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ABSTRACT 
Phase Changing Memory (PCM), as one of the most promising 
next-generation memory technologies, offers various attractive 
properties such as non-volatility, bit-alterability, and low idle energy 
consumption. In this paper, we present PCMLogging, a novel 
logging scheme that exploits PCM devices for both data buffering 
and transaction logging in disk-based databases. Different from the 
traditional approach where buffered updates and transaction logs are 
completely separated, they are integrated in the new logging scheme. 
Our preliminary experiments show an up to 40% improvement of 
PCMLogging in disk I/O performance in comparison with a basic 
buffering and logging scheme.  

Categories and Subject Descriptors 
H.2.4 [Database Management]: Transaction Processing 

General Terms 
Algorithm, Performance 

Keywords 
Transaction Management, Logging, Database Recovery, PCM 

1. INTRODUCTION 
     Over decades, non-volatile random access memory (NVRAM) 
has been actively investigated as the next-generation memory 
technology. The goal of the NVRAM technology is to take the best 
of the hard disk and DRAM: with non-volatility like the hard disk 
and with read/write speeds like DRAM. Recently, PCM has been 
considered one of the most promising NVRAM technologies. PCM 
is not only a persistent fast random-access memory but also has a 
higher density than the floating-gate based memory. Manufacturers 
have already started the mass production of PCM at a reasonable 
price. For example, Numonyx (later acquired by Micron) and 
Samsung released their first PCM products in 2010 [4, 5]. It has 
been envisioned that PCM will be integrated into the 
memory/storage hierarchy in the near future [2]. An important 
question brought by a recent research on using PCM in databases [1] 
is “how should database systems be modified to best take advantage 
of this emerging trend towards PCM?” In this paper, we study how 
PCM can be leveraged to improve the transaction processing 
performance in disk-backed relational databases.  
     Compared with DRAM and recently popular flash memory, 
PCM offers various attractive hardware features to database 
transaction processing. Compared with DRAM, PCM has the 
advantage of persistence with a comparable read speed. Compared 

with flash memory, PCM has over two orders of magnitude faster 
read/write speeds. Unlike flash memory with an erase-before-write 
constraint, PCM is bit-alterable without a separate erase step [5]. 
These unique hardware features of PCM motivate us to revisit and 
improve the core components in transaction processing.  
     Previous work [3] has demonstrated that logging is a critical 
component for transaction processing in disk-based databases. 
Therefore, we consider leveraging PCM to reduce the transaction 
logging overhead. In general, PCM can be used for both data 
buffering and transaction logging. Owing to its fast data access 
performance, dirty pages evicted from main memory can be 
buffered in PCM to minimize disk I/Os. Meanwhile, the non-
volatile nature of PCM makes it an ideal place for archiving 
transaction log records. Hence, a simple design is to divide the PCM 
into a buffer pool and a log pool. However, this simple scheme has 
several drawbacks. First, buffering a full page in PCM may not be 
very cost-efficient since most updates in OLTP workload are small 
writes. Second, a transaction update kept in the log might also be 
buffered in a dirty page, which leads to data redundancy. Third, the 
space management of the PCM becomes a challenge as it is shared 
by the buffer pool and the log pool.  
     To address the drawbacks of the basic scheme, we propose a new 
logging scheme called PCMLogging. In this scheme, we eliminate 
the explicit logs, such as REDO and UNDO logs, by integrating 
implicit logs into buffered updates to ensure durability and 
atomicity of database transaction processing. Meanwhile, this makes 
checkpoint unnecessary and enables a simple and cheap recovery 
algorithm. We also develop a trace-driven simulator to study the 
performance of PCMLogging. The evaluation results based on a 
TPC-C benchmark trace show that, compared to the basic scheme 
mentioned above, PCMLogging saves up to 40% I/Os to the 
external disk and 97% write traffic to the PCM device.  
     The rest of this paper proceeds as follows. In Section 2, we give 
some background of PCM and review the related work. Section 3 
presents the PCMLogging scheme. In Section 4, we report our 
performance evaluation results. Finally, Section 5 concludes the 
paper and points out some future directions.  

2. BACKGROUND AND RELATED WORK 
     PCM is based on a new storage material called chalocogenide 
glass, which retains information by a large resistance contrast 
between two states, namely amorphous and crystalline. To switch 
between these two states, different kinds of electronic currents are 
applied on chalocogenide glass. To crystallize the phase change 
material, a set current pulse is applied to heat chalocogenide glass 
for a sufficiently long time. On the other hand, a reset current is a 
sudden pulse which melts chalocogenide glass to largely increase its 
resistance. Sensing the resistance and retrieving the information 
requires only a very low current.  
     Table 1 summarizes the hardware performance of several current 
storage technologies including DRAM, NAND flash, PCM, and 
hard disk [1]. Besides non-volatility and higher density, PCM has 
the following hardware features [1, 2, 5]:  
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 Finer-grained access granularity. PCM has an access 
granularity as small as DRAM. Compared to other non-
volatile memory technologies such as flash, it breaks the 
constraints of erase-before-write and page-based access. It is 
byte-addressable (or word-addressable) and bit-alterable. This 
feature enables PCM to support small in-place updates.   

 Asymmetric read/write latency. The write speed of PCM is 
about 20 times slower than the read speed.  

 Endurance limitation. Similar to flash memory, PCM endures 
a limit number of writes, on the scale of 106 to 108 writes on 
each unit.  

     Recently, system researchers have started revisiting system 
design and optimizations with PCM. Fig. 1 shows two 
representative architectures of using PCM in the memory hierarchy 
[2]: a) PCM as an auxiliary memory attached to the main memory; b) 
PCM as the whole main memory. Based on the storage properties of 
PCM, the former method using PCM as an auxiliary memory might 
be more practical. The first reason is that PCM has endurance 
limitation, and its write latency is still much higher than DRAM. 
Secondly, the capacity of PCM is still small in the coming few years, 
compared with DRAM. In this study, we mainly consider the 
memory architecture of using PCM as an auxiliary memory.  
     There has been research on how to take advantages of non-
volatile memory for improving database performance. Early work 
focused on the use of non-volatile memory as an extension of the 
storage hierarchy [6]. As the technology matures, in 2011, Chen et 
al. [1] presented a pioneer study on how database algorithms should 
be adapted to PCM technology. They improved two fundamental 
database algorithms, i.e., B+-tree and hash join, by reducing their 
write operations to PCM. In contrast, in this study we focus on how 
PCM can be used to improve transaction processing performance in 
disk-based databases. 

3. PCMLOGGING 
     We consider the memory architecture as shown in Fig. 1(a). 
Without modifying the buffer manager of the main memory 
(DRAM), we develop a new scheme, called PCMLogging, where 
the buffered updates and transaction logs are combined.  
 

3.1 Overview  
     The basic idea of PCMLogging is to integrate the transaction 
logs into buffered updates, by exploiting the persistency feature of 
PCM storage. For ease of exposition, we assume that the PCM 
buffering granularity is a page in this section. We also assume that 
the concurrency control is on a page level. That is, a page is updated 
by at most one transaction at one time. To further improve the 
transaction processing performance, we extend the design to tuple-
based buffering and tuple-level concurrency control in Section 3.3. 

 

 

Fig. 1: Memory Architecture Alternatives    

 

Fig. 2: Page Format and Mapping Table 

     To support buffering in PCM, we maintain a Mapping Table in 
the main memory to map logical page IDs to physical PCM 
addresses, as well as Inverse Mapping and FreePageBitmap in the 
PCM (see Fig. 2). Inverse Mapping is used to construct the Mapping 
Table at the boot time and FreePageBitmap is used to keep track of 
the free page slots. Note that in PCMLogging, only dirty pages 
evicted from the main memory are buffered in order to minimize the 
disk write I/Os. 
     An overview of the PCMLogging scheme is as follows. To 
achieve atomicity and durability of transactions, an ActiveTxList is 
maintained in PCM to record the in-progress transactions that have 
dirty pages buffered in the PCM; each buffered page records the 
XID of the last transaction that caused the page to be dirty. To 
guarantee atomicity, before the first dirty page of a transaction is 
written to the PCM, its corresponding XID should be recorded in the 
ActiveTxList. The XID is not removed until the transaction is 
requested to commit and all its dirty pages have been flushed to the 
PCM. Thus, during recovery, if the XID of a transaction is found in 
the ActiveTxList, it implies that the transaction is not committed 
before the crash; otherwise, the transaction is committed. 
Consequently, each PCM page can be recovered according to the 
status of the corresponding transaction. For example, if the PCM 
appears as shown in the right part of Fig. 2, during recovery, we can 
infer that T1 is not yet committed while T2 is committed. Thus, the 
pages stored in M1~M3 would be discarded while the pages stored 
in M5 and M7 would be retained. Accordingly, the FreePageBitmap 
should be updated to “00001010”.  We note that, to avoid the hot-
spot on the PCM, dynamic space allocation and wear-leveling 
techniques can be adopted to evenly distribute writes across the 
PCM space, which is, however, an orthogonal issue to our 
PCMLogging scheme.  

Parameter DRAM 
NAND 
Flash 

Hard 
Disk 

PCM 

Density 1X 4X N/A 2-4X 

Read latency 
(granularity) 

20-50ns 
(64B) 

~25s 
(4KB) 

~5ms 
(512B) 

~50ns 
(64B) 

Write latency 
(granularity) 

20-50ns 
(64B) 

~500s 
(4KB) 

~5ms 
(512B) 

~1s 
(64B) 

Endurance N/A 104~105  106~108 

Table 1: Comparison of Storage Technologies [1] 
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     As can be seen, PCMLogging totally eliminates the explicit 
transaction logs by integrating them into the dirty pages buffered in 
the PCM. This integrated design has several advantages. First, the 
data redundancy between buffered updates and transaction logs is 
minimized. Second, it avoids the challenging space management 
issue, which is a must if they are separated. Third, checkpoint 
becomes unnecessary since we do not maintain explicit logs. In 
addition, the recovery process becomes extremely simple and 
efficient. In the following, we detail the PCMLogging operations 
such as flushing, commit, abort, and recovery. 

3.2 PCMLogging Operations 
     In PCMLogging, durability is achieved by forcing the 
corresponding dirty pages to the PCM when a transaction is 
requested to commit. Meanwhile, a steal buffer policy of the main 
memory allows a dirty page to be flushed to the PCM before the 
transaction commits. To ensure atomicity, undo operations will be 
needed if the transaction is finally aborted. To efficiently support 
such undo operations, we maintain two additional data structures in 
the main memory: 

 Transaction Table (TT). This table records all in-progress 
transactions. For each in-progress transaction, it keeps track 
of all its dirty pages stored in the main memory and PCM. 
The purpose is to quickly identify the relevant pages when the 
transaction is committed or aborted.  

 Dirty Page Table (DPT). This table keeps track of the 
previous version for each PCM page “overwritten” by an in-
progress transaction. This is necessary for restoring the 
original page content in the event of a rollback. A dirty page 
entry will be removed from the table once the in-progress 
transaction is committed or aborted.  

     Flushing Dirty Pages to PCM. When the main memory 
becomes full or a transaction is committed, some dirty pages may 
need to be flushed to the PCM. We first check the ActiveTxList in 
the PCM. For each dirty page, if the corresponding XID is not yet in 
the ActiveTxList, we add it to the list before flushing. In case a page 
P already exists in the PCM, we do not overwrite it in place. In 
order to support undo, instead, we create an out-of-place copy M’ 
with the current timestamp. Then, M’ is added to the Dirty Page 
Table and P is mapped to M’ in the Mapping Table. Finally, the 
Transaction Table is updated.  
     Commit. Upon receiving a commit request, we first force all its 
dirty pages that are still buffered in the main memory to the PCM, 
by checking the Transaction Table. After that, we remove the XID 
from the ActiveTxList and indicate the transaction is committed. 
Next, if any of its pages is contained in the Dirty Page Table, the 
previous version is discarded. Finally, we clear the relevant entries 
in the Transaction Table and Dirty Page Table. 
     Abort. When a transaction is aborted, all its dirty pages are 
discarded, by checking the Transaction Table. If any of its pages is 
contained in the Dirty Page Table, the previous version should be 
restored. Finally, we clear the XID in the ActiveTxList and the 
relevant entries in the Transaction Table and Dirty Page Table.  

     An Example: Consider the example shown in Fig. 2, where T1 is 
in progress and T2 is committed. Suppose now a new transaction T3 
updates the page P5. Before this dirty page is flushed, T3 points to 
the page P5 kept in the main memory (see Fig. 3(a)). When it is 
flushed to the PCM slot M8, T3 is added to the ActiveTxList in PCM 
(see Fig. 3(b)). After that, P5 is mapped to M8, T3 points to M8, and 
the previous version M7 is kept in the Dirty Page Table. Finally, if 
T3 is requested to commit, it is removed from the ActiveTxList; the 
previous version is discarded (the corresponding bit becomes 0 in 

the FreePageBitmap); and the relevant entries are removed from 
the Transaction Table and Dirty Page Table (see Fig. 3(c)). 
Otherwise, if T3 is finally aborted, the current version is discarded 
(the corresponding bit becomes 0 in the FreePageBitmap) and the 
previous version is restored in the Mapping Table; and the relevant 
entries are also removed from the ActiveTxList, Transaction Table, 
and Dirty Page Table (see Fig. 3(d)). 

 

Fig. 3: An Example of PCMLogging 
     Recovery. A recovery process is invoked when the system 
restarts after a failure. It identifies the last committed version for 
each PCM page and constructs the Mapping Table. To do so, the 
recovery reads all valid pages based on the FreePageBitmap and the 
XIDs of the in-progress transactions from the ActiveTxList. We 
then simply discard the pages that belong to the in-progress 
transactions. Note that this process does not involve any disk I/Os.  
     Replacement in PCM. When the PCM is full (or the disk 
system is idle), we will select some committed pages and write them 
back to the external disk. Thus, some replacement policy (e.g., LRU) 
can be used to select the victims.  
      

3.3 Tuple-based Buffering 
     Recall that PCM supports byte-addressability and bit-alterability. 
Thus, in response to small writes in OLTP workload and tuple-
based concurrency control, we propose to buffer dirty tuples, instead 
of dirty pages, in the PCM. The proposed PCMLogging scheme can 
be easily extended to tuple-based buffering. It works similarly 
except the following modifications: 1) In the PCM, the buffer slots 
should now be managed in the unit of tuples, rather than pages. To 
manage the free space, if the tuples are of variable size, a bitmap 
does not work; instead we may employ a slotted directory. 2) In the 
Mapping Table, we still keep track of dirty pages, but maintain the 
mappings for the buffered tuples in each dirty page. 3) If a 
read/write request is on a tuple granularity, the tuple can be accessed 
from the PCM directly, if available. Otherwise, we have to load the 
corresponding page from the external disk and merge it with the 
latest contents of the buffered tuples in the page. Note that loading 
page contents from the external disk and the PCM is a parallel 
process and the access latency of the PCM is negligible. 4) When a 
committed tuple is moved from the PCM to the external disk, we 
have to first load the corresponding page from the external disk, and 
then merge it with the tuple before writing back.  
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4. PERFORMANCE EVALUATION  
     In this section, we report the preliminary results we obtained via 
simulation experiments. We have developed a trace-driven 
simulator based on DiskSim (http://www.pdl.cmu.edu/DiskSim/). 
We implemented a transaction processing model and a PCM model 
on top of a simulated disk. In the transaction processing model, we 
employ the strict two-phase locking protocol for concurrency 
control at a tuple level. Deadlocks are detected and resolved 
whenever a transaction is blocked. If a deadlock is discovered, the 
youngest transaction in the deadlock is restarted after a random 
backoff time. In the PCM model, the current implementation 
assumed only one memory chip [5]. The data access granularity in 
the PCM was fixed at 64B. We set its write latency at 1μs, and its 
read latency the same as that of DRAM access (i.e., 50 ns). 
     The database trace on disk I/O accesses was obtained by running 
PostgreSQL 8.4 with the TPC-C benchmark for four hours. We set 
the client number at 50 and the number of data warehouses at 20. As 
the database size is 2.4GB, we fixed the size of DRAM main 
memory at 64MB (i.e., ~2.6% of the database size). For simplicity, 
we assumed that each tuple has a size of 128B. We conducted our 
simulation study on a desktop computer running Windows XP SP2 
with an Intel Quad 2.4GHz CPU. For a fair comparison, the results 
were collected after a fixed warmup period (i.e., after the PCM 
becomes full under all schemes).  
     Fig. 4 shows the disk I/O performance when we vary the PCM 
size from 8MB to 64MB. We compare the PCMLogging scheme 
with tuple-based buffering (denoted as PCMLogging) to the basic 
scheme (denoted as PCMBasic) presented in the Introduction. For 
PCMBasic, to minimize the disk I/Os, checkpoint is triggered 
whenever the log pool becomes full; under each PCM size setting, 
we tried different space partitions between the buffer pool and the 
log pool and plotted the result with the best partition. As a reference, 
we also include a scheme without PCM support (denoted as 
NoPCM).  
     As shown in Fig. 4(a), both PCMBasic and PCMLogging 
achieve a better I/O performance than the NoPCM scheme, as 
expected.  PCMLogging greatly improves the performance when 
the PCM size is larger than 16MB. At a PCM size of 64MB, it 
outperforms PCMBasic by 40%. However, PCMLogging is slightly 
worse than PCMBasic at a PCM size of 8MB. To explain this, we 
plot the I/O breakdown and PCM miss rate in Figs. 4(b) and 5(a), 
respectively. We can observe that when the PCM size is 8MB, the 
miss rate is high and hence not many read and write requests can be 
served by the buffered copies. Thus, the read I/Os are not much 
reduced, as compared with the NoPCM scheme (see Fig. 4(b)). On 
the other hand, due to a small size, PCM replacement happens 
frequently. Recall that PCMLogging incurs an extra read I/O 
(counted in write in Fig. 4(b)) when writing buffered tuples to the 
disk during PCM replacement. This makes its write performance 
even worse than NoPCM, thereby incurring a worse overall 
performance. When the PCM size increases, the miss rate is 
significantly reduced, especially for PCMLogging. For example, at 
64MB, PCMLogging reduces the miss rate to 63% (vs. 81% for 
PCMBasic), as shown in Fig. 5(a). Moreover, PCMLogging has a 
larger buffering capacity with a tuple-based buffering granularity. 
As a result, PCMLogging gets much fewer disk I/Os for both reads 
and writes, as shown in Fig. 4(b).   
     Next, we investigate the write traffic to the PCM, which may 
affect its lifetime. As shown in Fig. 5(b), the write traffic of 
PCMLogging is greatly reduced; it is only 2.7% of PCMBasic on 
average.  

  

  
(a) Disk I/O Count  (b)   I/O Breakdown 

Fig. 4: Disk I/O Performance (PL=PCMLogging) 

        
(a) Write Hit Rate on PCM        (b) Write Trafic on PCM 

Fig. 5: PCM Write Traffic 

This is mainly because that the updates in OLTP workloads are 
mostly small writes, buffering only the dirty tuples in PCMLogging 
can avoid writing the clean part of a page. This result indicates that 
the lifetime of PCM can be significantly improved by PCMLogging.  

5. CONCLUSIONS AND FUTURE WORK 
     In this paper, we have presented a study on leveraging PCM to 
support efficient transaction processing. We have developed a new 
PCMLogging scheme that combines the buffered updates and log 
records, by taking advantage of the PCM hardware features. The 
preliminary results have been encouraging. It is shown that 
PCMLogging saves up to 40% disk I/Os and 97% PCM write traffic 
in comparison with the basic buffering and logging scheme.  
     This paper represents an initial step of our work towards 
improving database transaction performance with PCM. For future 
work, we will enhance the simulation experiments. We also plan to 
further improve our work in a number of directions, such as 
advanced PCM replacement policies, fine-grained tuple-based 
mapping, wear-leveling techniques, multi-version concurrency 
control, and integration with flash-memory technology.   
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