figure 3, there are four
combinations between the pricing plans and instances.
Big Data Processing System Layer. We classify the fair

resource allocations provided by data processing systems
into two types, i.e., single-resource fair allocation (S0) and
multi-resource fair allocation (S1). The single-resource fair
allocation considers the fair allocation on the single resource
(e.g., CPU) of the same type. In contrast, the multi-resource
fair allocation refers to the fair resource allocation of multiple
resource types (e.g., CPU, memory).
According to the classification at each layer, there are

at least 23 combinations of scenarios, as arrows shown in
Figure 3. In the following, we describe some detailed research
problems based on their importance and simplicity (The abbre-
viation labels in the upper-left corner of each rectangle denote
the corresponding categorizes in Figure 3).
Research Problem 1: P0+I0+S0. This problem focuses on

the fairness of single-resource allocation. It can be used at the
granularity of instances or specific computing elements (e.g.,
CPU, memory). The problem here considers a simple case
where all instances are of the same types and with the same
pricing plan contributed by users. Particularly, it is worthy
mentioning that the same pricing plan does not mean the
same and fixed price for all instances. We can further split
the problem into two subproblems based on P0:
� Research Problem 1-1: Fixed price for P0. When the P0 is
either on-demand pricing plan or reservation pricing plan, all
instances of the same types will have the same price. In this
case, the total amount of resources received by users is just
proportional to their payment. We thus only need to consider
the total amount of resources.
� Research Problem 1-2: Dynamic price for P0. If P0 is the
spot pricing plan, the instances of the same types often have
varying prices over time. In this case, we need to take such a
dynamic pricing across instances and total amount of resources
for each user into consideration. Compared to Problem 1-1,

the additional challenging issue is that we need to have a
deep understanding on resource biding and its impact on our
resource allocation.
Research Problem 2: P0+I0+S1. It considers multi-

resource fair allocation for users when we take into account
the heterogeneous resource demands of each resource type for
tasks in practice. It has the same assumption as Problem 1
on cloud instance, pricing plan, and workloads. For multi-
resource fair allocation, there are several more challenging
issues than the single-resource fair allocations. The first issue
is about how to define the fairness when we take into account
the multiple resource types in allocation for cloud computing.
Second, exploring a fair policy that can satisfy all the desired
properties mentioned in Section III is a big research challenge.
Lastly, similar to Problem 1, we also need to divide the
problem into two subproblems by considering the fixed price
and dynamic price separately for multi-resource fair allocation.
Research Problem 3: P1+I0+S0. It tackles the single-

resource fair allocation under mixed pricing plans for the
same typed instances. In practice, it is possible that users
purchase instances of the same type (e.g., c3.xlarge) with
different pricing plans (e.g., on-demand, reservation), and they
form a shared group by contributing their resources. It means
that there can be different prices for different users on the
same instances. Being a fair resource allocation, we need to
be aware of different users’ pricing plans in counting their
consumption. Otherwise, there will be unfair for those users
contributing to the cheapest instances. For this problem, we
need to have a mechanism that can monitor the resource
allocation of each user and have a dynamic price estimation
for overused resources. Still, we need to have a separate
consideration for mix pricing plans between the fixed price
and dynamic price as Problem 1.
Research Problem 4: P1+I0+S1. It focuses on a more

complicate scenario on top of Problem 2 by taking into account
the same typed instances from different pricing plans of users.
To achieve the multi-resource fair allocation, we first need
to have an equivalent transformation between the different
resource types of different pricing plans. Next like Problem
2, we need to propose a multi-resource fair policy based on
this transformation.
In addition to the aforementioned four problems, there

are other issues to consider. For example, the problem of
considering the single/multiple-resource fair allocation under
the heterogeneous (different) instances types (e.g., P0+I1+S0,
P0+I1+S1).
Fair Policy Implementation. After proposing specific fair

policies, the next step for us is to implement them in big data
processing systems (e.g., YARN, Spark) for evaluation and
practical use. We can first consider the single-level resource
allocation for systems like Spark and Mesos. We also need to
support the hierarchical resource allocation (i.e., multi-level
resource allocation) for systems such as YARN.
Other Issues. There are other practical issues for achieving

economic fairness on IaaS clouds. We describe several of
them. First, resource sharing can lead to performance inter-

641641

ference. Performance interference is a challenging problem
on IaaS clouds. Some preliminary work [14] has attempted
to address this problem. Second, it is also a practical and
challenging problem [35] to extend the economic fairness to
different price schemes and systems.

V. PRELIMINARY WORK AND RESULTS

We present our preliminary work to address Problem 1-1 in
Section IV-C on the single-resource fair allocation for pay-as-
you-go cloud computing.

A. Policy Design and Analysis

Observing that the current fair policy has some serious
flaws due to its memoryless feature in Section I-A, we have
proposed a new policy called Long-Term Resource Fairness
(LTRF) [24]. In contrast to the memoryless policy which
considers the fairness of current resource allocation at instant
time, LTRF takes into account the historical allocation by
focusing on the total resource allocation over time between
users for fairness. The core idea is learned from the loan
(lending) agreement [18] with free interest in financial domain.
That is, an overloaded user can release her unused resources
to others as a lending manner. When that user needs more
resources in future, she can get the amount of lent resources
back from others (i.e., returning manner).
We use one example to illustrate the core idea of LTRF.

Assume that there is a computing system of 200 resources
(e.g., 200 GB RAM) shared by two users U1, U2 equally.
Suppose that the new requested resource demands for U1 are
40, 80, 160, 120, and for U2 are 200, 120, 100, 100 at time
t1, t2, t3, t4, respectively. The allocation results are presented
in Table I. With LTRF, we can witness in Table I(a) that, at t1,
U1’s resource demand (e.g., 40) is smaller than her share of
100. U1’s unused resources of 60 are then lent to U2, making
U2 have a resource allocation of 160. The allocation is similar
at t2. However, at t3, t4, U1’s demands are larger than her
share. According to the lending agreement, LTRF allocates
more resources to U1 than to U2 so that U1’s total allocated
resources are equal to U2 at t4 finally, making fair between U1

and U2. In comparison, if we adopt the current memoryless
fair policy, the resulting allocation will be shown in Table I(b).
There will be unfair for U1 and U2 at t4 for their total resource
allocations (i.e., U1 : 320, U2 : 480) due to its memoryless
property.
Finally, we have shown in our prior work [3] that, 1).

LTRF can satisfy all the desirable properties mentioned in
Section III, and thereby is suitable for pay-as-you-go cloud
computing. The detailed analysis and proof on the properties
can be found in [3]; 2). LTRF can guarantee Service-level
Agreement (SLA) by minimizing the sharing loss and bring
much sharing benefit for each user, whereas memoryless fair
policy not; 3). The sharing methods using either LTRF or
memoryless fair property can achieve better performance than
non-sharing none, or at least as fast in the sharing case as they
do in the non-sharing partitioning case.

User U1 User U2

Demand Allocation Preempt Demand Allocation PreemptNew Total Current Total New Total Current Total
t1 40 40 40 40 �60 200 200 160 160 �60

t2 80 80 80 120 �20 120 160 120 280 �20

t3 160 160 160 280 �60 100 140 40 320 �60

t4 120 120 120 400 �20 100 200 80 400 �20

(a) Allocation results based on LTRF. Total Demand refers to the sum of the new
demand and accumulated remaining demand in previous time.

User U1 User U2

Demand Allocation Preempt Demand Allocation PreemptNew Total Current Total New Total Current Total
t1 40 40 40 40 �60 200 200 160 160 �60

t2 80 80 80 120 �20 120 160 120 280 �20

t3 160 160 100 220 0 100 140 100 380 0

t4 120 180 100 320 0 100 140 100 480 0

(b) Allocation results based on the memoryless max-min fairness.

TABLE I: A comparison example to show the resource allocation
for a system of 200 resources equally shared by two users U1, U2

under the LTRF and memoryless fair policy.

B. Implementation and Evaluation
Given the proposed LTRF policy, we have implemented it in

YARN by developing a prototype system named LTYARN, by
generalizing the default memoryless max-min fairness to long-
term max-min fairness. Currently, we support the memory
resource fair allocation. Our implementation was done on top
of Hadoop-2.2.0 and its source code has been opened at [31].
We performed experiments with a set of macro-benchmarks
(e.g., synthetic Facebook workload, Purdue workload, TPC-H
workload, and Spark worload). The experimental results show
that LTYARN achieves a better resource fairness than existing
Hadoop Fair Scheduler.

VI. WORK IN PROGRESS
We are now working on Problem 2 for multi-resource fair

allocation. Learning from our prior work of LTRF on the
single-resource allocation, we are extending existing multi-
resource fair policy with LTRF. Particularly, in Section II, we
have reviewed that the DRF is the most popular multi-resource
fair policy implemented by many big data processing systems.
It implies that we can try to have a new policy by combining
DRF and LTRF.
DRF introduces the concept of a user’s dominant share,

defining as the maximum share of any typed resource that
is allocated to the user. The resource corresponding to the
dominant share is called dominant resource. DRF achieves the
fairness by equalizing the dominant shares across all users. For
example, if there are 40 CPUs and 40 GB memory in a shared
system that is equally shared by two users U1 and U2. Assume
that the resource demand per task for U1 is � 1CPU, 2GB �
and for U2 is � 2CPUs, 1GB �. Then the dominant resource
for U1 is memory with the dominant share of 2�40, whereas
for U2 is CPU with the dominant share of 2�40. With DRF,
the resulting allocation is shown in Figure 4, where users U1

and U2 achieve the same dominant share of 26�40.
Following the methodology of addressing Problem 1-1,

we start by identifying the shortcomings for DRF and then
introduce our new policy on how to address all these flaws.

642642

��������

	
����

������

	
������

���������
������

����	�����	������������

�����������������	����

�

������

�������

�������

���������������������������������������

Fig. 4: DRF resource allocation for two users U1 and U2. The
dominant share of U1’s dominant resource (i.e., memory) is equal
to the dominant share of U2’s dominant resource (i.e., CPU).

We have implemented it in the big data processing systems
such as YARN and evaluate it experimentally. Our initial
results demonstrate the promising results of extending long-
term fairness to multi-resource sharing. More details are given
in our technical report [25].

VII. CONCLUSION AND FUTURE WORK

Resource sharing is an effective and efficient approach to
improve the resource utilization and cost efficiency for pay-
as-you-go cloud computing. However, this research shows that
the existing memoryless fair policy, widely used in many
popular big data processing systems such as YARN, Spark,
has some serious flaws in economic fairness. This paper first
motivates our research study by having a detailed analysis
for the problems on existing memoryless fair policies. Then
it conducts a research problem formulation for each possible
scenario. We particularly outline four problems that we believe
are most important. The preliminary work on the single-
resource fairness and ongoing work on the multi-resource fair
allocation demonstrate the promising results of this research.
In future, we plan to address all the remaining research

problems mentioned in Section IV-C.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their constructive

comments. This work is partly supported by a MoE AcRF
Tier 1 grant (MOE 2014-T1-001-145) in Singapore.

REFERENCES
[1] A. K. Agrawala and R. M. Bryant. Models of memory scheduling. In

SOSP’75, 1975.
[2] Apache. Hadoop. http://hadoop.apache.org.
[3] Apache. YARN. https://hadoop.apache.org/docs/current2/index.html
[4] J. Axboe. Linux Block IO Present and Future (Completely Fair Queue-

ing). In OLS’04, pp. 5161, 2004.
[5] A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, I. Stoica.

Hierarchical Scheduling for Diverse Datacenter Workloads. SOCC’14,
2014.

[6] B. Caprita, W. C. Chan, J. Nieh, C. Stein, and H. Zheng. Group ratio
round-robin: O(1) proportional share scheduling for uniprocessor and
multiprocessor systems. In ATC’05, 2005.

[7] R. Chen, M. Yang, X.T. Weng, B. Choi, B.S. He, X.M. Li. Improving
large graph processing on partitioned graphs in the cloud, SoCC’12,
pp.3-15, 2012.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters, In Proceedings of the 6th Symposiumon Operating
SystemsDesign and Implementation (OSDI), 2004.

[9] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. In SIGCOMM89, pp. 112, 1989.

[10] Develop with YARN as the Data Operating System for Enterprise
Hadoop. http://hortonworks.com/get-started/yarn/, 2014.

[11] C. Doulkeridis and K. NOrvag, A survey of large-scale analytical query
processing in MapReduce. In VLDB Journal, vol. 23, pp. 355-380, 2014.

[12] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Schenker,I. Sto-
ica. Dominant Resource Fairness: Fair Allocation of Multiple Resource
Types. In NSDI’11, pp. 24-37, 2011.

[13] A. Ghodsi, M. Zaharia, S. Shenker and I. Stoica. Choosy: Max-Min Fair
Sharing for Datacenter Jobs with Constraints, EuroSys 2013, April 2013.

[14] Y.F. Gong, B.S. He, D. Li, Finding Constant From Change: Revisiting
Network Performance Aware Optimizations on IaaS Clouds. IEEE/ACM
SC’14, 2014.

[15] B.S. He, M. Yang, Z.Y. Guo, R.S. Chen, B. Su, W. Lin, L. D.
Zhou, Comet: batched stream processing for data intensive distributed
computing, ACM SoCC’10, pp.63-74, 2010.

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.
Katz, S. Shenker and I. Stoica, Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center, NSDI 2011, March 2011.

[17] H.K. Liu, B.S. He. Reciprocal Resource Fairness: Towards Cooperative
Multiple-Resource Fair Sharing in IaaS Clouds, IEEE/ACM SC’14, 2014.

[18] Loan agreement. http://en.wikipedia.org/wiki/Loan agreement.
[19] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A. Gold-

berg. Quincy: Fair Scheduling for Distributed Computing Clusters, In
SOSP’09, pp 261-276, 2009.

[20] M. Isard, M. Budiu, Y. Yu, A. Birell, D. Fetterly. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. Eurosys’07,
pp.59-72, 2007.

[21] I. Kash, A. D. Procaccia, N. Shah. No agent left behind: dynamic fair
division of multiple resources. In AAMAS’13, PP. 351-358, 2013.

[22] Max-Min Fairness (Wikipedia). http://en.wikipedia.org/wiki/Max-
min fairness.

[23] D. C. Parkes, A. D. Procaccia, N. Shah. Beyond Dominant Resource
Fairness: Extensions, Limitations, and Indivisibilities. In ACM Confer-
ence on Electronic Commerce, pp. 808-825, 2012.

[24] S.J. Tang, B.S. Lee, B.S. He and H.K. Liu, Long-Term Resource
Fairness: Towards Economic Fairness on Pay-as-you-use Computing
Systems, in ICS’14, pp.251-260, 2014.

[25] S.J. Tang, Z.J. Niu, B.S. Lee, and B.S. He, Multi-
Resource Fair Allocation in Pay-as-you-go Cloud Computing,
http://pdcc.ntu.edu.sg/xtra/tr/Technical Report-07-2014, 2014.

[26] S.J. Tang, B.S. Lee, B.S. He. Dynamic slot allocation technique for
MapReduce clusters, Cluster’13, pp.1-8, 2013.

[27] S.J. Tang, B.S. Lee, B.S. He. DynamicMR: A Dynamic Slot Allocation
Optimization Framework for MapReduce Clusters, in IEEE TCC’14,
2014.

[28] S.J. Tang, B.S. Lee, B.S. He. MROrder: Flexible Job Ordering Opti-
mization for Online MapReduce Workloads, in Euro-Par’13, 2013.

[29] S.J. Tang, C. Yu, J.Z. Sun, B.S. Lee, T. Zhang, Z. Xu, and H.B. Wu.
EasyPDP: An Efficient Parallel Dynamic Programming Runtime System
for Computational Biology, in IEEE TPDS’12, 2012.

[30] S.J. Tang, C. Yu, B.S. Lee, C. Sun, and J.Z. Sun, Adaptive Data
Refinement for Parallel Dynamic Programming Applications, in IEEE
IPDPSW’12, 2012.

[31] LTYARN: A Long-Term YARN Fair Scheduler.
http://sourceforge.net/projects/ltyarn/.

[32] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: flexible
proportional-share resource management. In OSDI 94, 1994.

[33] Y. Wang, W. Shi, Budget-Driven Scheduling Algorithms for Batches of
MapReduce Jobs in Heterogeneous Clouds, IEEE Transaction on Cloud
Computing, 2014

[34] W. Wang, B. C. Li, B. Liang. Dominant Resource Fairness in Cloud
Computing Systems with Heterogeneous Servers. INFOCOM’14, 2014.

[35] H.Y. Wang, Q.F. Jing, R.S. Chen, B.S. He, Z.P. Qian, and L.D. Zhou.
Distributed systems meet economics: Pricing in the cloud. HotCloud’10,
2010.

[36] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica. Spark:
Cluster Computing with Working Sets. HotCloud’10, pp. 10-16. 2010.

[37] J. Zhong, B. He Towards GPU-Accelerated Large-Scale Graph Process-
ing in the Cloud, In CloudCom’13, pp.9-16, 2013.

643643

