
PCMLogging: Reducing Transaction Logging
Overhead with PCM

 Shen Gao Jianliang Xu
Hong Kong Baptist University

{sgao, xujl}@comp.hkbu.edu.hk

Bingsheng He
Nanyang Technological University

bshe@ntu.edu.sg

Byron Choi Haibo Hu
Hong Kong Baptist University

{haibo, bchoi}@comp.hkbu.edu.hk

ABSTRACT
Phase Changing Memory (PCM), as one of the most promising
next-generation memory technologies, offers various attractive
properties such as non-volatility, bit-alterability, and low idle energy
consumption. In this paper, we present PCMLogging, a novel
logging scheme that exploits PCM devices for both data buffering
and transaction logging in disk-based databases. Different from the
traditional approach where buffered updates and transaction logs are
completely separated, they are integrated in the new logging scheme.
Our preliminary experiments show an up to 40% improvement of
PCMLogging in disk I/O performance in comparison with a basic
buffering and logging scheme.

Categories and Subject Descriptors
H.2.4 [Database Management]: Transaction Processing

General Terms
Algorithm, Performance

Keywords
Transaction Management, Logging, Database Recovery, PCM

1. INTRODUCTION
 Over decades, non-volatile random access memory (NVRAM)
has been actively investigated as the next-generation memory
technology. The goal of the NVRAM technology is to take the best
of the hard disk and DRAM: with non-volatility like the hard disk
and with read/write speeds like DRAM. Recently, PCM has been
considered one of the most promising NVRAM technologies. PCM
is not only a persistent fast random-access memory but also has a
higher density than the floating-gate based memory. Manufacturers
have already started the mass production of PCM at a reasonable
price. For example, Numonyx (later acquired by Micron) and
Samsung released their first PCM products in 2010 [4, 5]. It has
been envisioned that PCM will be integrated into the
memory/storage hierarchy in the near future [2]. An important
question brought by a recent research on using PCM in databases [1]
is “how should database systems be modified to best take advantage
of this emerging trend towards PCM?” In this paper, we study how
PCM can be leveraged to improve the transaction processing
performance in disk-backed relational databases.
 Compared with DRAM and recently popular flash memory,
PCM offers various attractive hardware features to database
transaction processing. Compared with DRAM, PCM has the
advantage of persistence with a comparable read speed. Compared

with flash memory, PCM has over two orders of magnitude faster
read/write speeds. Unlike flash memory with an erase-before-write
constraint, PCM is bit-alterable without a separate erase step [5].
These unique hardware features of PCM motivate us to revisit and
improve the core components in transaction processing.
 Previous work [3] has demonstrated that logging is a critical
component for transaction processing in disk-based databases.
Therefore, we consider leveraging PCM to reduce the transaction
logging overhead. In general, PCM can be used for both data
buffering and transaction logging. Owing to its fast data access
performance, dirty pages evicted from main memory can be
buffered in PCM to minimize disk I/Os. Meanwhile, the non-
volatile nature of PCM makes it an ideal place for archiving
transaction log records. Hence, a simple design is to divide the PCM
into a buffer pool and a log pool. However, this simple scheme has
several drawbacks. First, buffering a full page in PCM may not be
very cost-efficient since most updates in OLTP workload are small
writes. Second, a transaction update kept in the log might also be
buffered in a dirty page, which leads to data redundancy. Third, the
space management of the PCM becomes a challenge as it is shared
by the buffer pool and the log pool.
 To address the drawbacks of the basic scheme, we propose a new
logging scheme called PCMLogging. In this scheme, we eliminate
the explicit logs, such as REDO and UNDO logs, by integrating
implicit logs into buffered updates to ensure durability and
atomicity of database transaction processing. Meanwhile, this makes
checkpoint unnecessary and enables a simple and cheap recovery
algorithm. We also develop a trace-driven simulator to study the
performance of PCMLogging. The evaluation results based on a
TPC-C benchmark trace show that, compared to the basic scheme
mentioned above, PCMLogging saves up to 40% I/Os to the
external disk and 97% write traffic to the PCM device.
 The rest of this paper proceeds as follows. In Section 2, we give
some background of PCM and review the related work. Section 3
presents the PCMLogging scheme. In Section 4, we report our
performance evaluation results. Finally, Section 5 concludes the
paper and points out some future directions.

2. BACKGROUND AND RELATED WORK
 PCM is based on a new storage material called chalocogenide
glass, which retains information by a large resistance contrast
between two states, namely amorphous and crystalline. To switch
between these two states, different kinds of electronic currents are
applied on chalocogenide glass. To crystallize the phase change
material, a set current pulse is applied to heat chalocogenide glass
for a sufficiently long time. On the other hand, a reset current is a
sudden pulse which melts chalocogenide glass to largely increase its
resistance. Sensing the resistance and retrieving the information
requires only a very low current.
 Table 1 summarizes the hardware performance of several current
storage technologies including DRAM, NAND flash, PCM, and
hard disk [1]. Besides non-volatility and higher density, PCM has
the following hardware features [1, 2, 5]:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10...$10.00.

2401

 Finer-grained access granularity. PCM has an access
granularity as small as DRAM. Compared to other non-
volatile memory technologies such as flash, it breaks the
constraints of erase-before-write and page-based access. It is
byte-addressable (or word-addressable) and bit-alterable. This
feature enables PCM to support small in-place updates.

 Asymmetric read/write latency. The write speed of PCM is
about 20 times slower than the read speed.

 Endurance limitation. Similar to flash memory, PCM endures
a limit number of writes, on the scale of 106 to 108 writes on
each unit.

 Recently, system researchers have started revisiting system
design and optimizations with PCM. Fig. 1 shows two
representative architectures of using PCM in the memory hierarchy
[2]: a) PCM as an auxiliary memory attached to the main memory; b)
PCM as the whole main memory. Based on the storage properties of
PCM, the former method using PCM as an auxiliary memory might
be more practical. The first reason is that PCM has endurance
limitation, and its write latency is still much higher than DRAM.
Secondly, the capacity of PCM is still small in the coming few years,
compared with DRAM. In this study, we mainly consider the
memory architecture of using PCM as an auxiliary memory.
 There has been research on how to take advantages of non-
volatile memory for improving database performance. Early work
focused on the use of non-volatile memory as an extension of the
storage hierarchy [6]. As the technology matures, in 2011, Chen et
al. [1] presented a pioneer study on how database algorithms should
be adapted to PCM technology. They improved two fundamental
database algorithms, i.e., B+-tree and hash join, by reducing their
write operations to PCM. In contrast, in this study we focus on how
PCM can be used to improve transaction processing performance in
disk-based databases.

3. PCMLOGGING
 We consider the memory architecture as shown in Fig. 1(a).
Without modifying the buffer manager of the main memory
(DRAM), we develop a new scheme, called PCMLogging, where
the buffered updates and transaction logs are combined.

3.1 Overview
 The basic idea of PCMLogging is to integrate the transaction
logs into buffered updates, by exploiting the persistency feature of
PCM storage. For ease of exposition, we assume that the PCM
buffering granularity is a page in this section. We also assume that
the concurrency control is on a page level. That is, a page is updated
by at most one transaction at one time. To further improve the
transaction processing performance, we extend the design to tuple-
based buffering and tuple-level concurrency control in Section 3.3.

Fig. 1: Memory Architecture Alternatives

Fig. 2: Page Format and Mapping Table

 To support buffering in PCM, we maintain a Mapping Table in
the main memory to map logical page IDs to physical PCM
addresses, as well as Inverse Mapping and FreePageBitmap in the
PCM (see Fig. 2). Inverse Mapping is used to construct the Mapping
Table at the boot time and FreePageBitmap is used to keep track of
the free page slots. Note that in PCMLogging, only dirty pages
evicted from the main memory are buffered in order to minimize the
disk write I/Os.
 An overview of the PCMLogging scheme is as follows. To
achieve atomicity and durability of transactions, an ActiveTxList is
maintained in PCM to record the in-progress transactions that have
dirty pages buffered in the PCM; each buffered page records the
XID of the last transaction that caused the page to be dirty. To
guarantee atomicity, before the first dirty page of a transaction is
written to the PCM, its corresponding XID should be recorded in the
ActiveTxList. The XID is not removed until the transaction is
requested to commit and all its dirty pages have been flushed to the
PCM. Thus, during recovery, if the XID of a transaction is found in
the ActiveTxList, it implies that the transaction is not committed
before the crash; otherwise, the transaction is committed.
Consequently, each PCM page can be recovered according to the
status of the corresponding transaction. For example, if the PCM
appears as shown in the right part of Fig. 2, during recovery, we can
infer that T1 is not yet committed while T2 is committed. Thus, the
pages stored in M1~M3 would be discarded while the pages stored
in M5 and M7 would be retained. Accordingly, the FreePageBitmap
should be updated to “00001010”. We note that, to avoid the hot-
spot on the PCM, dynamic space allocation and wear-leveling
techniques can be adopted to evenly distribute writes across the
PCM space, which is, however, an orthogonal issue to our
PCMLogging scheme.

Parameter DRAM
NAND
Flash

Hard
Disk

PCM

Density 1X 4X N/A 2-4X

Read latency
(granularity)

20-50ns
(64B)

~25s
(4KB)

~5ms
(512B)

~50ns
(64B)

Write latency
(granularity)

20-50ns
(64B)

~500s
(4KB)

~5ms
(512B)

~1s
(64B)

Endurance N/A 104~105 106~108

Table 1: Comparison of Storage Technologies [1]

2402

 As can be seen, PCMLogging totally eliminates the explicit
transaction logs by integrating them into the dirty pages buffered in
the PCM. This integrated design has several advantages. First, the
data redundancy between buffered updates and transaction logs is
minimized. Second, it avoids the challenging space management
issue, which is a must if they are separated. Third, checkpoint
becomes unnecessary since we do not maintain explicit logs. In
addition, the recovery process becomes extremely simple and
efficient. In the following, we detail the PCMLogging operations
such as flushing, commit, abort, and recovery.

3.2 PCMLogging Operations
 In PCMLogging, durability is achieved by forcing the
corresponding dirty pages to the PCM when a transaction is
requested to commit. Meanwhile, a steal buffer policy of the main
memory allows a dirty page to be flushed to the PCM before the
transaction commits. To ensure atomicity, undo operations will be
needed if the transaction is finally aborted. To efficiently support
such undo operations, we maintain two additional data structures in
the main memory:

 Transaction Table (TT). This table records all in-progress
transactions. For each in-progress transaction, it keeps track
of all its dirty pages stored in the main memory and PCM.
The purpose is to quickly identify the relevant pages when the
transaction is committed or aborted.

 Dirty Page Table (DPT). This table keeps track of the
previous version for each PCM page “overwritten” by an in-
progress transaction. This is necessary for restoring the
original page content in the event of a rollback. A dirty page
entry will be removed from the table once the in-progress
transaction is committed or aborted.

 Flushing Dirty Pages to PCM. When the main memory
becomes full or a transaction is committed, some dirty pages may
need to be flushed to the PCM. We first check the ActiveTxList in
the PCM. For each dirty page, if the corresponding XID is not yet in
the ActiveTxList, we add it to the list before flushing. In case a page
P already exists in the PCM, we do not overwrite it in place. In
order to support undo, instead, we create an out-of-place copy M’
with the current timestamp. Then, M’ is added to the Dirty Page
Table and P is mapped to M’ in the Mapping Table. Finally, the
Transaction Table is updated.
 Commit. Upon receiving a commit request, we first force all its
dirty pages that are still buffered in the main memory to the PCM,
by checking the Transaction Table. After that, we remove the XID
from the ActiveTxList and indicate the transaction is committed.
Next, if any of its pages is contained in the Dirty Page Table, the
previous version is discarded. Finally, we clear the relevant entries
in the Transaction Table and Dirty Page Table.
 Abort. When a transaction is aborted, all its dirty pages are
discarded, by checking the Transaction Table. If any of its pages is
contained in the Dirty Page Table, the previous version should be
restored. Finally, we clear the XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

 An Example: Consider the example shown in Fig. 2, where T1 is
in progress and T2 is committed. Suppose now a new transaction T3
updates the page P5. Before this dirty page is flushed, T3 points to
the page P5 kept in the main memory (see Fig. 3(a)). When it is
flushed to the PCM slot M8, T3 is added to the ActiveTxList in PCM
(see Fig. 3(b)). After that, P5 is mapped to M8, T3 points to M8, and
the previous version M7 is kept in the Dirty Page Table. Finally, if
T3 is requested to commit, it is removed from the ActiveTxList; the
previous version is discarded (the corresponding bit becomes 0 in

the FreePageBitmap); and the relevant entries are removed from
the Transaction Table and Dirty Page Table (see Fig. 3(c)).
Otherwise, if T3 is finally aborted, the current version is discarded
(the corresponding bit becomes 0 in the FreePageBitmap) and the
previous version is restored in the Mapping Table; and the relevant
entries are also removed from the ActiveTxList, Transaction Table,
and Dirty Page Table (see Fig. 3(d)).

Fig. 3: An Example of PCMLogging
 Recovery. A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version for
each PCM page and constructs the Mapping Table. To do so, the
recovery reads all valid pages based on the FreePageBitmap and the
XIDs of the in-progress transactions from the ActiveTxList. We
then simply discard the pages that belong to the in-progress
transactions. Note that this process does not involve any disk I/Os.
 Replacement in PCM. When the PCM is full (or the disk
system is idle), we will select some committed pages and write them
back to the external disk. Thus, some replacement policy (e.g., LRU)
can be used to select the victims.

3.3 Tuple-based Buffering
 Recall that PCM supports byte-addressability and bit-alterability.
Thus, in response to small writes in OLTP workload and tuple-
based concurrency control, we propose to buffer dirty tuples, instead
of dirty pages, in the PCM. The proposed PCMLogging scheme can
be easily extended to tuple-based buffering. It works similarly
except the following modifications: 1) In the PCM, the buffer slots
should now be managed in the unit of tuples, rather than pages. To
manage the free space, if the tuples are of variable size, a bitmap
does not work; instead we may employ a slotted directory. 2) In the
Mapping Table, we still keep track of dirty pages, but maintain the
mappings for the buffered tuples in each dirty page. 3) If a
read/write request is on a tuple granularity, the tuple can be accessed
from the PCM directly, if available. Otherwise, we have to load the
corresponding page from the external disk and merge it with the
latest contents of the buffered tuples in the page. Note that loading
page contents from the external disk and the PCM is a parallel
process and the access latency of the PCM is negligible. 4) When a
committed tuple is moved from the PCM to the external disk, we
have to first load the corresponding page from the external disk, and
then merge it with the tuple before writing back.

2403

4. PERFORMANCE EVALUATION
 In this section, we report the preliminary results we obtained via
simulation experiments. We have developed a trace-driven
simulator based on DiskSim (http://www.pdl.cmu.edu/DiskSim/).
We implemented a transaction processing model and a PCM model
on top of a simulated disk. In the transaction processing model, we
employ the strict two-phase locking protocol for concurrency
control at a tuple level. Deadlocks are detected and resolved
whenever a transaction is blocked. If a deadlock is discovered, the
youngest transaction in the deadlock is restarted after a random
backoff time. In the PCM model, the current implementation
assumed only one memory chip [5]. The data access granularity in
the PCM was fixed at 64B. We set its write latency at 1μs, and its
read latency the same as that of DRAM access (i.e., 50 ns).
 The database trace on disk I/O accesses was obtained by running
PostgreSQL 8.4 with the TPC-C benchmark for four hours. We set
the client number at 50 and the number of data warehouses at 20. As
the database size is 2.4GB, we fixed the size of DRAM main
memory at 64MB (i.e., ~2.6% of the database size). For simplicity,
we assumed that each tuple has a size of 128B. We conducted our
simulation study on a desktop computer running Windows XP SP2
with an Intel Quad 2.4GHz CPU. For a fair comparison, the results
were collected after a fixed warmup period (i.e., after the PCM
becomes full under all schemes).
 Fig. 4 shows the disk I/O performance when we vary the PCM
size from 8MB to 64MB. We compare the PCMLogging scheme
with tuple-based buffering (denoted as PCMLogging) to the basic
scheme (denoted as PCMBasic) presented in the Introduction. For
PCMBasic, to minimize the disk I/Os, checkpoint is triggered
whenever the log pool becomes full; under each PCM size setting,
we tried different space partitions between the buffer pool and the
log pool and plotted the result with the best partition. As a reference,
we also include a scheme without PCM support (denoted as
NoPCM).
 As shown in Fig. 4(a), both PCMBasic and PCMLogging
achieve a better I/O performance than the NoPCM scheme, as
expected. PCMLogging greatly improves the performance when
the PCM size is larger than 16MB. At a PCM size of 64MB, it
outperforms PCMBasic by 40%. However, PCMLogging is slightly
worse than PCMBasic at a PCM size of 8MB. To explain this, we
plot the I/O breakdown and PCM miss rate in Figs. 4(b) and 5(a),
respectively. We can observe that when the PCM size is 8MB, the
miss rate is high and hence not many read and write requests can be
served by the buffered copies. Thus, the read I/Os are not much
reduced, as compared with the NoPCM scheme (see Fig. 4(b)). On
the other hand, due to a small size, PCM replacement happens
frequently. Recall that PCMLogging incurs an extra read I/O
(counted in write in Fig. 4(b)) when writing buffered tuples to the
disk during PCM replacement. This makes its write performance
even worse than NoPCM, thereby incurring a worse overall
performance. When the PCM size increases, the miss rate is
significantly reduced, especially for PCMLogging. For example, at
64MB, PCMLogging reduces the miss rate to 63% (vs. 81% for
PCMBasic), as shown in Fig. 5(a). Moreover, PCMLogging has a
larger buffering capacity with a tuple-based buffering granularity.
As a result, PCMLogging gets much fewer disk I/Os for both reads
and writes, as shown in Fig. 4(b).
 Next, we investigate the write traffic to the PCM, which may
affect its lifetime. As shown in Fig. 5(b), the write traffic of
PCMLogging is greatly reduced; it is only 2.7% of PCMBasic on
average.

(a) Disk I/O Count (b) I/O Breakdown

Fig. 4: Disk I/O Performance (PL=PCMLogging)

(a) Write Hit Rate on PCM (b) Write Trafic on PCM

Fig. 5: PCM Write Traffic

This is mainly because that the updates in OLTP workloads are
mostly small writes, buffering only the dirty tuples in PCMLogging
can avoid writing the clean part of a page. This result indicates that
the lifetime of PCM can be significantly improved by PCMLogging.

5. CONCLUSIONS AND FUTURE WORK
 In this paper, we have presented a study on leveraging PCM to
support efficient transaction processing. We have developed a new
PCMLogging scheme that combines the buffered updates and log
records, by taking advantage of the PCM hardware features. The
preliminary results have been encouraging. It is shown that
PCMLogging saves up to 40% disk I/Os and 97% PCM write traffic
in comparison with the basic buffering and logging scheme.
 This paper represents an initial step of our work towards
improving database transaction performance with PCM. For future
work, we will enhance the simulation experiments. We also plan to
further improve our work in a number of directions, such as
advanced PCM replacement policies, fine-grained tuple-based
mapping, wear-leveling techniques, multi-version concurrency
control, and integration with flash-memory technology.

Acknowledgement. This work is partially supported by GRF
Grants HKBU210808 and HKBU211510.

6. REFERENCES
[1] S. Chen, P. Gibbons, and S. Nath. Rethinking database

algorithms for phase change memory. In CIDR, 2011.
[2] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C. Lee, D.

Burger, and D. Coetzee. Better I/O through byte-addressable,
persistent memory. In SOSP, 2009.

[3] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A.
Ailamaki. Aether: A scalable approach to logging. VLDB,
2010.

[4] Samsung Press Release. Samsung ships industry's first multi-
chip package with a PRAM chip for handsets, April 2010.

[5] Micron 128Mb P8P Parallel PCM Data Sheet, March 2011.
[6] E. Rahm. Performance evaluation of extended storage

architectures for transaction processing. In SIGMOD, 1992.

2404

