
PCMLogging: Optimizing Transaction Logging
and Recovery Performance with PCM

Shen Gao, Jianliang Xu, Senior Member, IEEE, Theo H€arder, Bingsheng He, Byron Choi, and Haibo Hu

Abstract—Phase-change memory (PCM), as one of the most promising next-generation memory technologies, offers various

attractive properties such as non-volatility, byte addressability, bit alterability, and low idle energy consumption. Recently, PCM has

drawn much attention from the database community for optimizing query and transaction performance. As a complement to existing

work, we present PCMLogging, a novel logging scheme that exploits PCM for both data caching and transaction logging to minimize

I/O accesses in disk-based databases. Specifically, PCMLogging caches dirty pages/records in PCM and further maintains an implicit

log in the cached updates to support database recovery. By integrating log and cached updates, PCMLogging enables simplified

recovery and prolongs PCM lifetime. Furthermore, using PCMLogging, we develop a wear-leveling algorithm, that evenly distributes

the write traffic across the PCM storage space, and a cost-based destaging algorithm that adaptively migrates cached data from PCM

to external storage. Compared to classical write-ahead logging (WAL), our trace-driven simulation results reveal up to 1�20X
improvement in system throughput.

Index Terms—Phase-change memory, database recovery, caching, performance

Ç

1 INTRODUCTION

WRITE-AHEAD logging (WAL) has been extensively
adopted by database systems as state-of-the-art mech-

anism to ensure transaction atomicity and durability [10],
[24], [33]. Using the WAL scheme, transactions buffer dirty
data and redo/undo log records in a volatile dynamic
random access memory (DRAM). Upon transaction com-
mit/abort or dirty-page replacement, WAL spends I/Os in
propagating the buffered log data to an external stable stor-
age such as hard-disk drives (HDD). Due to the large speed
gap between DRAM and external storage, it is cost-effective
in most cases to flush log records instead of dirty data, which
would comprise all pages a transaction has updated. Yet,
this approach has some deficiencies. First, log I/Os cause
additional cost besides asynchronous dirty-page write I/Os.
Second, the required recoverymechanism such asARIES [24]
is fairly complex. Although the use of checkpoints will help
accelerate the recovery process, it makes its implementation
more complicated. Having said that, using slow HDDs as
external storage, maintaining a separate log has been proven
a good trade-off that achieves high system throughput with-
out compromising database consistency [32].

Recently, the emergence of non-volatile random access
memory (NVRAM) fills the speed gap by taking the best of
DRAM and HDD: read/write speed close to DRAM and

non-volatility similar to HDD. Within the variety of such
memories, phase-change memory (PCM) is one of the most
promising ones [18]. Compared with DRAM, PCM is not
only a persistent random-access memory but also provides
higher chip density. Compared to HDDs and flash-memory-
based solid-state drives (SSDs), PCM’s access speed exceeds
that of them by two to four orders of magnitude. Moreover,
it is a byte-addressable memory that allows direct access of
data (similar to DRAM), instead of having to go through a
block-based I/O interface. Unlike SSD having an erase-
before-write constraint, PCM is bit alterable without requir-
ing a time-consuming erasure operation. These advantages
already brought manufacturers to start the mass production
of PCM at a reasonable price. For example, Numonyx (now
Micron) released their first PCM products in 2010 [42].
Samsung has recently announced a 8 Gb PCM package and
the deployment of PCM in their mobile handsets [5], [45].
Hence, PCMmay be envisioned in the near future to be inte-
grated into the memory/storage hierarchy of computer sys-
tems [7], [18], [30].

Research work already started to explore the opportuni-
ties of optimizing database performance by using PCM [4],
[10], [23]. As a complement to existing work mainly focus-
ing on query processing and storage management, we
explore in this paper how to leverage PCM for improving
transaction performance through novel logging and recov-
ery methods. We focus on disk-based database systems
and advocate the hybrid memory/storage hierarchy sug-
gested by [7], [30], where both DRAM and PCM are placed
on top of the I/O interface (see Fig. 1a). The non-volatile
nature of PCM makes it an ideal place for saving transac-
tion log records. Moreover, its fast access speed enables
caching of the dirty pages evicted from DRAM to minimize
disk I/Os. Hence, a unique opportunity is emerging to
support both data caching and transaction logging at the
same time in PCM.

� S. Gao, J. Xu, B. Choi and H. Hu are with the Department of Computer
Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
E-mail: {sgao, xujl, haibo}@comp.hkbu.edu.hk.

� T. H€arder is with the Department of Computer Science, University of
Kaiserslautern, Germany. E-mail: haerder@informatik.uni-kl.de.

� B. He is with the School of Computer Engineering, Nanyang Technological
University, Singapore. E-mail: bshe@ntu.edu.sg.

Manuscript received 4 Jan. 2014; revised 6 June 2015; accepted 24 June 2015.
Date of publication 5 July 2015; date of current version 3 Nov. 2015.
Recommended for acceptance by E. Pitoura.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2015.2453154

3332 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 12, DECEMBER 2015

1041-4347� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

A basic method of adopting traditional WAL is to divide
the PCM space into two zones: 1) a cache zone to cache dirty
pages and 2) a log zone to keep transaction log records
(see Fig. 1b).1 When a page is evicted from DRAM, it will be
moved to the PCM cache zone. In case the PCM cache zone
is full, a replacement algorithm such as LRU has to
make room first. When a transaction commits, the log
records buffered in DRAM will be flushed to the PCM log
zone. When the log zone is full, we may trigger a checkpoint
process or migrate some of the log records to an external
disk to reclaim log space. Clearly, this WAL design not only
reduces the data and log I/Os to external disks, but also
accelerates commit processing of a transaction. Neverthe-
less, this method has several critical drawbacks:

� Data redundancy: The information maintained in the
PCM cache zone and log zone might be redundant.
For example, a transaction update kept in a log
record might also be cached in a dirty page. Such
data redundancy not only wastes the precious stor-
age space but also incurs more writes to PCM, which
shortens its lifetime.

� Complicated space management: Space management of
PCM becomes a challenge as it is shared by the cache
zone and the log zone. Although a dynamic scheme
may dynamically adjust these two zones, an ill-
advised setting may significantly deteriorate the
overall performance.

� Excessive write traffic: Most updates of an OLTP
workload are small writes [3]. Thus, caching full
pages in PCMmay not be very cost effective, because
caching of the page’s clean portion is not needed to
achieve durability. Even worse, writing full pages
involves a large amount of write traffic, thus reduc-
ing PCM’s lifetime.

� Expensive recovery: Crash recovery is still expensive.
Although, guided by the ARIES algorithm, many
dirty pages have been captured in the persistent
PCM cache, we still need to go through the analysis,
redo, and undo phases to recover the database to a
consistent state.

Consequently, this method may not fully exploit the per-
formance advantages provided by PCM. To address its
drawbacks, we propose a new record-level logging scheme
named PCMLogging. Different from the above method
where log zone and cache zone are independent, we inte-
grate cached updates and log records into implicit log
records that are kept in PCM. By taking advantage of the

implicit log, our scheme saves log I/Os and simplifies space
management of PCM. Moreover, our new scheme makes
checkpoints unnecessary and enables a simpler and cheaper
recovery algorithm (to be detailed in Section 3). Our main
contributions are as follows:

� We develop PCMLogging, an alternative to WAL
that exploits the PCM hardware features to optimize
transaction logging and recovery for disk-based data-
base systems.

� To address the PCM endurance issue, we propose a
wear-leveling algorithm for PCMLogging that dis-
covers and redistributes skewed write traffic by con-
sidering the residence time of PCM data. Our
algorithm does not incur any space overhead and
has a low time complexity.

� As a staging area between DRAM and external disk,
PCM needs to migrate cached data to disks when
space is in short supply (known as destaging).
Because PCM overflow would block transaction exe-
cution and increase lock contention, we develop a
cost model based on the Markovian birth-death pro-
cess and adaptively adjust the speed of data migra-
tion so as to balance the costs of data migration and
PCM overflow.

� We develop a trace-driven simulator to evaluate the
performance of PCMLogging based on the TPC-C
benchmark. Compared to WAL, the simulation
results reveal that PCMLogging achieves substantial
performance improvements of up to 1X, 3X, and 20X
for transaction throughput, when employing HDD,
SSD, and SD card-based flash memory as external
storage, respectively. PCM lifetime and transaction
response time are also significantly improved by our
proposed wear-leveling and destaging algorithms.

Organization. Section 2 prepares the background of our
research, including PCM hardware features and memory
architecture alternatives. Section 3 presents the PCMLog-
ging scheme and discusses its various operations in detail.
In Section 4, a wear-leveling algorithm enhancing PCM’s
endurance is described. A cost-based adaptive destaging
technique is presented in Section 5. In Section 6, we exten-
sively evaluate the PCMLogging performance. Section 7
surveys related work and, finally, Section 8 concludes this
paper and discusses future directions.

2 BACKGROUND

In this section, we give some background information
concerning NVRAM and PCM technologies and review
the alternatives of integrating PCM into the memory
architecture.

2.1 NVRAM and PCM

NVRAM has long been considered as dream-class storage,
providing superb fast access speed like DRAM and non-
volatility like HDD. Over decades, substantial efforts aimed
at the development of practical solutions for NVRAM.
Among many other alternatives such as ferroelectric RAM
(FeRAM) and magnetic RAM (MRAM), PCM appears as
today’s most promising NVRAM technology due to a recent
breakthrough in materials technology [5], [18], [42].

Fig. 1. Memory/storage hierarchy and the WAL design.

1. A similar idea proposed in [8] is based on battery-backed-up
DRAM.

GAO ET AL.: PCMLOGGING: OPTIMIZING TRANSACTION LOGGING AND RECOVERY PERFORMANCEWITH PCM 3333

Table 1 summarizes the hardware performance of several
current storage technologies including DRAM, flash mem-
ory, PCM, and HDD, where density, read/write latency,
and endurance are compared [4]. Read latency of PCM is
close to that of DRAM and two orders of magnitude shorter
than that of flash memory. Write latency of PCM is in
between those of DRAM and flash memory. Without erase-
before-write constraint, its random-write performance is
much better than that of flash memory. Moreover, write
latency of PCM is three orders of magnitude shorter than
that of HDD.

In addition, PCM has the following important hardware
features [7], [18], [42]:

� Fine-grained access: Compared to other non-volatile
memory technologies such as flash memory, erase-
before-write and page-based access do not restrain
PCM. It is byte addressable (or word addressable)
and bit alterable, which enable PCM to support small
in-place updates.

� Asymmetric read/write latency: As shown in Table 1,
the write speed of PCM is about 20 times slower
than its read speed. This is similar to flash memory
that has such an asymmetry as well.

� Endurance limitation: Similar to flash memory, PCM
endures a limited number of writes, about 106 to 108

writes for each cell, which is however much higher
than that of flash memory.

� Low idle energy consumption:While PCM uses for data
access similar energy as DRAM (i.e., 1-6 J=GB), it
consumes much lower idle energy compared to
DRAM (i.e., 1 versus 100mW=GB).

This paper focuses on improving transaction logging
and recovery performance by PCM integration. For this
purpose, we mainly exploit PCM’s low access latency and
fine-grained access granularity and address its endurance
limitation.

2.2 PCM in the Memory Hierarchy

So far, two representative architectures for the use of PCM
in a memory hierarchy are proposed [7], [30]: 1) PCM co-
existing with DRAM to serve as main memory (as shown in
Fig. 1a); 2) main memory only composed of PCM chips
thereby fully replacing DRAM. Considering the hardware
features of PCM, the co-existence architecture might be
more practical. The first reason is that PCM has endurance
limitation, which prevents a complete replacement of
DRAM. Second, write latency of PCM is still 20-50 times
larger than that of DRAM. Third, PCM capacity is expected

to still remain relatively small in the near future, in compari-
son with DRAM. Thus in this study, we focus on the mem-
ory architecture using PCM as an auxiliary memory, being
a staging area between DRAM and external disks.

3 PCMLOGGING

We consider the memory architecture as shown in Fig. 1a.
Without largely modifying the buffer manager residing in
DRAM memory, we present a new logging scheme, called
PCMLogging, where the cached updates and transaction
log records are combined and kept in PCM. The wear-
leveling and data destaging issues of PCMLogging will be
discussed in Sections 4 and 5.

3.1 Overview

The basic idea of PCMLogging is to integrate the transac-
tion log into the updates cached in PCM, by exploiting the
persistence property of PCM storage. For ease of presenta-
tion, we start by assuming in this section that PCM caching
granularity is a page and concurrency control is also at a
page level. That is, a page can be updated by at most one
transaction at a time. We will extend the design to record-
level caching and record-based concurrency control in
Section 3.3.

Overview of the PCMLogging scheme: To support data cach-
ing in PCM, we maintain the following data structures in
main memory (DRAM)/PCM (see Fig. 2):

� Mapping Table: This table maps logical page IDs to
physical PCM addresses. It is maintained in DRAM
rather than in PCM, because the mapping entries are
frequently updated and the write speed of PCM is
20-50 times slower than that of DRAM.

� Inverse Mapping: The inverse mapping is embedded
in each PCM page as metadata (i.e., PID). It is used
to construct the initial Mapping Table at boot time.

� FreeSlotBitmap: This bitmap is used to keep track of
the free page slots in PCM. Note for PCMLogging,
only the dirty pages evicted from main memory are
cached in PCM to minimize disk write I/Os.

Inspired by shadow paging [12], we adopt an out-of-
place update scheme in PCM. When a transaction is to
commit, all its dirty pages are flushed to PCM to ensure
durability. Also, when a dirty page is evicted from main

TABLE 1
Comparison of Storage Technologies [4]

Parameter DRAM Flash HDD PCM

Density 1X 4X N/A 2-4 X
Read latency
(granularity)

20-50 ns �25 ms �5ms �50 ns
(64 B) (4K B) (512 B) (64 B)

Write latency
(granularity)

20-50 ns �50 ms �5ms �1 ms
(64 B) (4 KB) (512 B) (64 B)

Endurance
(write cycles)

N/A 104-105 1 106-108

Fig. 2. Page format and Mapping Table.

3334 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 12, DECEMBER 2015

memory, it will be cached in PCM. For each dirty page, if
there already exists a previously committed version in
PCM, the committed version will not be overwritten.
Instead, the previous version is retained, while the dirty
page as new version is written to a free PCM slot. After that,
the logical page address in the Mapping Table is adjusted to
the new version. The need of retaining the previously com-
mitted version is to support undo operations in case of
transaction rollback or system crash.

To support transaction recovery, an ActiveTxList is main-
tained in PCM to record the in-progress transactions that
have dirty pages cached in PCM. Each cached page records
the XID of the last transaction that caused the page to be
dirty. Before the first dirty page of a transaction is written to
PCM, its corresponding XID should be recorded in the
ActiveTxList to guarantee atomicity. The XID is not removed
until the transaction is to commit and all its dirty pages are
flushed to PCM. Thus, during recovery, if the XID of a trans-
action is found in the ActiveTxList, it implies that the trans-
action was not yet committed before the crash; otherwise,
the transaction was already committed. Consequently, each
PCM page can be recovered according to the status of the
corresponding transaction. For example, if PCM appears as
shown in the right part of Fig. 2, we can infer that T1 is not
yet committed, whereas T2 is committed. Thus, the pages
updated by T1 (i.e., those stored in M1-M3) are discarded,2

whereas the pages updated by T2 (i.e., those stored in M5
and M7) need to be restored. Accordingly, the FreeSlotBit-
map will be updated to “00001010.” We note that, to avoid
hot-spots in PCM, wear-leveling techniques should be
adopted to evenly distribute writes across the PCM space,
which will be discussed in more detail in Section 4.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages.
First, the data redundancy between the log and cached
updates is minimized. Second, it avoids the challenging
space management issue, which is a must if they are sepa-
rated. Third, recovery can be done without checkpoints,
because we do not maintain an explicit log. In addition,
the recovery process becomes extraordinarily simple and
efficient. In the following, we describe the PCMLogging
scheme in detail.

3.2 PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally
aborted. To efficiently support such undo operations, we
maintain two additional data structures in main memory:

� Transaction Table (TT): This table records all in-prog-
ress transactions. For each of them, it keeps track of
all its dirty pages stored in main memory and PCM.
The purpose is to quickly identify relevant pages
when the transaction is to commit or abort.

� Dirty Page Table (DPT): This table keeps track of the
previously committed version of each PCM page
“overwritten” by an in-progress transaction. Recall
that we employ out-of-place updates in PCM. This is
necessary for restoring the previously committed
version in the event of a rollback. A dirty page entry
will be removed from the table, once the in-progress
transaction is committed or aborted.

PCMLogging needs to handle the following key events:
Flushing dirty pages to PCM.Whenmain memory becomes

full or a transaction is to commit, some dirty pages may need
to be flushed to PCM. For each dirty page, we first check
the Transaction Table. If it is the first dirty page of the trans-
action to be flushed to PCM, we add the related XID to the
ActiveTxList in PCM before flushing. If there exists a previ-
ously committed version M in PCM, we do not overwrite it
in place. To support undo, we create instead an out-of-place
copy M 0 with a larger version number. Then, M is added to
the Dirty Page Table and the page is mapped to M 0 in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate
the transaction is committed. Next, if any of its pages is
contained in the Dirty Page Table, the previous versions are
discarded by resetting their corresponding bits in the Free-
SlotBitmap. Finally, we clear the relevant entries in the
Transaction Table and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction
Table. If any of its pages is contained in the Dirty Page
Table, the current version should be invalidated and the
mapping should be re-mapped (restored) to the previous
version in the Mapping Table. Finally, we clear its XID in
the ActiveTxList and the relevant entries in the Transaction
Table and Dirty Page Table.

An Example. Consider the example shown in Fig. 3, where
T1 is in progress and T2 is committed. Suppose now a new
transaction T3 updates page P5. Before this dirty page is
flushed, T3 points to page P5 kept in main memory

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transac-
tion Table; DPT: Dirty Page Table).

2. They have not left the PCM, because our destaging algorithm
(Section 5) only flushes committed pages to external storage.

GAO ET AL.: PCMLOGGING: OPTIMIZING TRANSACTION LOGGING AND RECOVERY PERFORMANCEWITH PCM 3335

(see Fig. 3a). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Fig. 3b). After that, P5 is
mapped to M8, T3 points to M8, and the previous version
M7 is kept in the Dirty Page Table. Finally, if T3 is to
commit, it is removed from the ActiveTxList; the previous
version is discarded (the corresponding bit becomes 0 in
the FreeSlotBitmap); and the corresponding entries are
removed from the Transaction Table and Dirty Page Table
(see Fig. 3c). Otherwise, if T3 is finally aborted, the current
version is discarded (the corresponding bit becomes 0 in the
FreeSlotBitmap) and the previous version is restored in the
Mapping Table; and the corresponding entries are also
removed from the ActiveTxList, Transaction Table, and
Dirty Page Table (see Fig. 3d).

Recovery. A recovery process is invoked when the system
restarts after a failure. It identifies the last committed ver-
sion for each PCM page and re-constructs the Mapping
Table. To do so, the recovery algorithm reads all valid pages,
whose corresponding bits are 1’s in the FreeSlotBitmap. As
a valid page can be the latest version of the page updated
by an in-progress transaction or a previously committed
version that needs to be restored, we discard the uncommit-
ted pages that belong to an in-progress transaction, which
can be identified from accessing the ActiveTxList. Note that
this process does not involve any disk I/Os.

Discussion. A subtle issue is hidden in the example of
Fig. 3c. What happens in case of crash, after T3 is removed
from the ActiveTxList and before the previous versionM7 is
discarded, i.e., both M7 and M8 are valid at system restart.
Because both of their corresponding transactions T2 and T3
are committed, we are not able to determine the latest ver-
sion. Therefore, a version number is kept for each page
cached in PCM. For example, a 2-bit version number would
suffice under lock-based concurrency control, because at
most two versions co-exist (i.e., current version and previ-
ously committed version). Given two consecutive numbers
in the modulation domain, the version with the number
most recently assigned would be considered the latest.

3.3 Record-Level PCMLogging

After illustrating our basic idea, we now extend PCMLog-
ging to record-level logging for practical use. Recall that
PCM supports byte addressability and bit alterability. Thus,
in response to small writes in the OLTP workload and
record-based concurrency control, we propose to cache
dirty records, instead of dirty pages, in PCM. The advan-
tages are three-fold: 1) because the dirty information is only
a small portion of a page in the OLTP workload, caching
only dirty records saves PCM space; 2) caching dirty
records reduces the write traffic to PCM, which decreases
the chance of potential contention and prolongs PCM life-
time; 3) this naturally supports record-based concurrency
control, which is widely adopted by modern database sys-
tems for a high degree of concurrency.

To support record-based caching and logging, we make
the following modifications to the page-level PCMLogging
scheme presented in the last section:

� Record-level data management: The cache slots in PCM
should now be managed in units of records, rather
than pages. The PCM record format is similar to the

PCM page format shown in Fig. 2 except that now
the payload is a record and we have an additional
metadata field, i.e., slot no. (SNO) (see Fig. 4).3 PID
and SNO constitute a record identifier (RID). To
manage the free PCM space, a similar slot-based bit-
map is adopted if the records have fixed size. If they
are variable, we can employ a standard method such
as slotted directory [32].

� Table structures: In the Mapping Table, we still orga-
nize the entries by pages, but now each entry (related
to a dirty page) keeps track of the mappings of all
dirty records in the related page (the records may
be indexed by a binary tree based on their RIDs).
Similarly, in the Dirty Page Table, the entries are still
organized by pages, and each entry keeps track of
the previous versions of all PCM records in the
related page. We also maintain, for each page, a list
of dirty records stored in main memory. When a
transaction is to commit or a dirty page is evicted
from main memory, the related dirty records are
identified through this table and flushed to PCM. In
the Transaction Table, each transaction maintains a
list of its dirty records.

� Serving read/write requests: By consulting the Map-
ping Table, a record can be directly accessed from
PCM, if available. Otherwise, if an entire page is
requested, the page is loaded from external storage
and merged with the latest contents of the relevant
records cached in PCM. Note, loading page contents
from external disk and PCM is a parallel process and
access latency of PCM is negligible.

� Destaging: When the PCM is close to full (or the disk
system is idle), we may select some committed
records and write them back to the external disk. In
this case, we reconstruct a page by the following
three steps. First, we reload the target page from the
disk into DRAM. Second, we load all the committed
records of the target page from PCM and assemble
them into the reloaded page in DRAM. If the
reloaded page cannot hold all the modified records,
a new page will be created. Third, after flushing the
page to the disk, we mark the corresponding records
in PCM as obsolete. This destaging process has some
impact on system performance and a cost-based
adaptive destaging algorithm will be presented in
Section 5.

Algorithms 1, 2, and 3 summarize the detailed operations
of the record-level PCMLogging scheme.

Next, we discuss the conceivable performance impact of
the record-level scheme in two aspects: data structure over-
head and cost of destaging. First, as we shrink the access
granularity from page to record, the size of auxiliary data

Fig. 4. Record format for PCMLogging.

3. In case of deletion, the record content in PCM can be void.

3336 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 12, DECEMBER 2015

structures in DRAM, such as Mapping Table and Dirty Page
Table, grows. This will burden the buffering capacity of
main memory. Nevertheless, as shown by the experiments
(Section 6), this cost fraction is small and can be compen-
sated by the increased read and write hits to cached records
in PCM. Second, regarding the destaging cost, because we
need to read a page from disk and merge it with the com-
mitted record(s) in PCM before writing back, this cost will
run up by an additional read I/O. But much more recovery-
specific data can be stored in PCM, because we cache dirty
records only. Thus, a page has probably collected more
dirty records when it is destaged to disk, thereby reducing
the overall I/O cost. Moreover, because less data is written
to PCM during transaction commit, the commit processing
time can be reduced.

Algorithm 1. Record Flushing Logic in PCMLogging

Procedure: Flushing (Record t)
Let T be the transaction that made the last update to t
if t is T’s first dirty record to be flushed then
Append T to the ActiveTxList in PCM

Write t to a free space of PCM
if there is a previously committed version of t in PCM then
Add the previous version to the Dirty Page Table

else if there is a copy of t (updated by T) in PCM then
Invalidate the uncommitted copy

Update theMapping Table and Transaction Table

Algorithm 2. Commit/Abort Logic in PCMLogging

Procedure: Commit (Transaction T)
Access the Transaction Table
for each dirty record t of T in DRAM do
Flushing(t)

Remove T from the ActiveTxList in PCM
Discard the previous versions of T ’s dirty records
Update the Transaction Table and Dirty Page Table

Procedure: Abort (Transaction T)
Discard all T ’s dirty records, if any, in both PCM and DRAM
if T 2 ActiveTxList then
Restore the previous versions of T ’s dirty records in PCM
and update theMapping Table
Remove T from the ActiveTxList

Update the Transaction Table and Dirty Page Table

Algorithm 3. Recovery Logic in PCMLogging

Procedure: Recovery
Scan all valid records in PCM
for each valid record t do
if t’s XID 2 ActiveTxList or t has a larger version then
Discard t

else
Add an entry of t to the Mapping Table in DRAM

4 WEAR LEVELING

Wear leveling is a critical mechanism for improving PCM
lifetime. In this section, we propose a probabilistic record-

swapping algorithm to evenly distribute the write traffic
across the PCM space and therefore enhance its lifetime.

4.1 Design Requirements of Wear Leveling in
PCMLogging

PCM has a limited write endurance with about 106-108

writes per cell. Some previous work already focused on
wear leveling at the device level [18], [20]. For example, [20]
implements a read-before-write loop at the bit level to
improve reliability and extend lifetime. Assume that the
PCM space is divided into slots, and one record occupies
one or more units. While these techniques are helpful to
even out the write distribution within pre-defined units
(i.e., intra-record space), the writes among different units
could still be very skewed, because of the skewed writes in
transactional workloads [3]. Due to this fact, a system-level
approach is necessary to discover skewed write patterns
and evenly distribute the writes to different units.

Using PCMLogging, two kinds of data have an impact on
the write traffic of PCM. First, some objects such as Active-
TxList and FreeSlotBitmap are high-traffic data structures
and frequently updated. Inspired by [21], we can periodi-
cally re-locate them to prevent them from becoming
hot spots. Second, recall that for dirty records cached in
PCM, we apply out-of-place updates. Upon each write
request, we allocate free space for the write. Thus in the
next section, we propose a new wear-leveling algorithm
that works with such a space allocation mechanism. The
proposed algorithm is lightweight in the sense that it does
not incur additional space overhead.

4.2 Probabilistic Record-Swapping Algorithm

For the PCM space allocated to cached records, the overall
objective is to avoid hot and cold spots and evenly distrib-
ute the incoming update traffic to physical addresses.
Because we employ out-of-place writes to ensure durability,
updates to a (hot) record may be distributed to different
physical addresses. However, the write frequency of the
(physical) slots held by cold records is relatively little,
thereby increasing the skewness of write distributions
across the whole PCM space. To address this problem, we
propose to re-locate cold records during space allocation for
new writes according to their residence time.

To obtain the residence time of a record, the most accu-
rate way is to maintain a timestamp. However, such meta-
data incurs additional space overhead. Thus, to minimize
the overhead, we decided to use as an indicator the transac-
tion ID (XID), which is already maintained for the PCMLog-
ging scheme (Section 3). As XID is a monotonically
increasing number, the difference between a record’s XID
and the current XID of the system can very often indicate
the time since the record’s last update. Compared to the
timestamp-based approach, it can also avoid a miscounting
due to system idles.

After having chosen the XID difference as an indicator,
an intuitive method is to select the coldest record for swap-
ping when a new write arrives. However, to identify the
coldest record, this would require either scanning all the
records at runtime or dynamically maintaining an index
with some additional data structure. To deal with this issue,

GAO ET AL.: PCMLOGGING: OPTIMIZING TRANSACTION LOGGING AND RECOVERY PERFORMANCEWITH PCM 3337

we propose probabilistic record swapping, which attempts to
effectively discover the cold spots with limited overhead.
The idea is as follows. We maintain a swap pointer in DRAM,
which points to the next record to be considered for swap-
ping. Upon the arrival of a new write request, we check the
record in PCM pointed to by the current swap pointer. Let d
be the system-specified swapping threshold and t be the
record being checked. We compute the difference between
t’s XID, Xt, and the system’s current XID, Xc. If Xc� Xt � d,
t must be swapped with the new write. However, a single
swapping threshold could potentially incur a long delay
in identifying a cold record if they are clustered. To ease
this problem, when Xc �Xt < d, we use a probability of
ðXc �XtÞ=d to decide whether to swap the two records:

PrðSwappingÞ ¼ 1 Xc �Xt � d;
Xc�Xt

d
Xc �Xt < d:

�
The swap pointer will be advanced to the next record in

PCM after checking. The detailed algorithm of wear leveling
is formally described in Algorithm 4 and illustrated in
Fig. 5. Note that if the swapped record t has been commit-
ted, it will be assigned a new pseudo XID (i.e., the largest
XID that has been used but not in the ActiveTxList) after
being moved to the new address. This facilitates the wear-
leveling algorithm to compute its residence time at the new
address while keeping the committed status. On the other
hand, we expect that the chance of a swapped record
belonging to an in-progress transaction is very small,
according to our probabilistic swapping model.

Algorithm 4.Wear-Leveling Logic in PCMLogging

Procedure: Wear-Leveling (New Update Record r, Swapping
Threshold d)
Xt XID of the record t pointed by swap pointer
Xc XID of the system so far
Compute Pr(Swapping) based onXt,Xc and d

Generate a random number u between 0 and 1
if Pr(Swapping) > u then
Move record t to a free address of PCM
if t is a committed record then
Assign twith a new pseudo XID

Write new record r to the address of t
else
Write new record r to a free address of PCM

Update the Mapping Table
Advance swap pointer to the next record in PCM

Finally, we give a simple cost and benefit analysis for
the proposed algorithm. Regarding the cost, there is no
overhead on space and only a negligible computational
cost to compute the swapping probability. Record swap-
ping introduces some additional write traffic. Nevertheless,
as the threshold d is tunable, the system can choose an
appropriate setting to strike a good balance between the
total traffic and the wear leveling of writes (e.g., a higher d

setting may lead to a less even write distribution with a
lower traffic overhead). Regarding the benefit, we avoid
the case that a cold record occupies an address for an
excessively long time, thereby evening out the write distri-
bution. Moreover, we distribute the incoming traffic which
potentially contains hot records to cold addresses. As will
be shown in the experiments (Section 6), our algorithm
improves the PCM lifetime by 5X, even with about 34 per-
cent additional write traffic.

5 DESTAGING ALGORITHM

In our PCMLogging scheme, we need to migrate cached
records to external storage when PCM runs out of space.
In this section, we explore this destaging problem for
PCMLogging. We first discuss the design trade-offs of the
destaging process. To fully utilize the disk bandwidth, we
then develop a cost model to adaptively determine the
destaging speed based on the system workload.

5.1 Algorithm Overview and Design Trade-offs

The destaging process selects and migrates some of the
committed records cached in PCM back to the external disk,
based on specific selection criteria such as LRU. To increase
the efficiency of this process, we perform destaging only
when the PCM is close to full or the disk system has avail-
able bandwidth. When destaging starts, we need to decide
“how much bandwidth to spend on destaging.” A naive
approach is that when the PCM reaches a certain occupancy
rate, we devote 100 percent of the bandwidth to destaging.
After the PCM occupancy rate becomes lower than the
threshold, the destaging process stops. However, we
observe that an ill-advised setting may greatly deteriorate
the system performance. If the destaging is executed too
lazily, the PCM may overflow and hence the new writes
might be blocked to wait for free space allocation. On the
other hand, if the destaging is executed too aggressively, it
may reduce the hit rate of PCM and increase the I/O con-
tention for normal disk reads. In either case, the system
throughput and transaction response time could be signifi-
cantly degraded.

Thus, the design goal of our destaging algorithm is
to optimize the overall system performance by adaptively
allocating I/O bandwidth to destaging. Furthermore, the
destaging process in our PCMLogging scheme poses a
unique requirement. Instead of simply writing back a com-
mitted record to the external disk, we need to reload the tar-
get page of the record and perform a merge operation
before writing it back. In the literature, the destaging prob-
lem has been studied for disk arrays more than a decade
ago, where updating of data or parity is destaged from the
write cache to the disk array. However, the existing solu-
tions such as high-low watermark [25] and linear threshold
algorithms [35] are all based on heuristics. For example, in
the high-low watermark algorithm, destaging starts when an
upper threshold is reached and stops at a lower threshold;
in the linear threshold algorithm, a set of linearly increased
destaging rates is arranged according to the occupancy
rate of the staging area. In the next section, we develop a
cost model for the destaging process of PCMLogging and
dynamically determine its optimal rate based on the current
workload.

Fig. 5. Wear-leveling in PCMLogging.

3338 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 12, DECEMBER 2015

5.2 Cost Model

To find the optimal destaging rate, we develop a cost model
based on Markovian birth-death queueing system. We
assume that the PCM space is divided into segments (each
segment may accommodate a number of records). The
destaging process starts when there are M � 1 segments of
free space left. We model the system states when there are
M;M � 1; . . . ; 1; 0 segment(s) of free space, denoted by
states 0; 1; 2; . . . ;M, respectively. We also model the system
states, M þ i (i ¼ 1; 2; � � �), when the amount of pending
writes exceeds the PCM capacity by i segments of space.
Formally, we define the following notations:

� Pk: probability of the PCM being in state k.
� �k: birth rate of incoming traffic from state k to kþ 1

(i.e., the speed of new record writes from DRAM).
� mk: death rate of destaging traffic from state kþ 1 to

k (i.e., the speed of destaging records from PCM
to disk).

We assume that arrivals of both birth events and death
events follow a Poisson distribution. Each birth rate of �k can
be directly measured at runtime. It is determined by the
arrival rate of the incoming traffic and the PCM write hit
rate. For the death rates of mk’s, the system can specify any
pattern of destaging rates, such as linearly-increased rates.
Without loss of generality, we use fðkÞ and gðkÞ to denote
the relationships between the rates of state k (k �M) and
those of state 0. Note that fðkÞ can be measured and deter-
mined during system warm-up, and gðkÞ is a configurable
parameter. After state M, we assume that the birth rate
remains at fðMÞ�0 (as the PCM hit rate remains constant)
and the death rate is set at the highest possible random I/O
ratemmax (to recover from the overflow state as soon as possi-
ble). More specifically, we have the following relationships:

�k ¼ fðkÞ�0 0 � k < M;
fðMÞ�0 k �M:

�

mk ¼ gðkÞm0 0 � k < M;
mmax k �M:

�

The state transition diagram for the birth-death queue of
our system is illustrated in Fig. 6. For simplicity, we only
consider the I/O cost for each state. Because the I/O cost for
destaging is proportional to the death rate, we can formu-
late the overall cost of destaging as the summation of the
death rates weighted by the probability of each state:

Costdestaging ¼
XM
k¼1

mk�1Pk þ
X1

k¼Mþ1
mmaxPk: (1)

Next, we show, given a birth rate �0, fðkÞ’s and gðkÞ’s,
how to determine the optimal m0 that minimizes the above
overall cost. When the system is in an equilibrium state, the
following two conditions hold:

XM
k¼0

Pk þ
X1

k¼Mþ1
Pk ¼ 1: (2)

Pk ¼ �k�1
mk�1

Pk�1: (3)

To simplify the equations, we denote r ¼ �0
m0

and a ¼ �M
mmax

.
We can rewrite Eq. (3) as follows:

Pk ¼ P0

Yk�1
i¼0

fðiÞ
gðiÞ

�0

m0

� �k

¼ P0r
k
Yk�1
i¼0

fðiÞ
gðiÞ

 !
; 1 � k �M:

(4)

Pk ¼ �M

mmax

� �k�M
PM

¼ P0a
k�MrM

YM�1
i¼0

fðiÞ
gðiÞ

 !
; k �M þ 1:

(5)

Substituting Pk’s in Eq. (2), we have:

P0 þ P0

XM
k¼1

rk
Yk�1
i¼0

fðiÞ
gðiÞ

 !
þ P0

arM

1� a

YM�1
i¼0

fðiÞ
gðiÞ

 !
¼ 1: (6)

We can observe that Eq. (6) contains only two variables r
and P0. As we will show below, the objective function (1)
can also be expressed by these two variables. Note that
r < 1. Thus, by resolving Eq. (6), we can pre-compute a set
of P0’s for all possible r values, e.g., all values between
0 and 1 with a small interval of 0.001. Then, we iterate
all pairs of r and P0 to find the minimal cost given by the
objective function (1):

XM
k¼1

mk�1Pk þ
X1

k¼Mþ1
mmaxPk ¼

P0

XM
k¼1

�0gðk� 1Þrk�1
Yk�1
i¼0

fðiÞ
gðiÞ

 !
þ P0

�MrM

1� a

YM�1
i¼0

fðiÞ
gðiÞ

 !
:

After determining r, we can obtain the optimal m0 ¼ �0=r
based on the �0 value currently measured. Thus, the des-
taging rate for each state can be decided accordingly by
mk ¼ gðkÞmo.

6 EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed PCMLogging scheme. A description of the experi-
mental setup is followed by a thorough comparison of
PCMLogging against existing logging schemes. Finally,
as flash memory is becoming a competitive external storage
to HDDs, we explore the performance of PCMLogging on
flash memory devices.

6.1 Experiment Setup

We have developed a trace-driven simulator based on
DiskSim [41]. We implemented a transaction processing

Fig. 6. State transition diagram.

GAO ET AL.: PCMLOGGING: OPTIMIZING TRANSACTION LOGGING AND RECOVERY PERFORMANCEWITH PCM 3339

model and a PCM model on top of simulated disks. In the
transaction processing model, we employed the strict two-
phase locking protocol for concurrency control at the record
level. Deadlocks were prevented by the “wait-die” protocol:
each transaction is given a timestamp when it starts. The
older transaction is allowed to wait for a lock being held by
a younger transaction. A younger transaction, on the other
hand, is forced to abort, when requesting a lock being held
by an older transaction [32], and will be restarted after the
older transaction is completed. In the PCM model, as with
[7], [10], we simulated four PCM chips, which could serve
at most four concurrent requests. Recall that a variable-
size record could occupy one or more PCM units. We set
the data access unit for PCM to 128 B, because the average
record length in our trace is 117 B. We set its write latency
to 1 ms and its read latency to the same quantity as that of
DRAM access (i.e., 50 ns).

For HDD-based simulation experiments, we configured
the read/write latency the same as the IBM DNES-309170
hard disk without write cache. For SSD-based simulation
experiments, we adopted the device configuration specified
by [26], [29], i.e., 32 GB SSD with eight fully connected 4 GB
flash packages.

Our evaluation is based on the TPC-C benchmark [46],
which represents an on-line transaction processing work-
load. To obtain the workload trace, we ran the DBT2 [43]
toolkit to generate the TPC-C transaction SQL commands,
which were then fed to PostgreSQL 8.4 [44]. In the genera-
tor, by default, we set the number of clients to 50 and the
number of data warehouses to 20. We recorded both the
transaction semantics (BEGIN/COMMIT/ABORT) and I/O
requests at the record level in PostgreSQL. The database
records have a variable size and fit into one or more PCM
units by including its metadata.

We compared three logging schemes: our record-level
PCMLogging scheme (denoted as PCMLogging), the WAL
design of using PCM for both data caching and transaction
logging (detailed in the Introduction section, denoted as
WAL), and a recent proposal of using storage-class memory
such as PCM for logging only (denoted as SCMLogging)
[10]. In SCMLoggig, we implemented the classic WAL and
allocated the entire PCM space to the log.

Note that the page-level PCMLogging scheme was not
evaluated as it does not support record-level concurrency
control. For a fair comparison using PCMLogging, the main
memory area included the space needed for holding the data

structures of PCMmanagement (such asMapping Table and
Dirty Page Table). For the destaging process of PCMLogging,
we assumed the rate relationship function gðkÞ ¼ 1 for sim-
plicity (fðkÞ was measured during warm-up). For WAL, we
used for simplicity the whole PCM space for data caching
and reserved an additional page for archiving log records,
though this might give performance advantages to the WAL
scheme. For SCMLogging, the log records were created
and maintained in PCM directly. In general, the WAL and
SCMLogging schemes represent two typical usages of PCM,
i.e., maximizing its caching or logging capabilities. In all
compared schemes, both logs and data pages/records in
PCM are asynchronously flushed out to the external disk.

We conducted the simulation experiments on a desktop
computer running Windows 7 Enterprise with an Intel i7-
2600 3.4 GHz CPU. We focus on disk-based databases, and
as in the previous work [3], [15], [22], we set the buffer size
(including DRAM and PCM) to be 5-15 percent of the data-
base size. By default, as we simulated a database of 2.4 GB,
the default sizes of DRAM and PCMwere both set at 128MB
(i.e., total 10 percent of the database size). For all schemes,
the results were collected after the system reaches the stable
state. The system performance was measured for the same
number of transactions (i.e., 100,000 transactions). Table 2
summarizes the settings of our simulation experiments.

6.2 Overall Performance Comparison

In this section, we report the overall comparison of
PCMLogging with WAL and SCMLogging. We plot the
transaction throughput and response time of the three
schemes in Figs. 7a and 7b, respectively, by varying the size
of PCM from 32 to 160 MB. We make the following observa-
tions from the results. First, WAL has a better performance
than SCMLogging in all cases tested. This is mainly because
applying WAL, PCM is not only used for logging but also
for data caching, which makes its I/O cost less than that of
SCMLogging (see Fig. 8a). Second, PCMLogging has the
best performance among all the three schemes. In Fig. 7a,
the throughput improvement of PCMLogging over WAL
increases from 19.2 to 78.3 percent, as the PCM size grows.
A similar trend is observed for the response time in Fig. 7b.
This confirms our argument that PCMLogging can better
exploit the PCM hardware features for superior perfor-
mance improvements. Next, we reveal more details of the
PCMLogging performance from various perspectives.

6.2.1 I/O Breakdown

We decompose the total I/O number into reads and writes
and plot the I/O breakdown in Fig. 8a. Obviously, the total

TABLE 2
Default Parameter Settings

Parameter Default Setting

HDD read/write latency (per page) 8.05ms/8.20ms
SSD read/write latency (per page) 25 ms/50 ms
SD card read/write latency (per page) 1.47ms/200.1ms
PCMwrite latency (per 64 B) 1 ms
Logical page size 8KB
PCM unit size 128B
TPC-C database size 2.4GB
TPC-C client number/warehouse number 50/20
Main memory (DRAM) size 128MB
PCM size 128MB

Fig. 7. Overall performance results.

3340 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 12, DECEMBER 2015

I/O number of SCMLogging remains the same under differ-
ent PCM sizes, because it writes only log records to PCM. In
contrast, due to data caching in PCM, the total I/Os of WAL
and PCMLogging decrease as the size of PCM grows.
In particular, compared with WAL, PCMLogging saves
21.5%�46.6% of total I/Os under different PCM sizes. The
saving is mainly due to reduced write I/Os (the upper part
of each bar). For example, when the PCM size is 128 MB, the
number of write I/Os of PCMLogging is only 12.7 percent
of that of WAL.

To gain more insights, we further measure the average
number of dirty records per page for each write I/O opera-
tion and plot the results in Fig. 8b. This number indicates
the efficiency of flushing dirty information from DRAM/
PCM to external disk. The higher this number, the less write
I/Os are required for handling the same workload. As illus-
trated by caching dirty pages in PCM, WAL has up to 11.1
percent more dirty records per page than SCMLogging. As
for PCMLogging, by caching dirty records in PCM, it fur-
ther improves this number to 60.4%�223% compared to
WAL. This result reveals that PCMLogging can collect a rel-
atively larger number of dirty records for each write I/O,
thereby reducing overall write I/Os.

On the other hand, as shown in Fig. 8a, the improvement
of PCMLogging in read I/Os is not as much as that in write
I/Os. This is partly because PCMLogging incurs extra page
read I/Os (to merge dirty records with original page con-
tents) when destaging records from PCM to external disk
(recall Section 5). Nevertheless, when the PCM size is larger
than 64 MB, this overhead is outweighed by the benefit due
to data caching in PCM. To observe this effect in Fig. 8c, we
plot the number of actual read I/Os (the bottom part of
each bar, excluding the extra I/Os due to destaging) and
the number of PCM hits (the upper part of each bar). Note,
each bar represents the total number of DRAM misses
under a particular PCM size setting. For SCMLogging, the
read I/Os correspond to the DRAM misses, because it has
no PCM cache. For WAL, the larger PCM, the more PCM
hits; up to 27.3 percent of the DRAM misses are satisfied by
the cached pages in PCM. Although buffer management

combined with PCMLogging experiences the highest num-
ber of DRAM misses, it causes the least number of read
I/Os (to disk), because most of its DRAM misses are satis-
fied by the cached records in PCM.

6.2.2 Impact of Concurrent Execution

We now investigate how concurrency of transaction execu-
tion would influence system performance. Figs. 9a and 9b
show transaction throughput and response time of the
three schemes, respectively, by varying the number of cli-
ents in the trace generator. While the average response
time increases with the client number for all three schemes,
PCMLogging has the least degradation in response time
(Fig. 9b). The reason is as follows. With a larger number of
clients, the lock contention becomes higher. As PCMLog-
ging eliminates some time-consuming operations such as
dirty-page replacement, each transaction holds its locks
for a shorter time than that of WAL and SCMLogging.
Consequently, PCMLogging has a better scalability to sup-
port more concurrent transactions with less penalty in
response time. On the other hand, as shown in Fig. 9a, the
system throughput remains almost unchanged for different
client numbers, because the system is bounded by the I/O
performance.

6.2.3 Impact of Transaction Size

Next, we reveal the impact of transaction size (i.e., the num-
ber of pages updated by a transaction) on the system perfor-
mance. To do so, we split the original trace of transactions
into two sub-traces according to the transaction size
(denoted by m): short transactions (m � 10) and long trans-
actions (m > 10). From Figs. 10a and 10b, we can observe
that the performance improvement of PCMLogging over
WAL and SCMLogging is higher for long transactions. For
example, PCMLogging outperforms WAL by 15.5 percent
in terms of throughput for short transactions, and this

Fig. 8. I/O breakdown comparison.

Fig. 9. Impact of concurrent execution.

Fig. 10. Impact of transaction size.

GAO ET AL.: PCMLOGGING: OPTIMIZING TRANSACTION LOGGING AND RECOVERY PERFORMANCEWITH PCM 3341

improvement increases to 87.7 percent for long transactions.
This can be explained as follows. For a long transaction, it
is more likely to have a larger amount of dirty page replace-
ments than a short transaction has. As discussed earlier,
PCMLogging alleviates lock contention and saves write
I/Os by caching and logging dirty records in PCM. Conse-
quently, PCMLogging favors long transactions by a higher
performance improvement than short transactions.

6.2.4 Recovery Performance

For the WAL scheme, we used PostgreSQL to simulate its
recovery time. We set the checkpoint interval to be the
default setting (i.e., 5 minutes). We randomly injected 10
failures during the experiment. The average recovery time is
3.2 seconds. In contrast, using our PCMLogging, the average
recovery time is 19ms only. This is because the recovery pro-
cess of WAL must involve I/O operations, whereas in
PCMLogging we only need to scan the PCM and discard the
uncommitted records without incurring any I/O operations.

6.3 Wear-Leveling Performance

In this section, we examine the PCM write performance
and evaluate our proposed probabilistic record-swapping
wear-leveling algorithm. We compare PCMLogging with-
out wear-leveling mechanism (denoted as PL) and with
different swapping thresholds (denoted as PL-d, where
d� 10;000 is the swapping threshold). In Fig. 11, we show
the average number of overwrite times for all PCM units,
the worst 1% and 5% PCM units, as well as the variance of
the write distribution over all PCM units. Two observations
are made. First, by applying our weal-leveling algorithm,
although PL-10 and PL-1 increase the total write traffic by
34.2%�51.5%, the average write traffic for the worst 1% and
5% PCM units is reduced by up to 26.4 and 23.0 percent,
respectively. As the worst PCM units decide the PCM
lifetime, we believe this is worthwhile even at the cost of
increased total traffic. Also, the time of PCM writing
(including the swapping overhead incurred for wear-level-
ing) is negligible, accounting for less than 0.2 percent of the
total response time. Second, comparing PL-10 and PL-1, a
smaller swapping threshold has 12.9 percent more traffic
overhead. However, the variance of the write distribution
is decreased by 8 percent, and the overwrite traffic of
the worst 1% and 5% PCM units is decreased by 4.6 and
3.6 percent, respectively. As discussed in Section 5, a
smaller swapping threshold results in more swap opera-
tions, which leads to more evenly distributed traffic.

6.4 Destaging Performance

To evaluate the performance of our cost-based adaptive
destaging algorithm, we compare it with the high-low

watermark destaging algorithm [25]. In the high-low water-
mark algorithm, the destaging process is triggered by an
upper threshold of the PCM occupancy rate and terminated
by a lower threshold. In the experiments, we set the upper
threshold to be 99 percent of the PCM size to reserve some
free space for transaction commit. The lower threshold is set
at 97.5 percent. Our adaptive destaging algorithm starts the
destaging process when there is about 2.5 percent of free
PCM space left, and the segment size was set to 640 KB by
default. With these parameter settings, caching performance
would not be too much affected by the destaging process.

Because destaging operations may cause sudden over-
head on some transactions, we investigate the performance
of the worst 1 percent transactions in terms of response
time. As shown in Fig. 12a, the adaptive algorithm shortens
the worst response time of the high-low watermark algo-
rithm by 6.8%�21.9%. To explore the cause of performance
improvement, we recorded the destaging I/O numbers of
the two algorithms for a time period under the default sys-
tem settings and plot the results in Fig. 12b. We can observe
that the destaging I/Os of the high-low watermark algo-
rithm are quite wavy, which may delay the transaction
execution from time to time. However, in our adaptive algo-
rithm, the destaging I/O pattern is more stable. As the PCM
size increases, the transactions in the high-low watermark
algorithm are still largely affected by the skewed I/O pat-
tern. In contrast, our cost-based destaging algorithm adap-
tively distributes the destaging workload and reduces the
worst transaction response time by up to 21.9 percent.

6.5 Additional Experiments on Other Datasets

As a complement to the experiment results so far, this
section presents some additional results obtained from
other datasets and system settings.

In Fig. 13, we present the results of experimenting logging
schemes on a widely adopted telecomworkload benchmark,

Fig. 11. Wear-leveling performance.

Fig. 12. Destaging performance.

Fig. 13. Performance results on the TM1 dataset.

3342 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 12, DECEMBER 2015

TM1 [47]. The trace generation and the experimental param-
eters were set the same as those used in the TPC-C experi-
ments. As we can observe from the figure, PCMLogging
outperforms SCMLogging andWAL by up to 110 and 67 per-
cent, respectively. PCMLogging retains its advantages over
the other logging schemes for this benchmark.

We have also conducted experiments under the setting of
a more powerful system. We collected a TPC-C trace from
200 warehouses with 50 clients, where the lock contention
has less impact on transaction execution. The size of DRAM
was set as 5 percent of the size of the dataset; i.e., they were
set at 1 and 20 GB, respectively. The evaluation results with
varying PCM sizes are shown in Fig. 14. For WAL, we allo-
cated 1 MB PCM to be the log buffer (among which 512 KB
as the transfer size) and the rest PCM space as the data
cache. Benefiting from the larger log cache, the performance
of WAL slightly improves. However, the overall trend
remains similar to that of the default case (Fig. 7a), and
PCMLogging still outperformsWAL by up to 56 percent.

6.6 PCMLogging Performance on Flash Memories

As the flash memory technology matures, various flash-
memory-based devices have been available in the market.
For examples, SSD devices have been deployed in desktop
and server computers as external storage and secure digital
memory (SD) cards have been widely adopted by smart-
phones to store application data. This section studies the
performance of PCMLogging in SSD- and SD card-based
database systems.

In Fig. 15a, we report the transaction throughput of the
three schemes under evaluation in an SSD-based system.
Fig. 15b plots the experimental results of using a simulated
Kingston SD card as external database storage (see Table 2
for detailed read/write latency settings). The performance
improvement of PCMLogging against the other schemes is
up to 2.1X and 20X in SSD- and SD card-based systems,
respectively, which is much larger than the improvement
observed in HDD-based systems (Fig. 7). This can be
explained as follows. First, compared to the write I/O cost,
the destaging cost on SDD and SD card is relatively lower,
because the merge process benefits from the fast random
read of flash memory. Second, recall that PCMLogging
greatly reduces the number of write I/Os by caching and
logging dirty records. On flash memory, due to the asym-
metric read/write performance, the savings on write I/Os
lead to a larger gain in overall performance. This reason fur-
ther explains why the performance improvement on SD
card is even larger than that on SSD, because SD card has a
much higher asymmetry in read/write latency.

7 RELATED WORK

A long stream of research exists on transaction-oriented
database logging and recovery [13] for which the existing
algorithms can be classified into two categories, namely
WAL [24] and shadow paging [12]. Using WAL, in-place
update can be performed, i.e., a data page can be modified
only after its old state has been logged, which enables the
undo of the update during transaction rollbacks or system
failures. In contrast, shadow paging handles data updates
by out-of-place schemes. After an update, a page is written
to a free block, leaving its old state as a shadow page on
disk. Although both WAL and shadow paging have been
implemented in real systems, shadow paging is not as pop-
ular as WAL for disk-based databases due to performance
reasons [26], [32]. Over the past few decades, considerable
research efforts have been devoted to the optimization of
WAL performance, e.g., group commit [14], finer-grained
logging [33], multi-core techniques [16], to name but a few.
Alternatively, log-structured databases adopt log-only
storage for alleviating write I/Os and supporting fast sys-
tem recovery [36]. PCMLogging shares some ideas of these
techniques. In PCMLogging, caching dirty data records has
a similar effect of batching non-consecutive record updates.
PCMLogging also has a similar feature of performing extra
readings from PCM to compose a full data page during
destaging. On the other hand, PCMLogging improves log-
structured techniques by merging multiple writes of the
same data record into a single cached copy. Log-structured
Merge Tree (LSM) [27] is a hierarchical index that was pro-
posed for write-intensive workloads. It caches the writes to
the index in main memory and later merges the updates to
disk. bLSM [34] is an optimization of LSM-tree that uses
Bloom filters to improve the read performance. However,
bLSM still adopts a separated WAL logging system. In
contrast, our proposed PCMLogging scheme is a more
holistic approach, which combines transaction logging with
data caching.

Transaction processing schemes for NVRAM have been
studied a long time ago. Agrawal and Jagadish [39] pre-
sented an idea of using NVRAM to support transaction
logging based on shadow paging. However, there are sev-
eral major differences between this previous work and our
PCMLogging. First, the previous work assumed an
NVRAM-only setting, where the entire main memory is
non-volatile. In contrast, in our PCMLogging we consider
PCM as a supplement to DRAM. Therefore, the logging pro-
tocol needs to be re-designed to work in such a hybrid
memory setting. Second, in addition to the logging protocol,
we address the wear-leveling and destaging problems

Fig. 14. Performance results on a larger TPCC dataset.

Fig. 15. Transaction throughput on flash memories.

GAO ET AL.: PCMLOGGING: OPTIMIZING TRANSACTION LOGGING AND RECOVERY PERFORMANCEWITH PCM 3343

of using PCMLogging, which are critical to system perfor-
mance but were not discussed in the previous work. Third,
we conduct extensive simulation experiments to validate
the proposed scheme and reveal insightful findings,
whereas the previous work did not report any performance
evaluation result.

Recently, flash-memory-based SSDs have emerged as a
competitive alternative of external storage. Lee and Moon
[19] proposed a new In-Page Logging (IPL) scheme for
reducing the database update cost on flash memory. IPL
avoids direct updates to a page by logging the data changes
in a reserved area of the flash block, and then performs era-
sure and merge operations until the log area becomes full.
A software layer known as FTL (Flash Translation Layer)
has been used to address the “erase-before-write” feature of
flash memory. However, most of the existing FTL schemes
designed for SSDs [6] are not suitable for PCM. Chen [2]
proposed Flashlogging to flush transactional log records to
flash devices by exploiting their fast sequential write per-
formance. In a previous contribution [26], we proposed
a FlagCommit protocol for flash-based databases, where
the partial-page-programming feature of flash memory is
exploited to optimize the transaction recovery performance.

More recently, as one of the most promising next-genera-
tion memory technologies, PCM has drawn attention from
various research aspects. The hardware-level optimizations
have been focused on improving the write performance and
the lifetime of PCM. Several wear-leveling techniques based
on the idea of randomizing address-to-frame mappings
have been proposed [18], [20]. Software techniques have
also been developed to take the best of both PCM and
DRAM. Condit et al. proposed a file system called BPFS [7]
based on the characteristics of byte-addressable and non-
volatile memory (BPRAM). PCM can be viewed as one spe-
cific type of BPRAM, and a hybrid memory system of
BPRAM and DRAM is adopted in [7].

Chen et al. presented a pioneer study on how database
algorithms should be adapted to PCM technology in [4].
They improved two fundamental database algorithms (i.e.,
B+-tree and hash join), by reducing the write operations in
PCM. Kim et al. [23] extended IPL to IPL-P by storing the
logged changes in PCM. Regarding transaction processing,
Fang et al. [10] used PCM as an asynchronous WAL pool.
They discussed hardware features and OS interface support
for PCM and addressed several issues resulting from the
opportunity to directly write log records to PCM. More
recently, Wang and Johnson [37] proposed to enhance dis-
tributed logging [16] for multicore and multi-socket servers
through NVRAM. Pelley et al. [28] developed a recovery
mechanism called NVRAM Group Commit for NVRAM-
based main-memory databases. In contrast to these recent
studies, this paper considers disk-based database systems
with hybrid DRAM/PCM memories running on single-
socket servers.

We remark that many of the techniques developed in this
paper have been inspired by research related to shadow
paging [12] and finer-grained logging [33]. A recent work
named AntiCaching [9] also proposed record-level data
management as a new architecture for main-memory data-
bases. However, to the best of our knowledge, this is the
first complete work that is dedicated to developing

transaction logging and recovery schemes for PCM-assisted
disk-based database systems.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a study on leveraging
PCM to support efficient transaction logging and recovery.
We have developed an effective yet simple PCMLogging
scheme that integrates the log and cached updates, by tak-
ing advantage of the PCM hardware features. To address
the PCM endurance issue, we have proposed a probabilistic
wear-leveling algorithm that proactively migrates the cold
records in PCM. Furthermore, we have developed a cost
model to adaptively adjust the speed of data destaging from
PCM to external disks. The experiments based on TPC-C
benchmark have demonstrated a significant performance
improvement of our PCMLogging scheme compared to
WAL and SCMLogging. It not only outperforms WAL by
up to 1�20X in terms of transaction throughput and
response time, but also prolongs the PCM lifetime due to
reduced traffic and wear leveling of write operations. The
performance improvement is observed to be even higher
when we employ flash memories such as SSD and SD card
as external database storage.

As for future work, we plan to implement the PCMLog-
ging scheme in an open-source database management sys-
tem. It is of particular interest to incorporate this scheme
into SQLite, a database widely used on smartphones,
because PCM has already been deployed on mobile hand-
sets. We are also going to further improve the scheme in
various directions, such as advanced PCM replacement pol-
icies, support of index structures, and integration with
multi-version concurrency control.

ACKNOWLEDGMENTS

A preliminary version of this paper was presented at
the 20th ACM International Conference on Information
and Knowledge Management (CIKM) [11]. This work was
supported by the German-Hong Kong Joint Research
Scheme (Grant G_HK018/11) and the Research Grants
Council of Hong Kong SAR, China (Grants HKBU211510
and HKBU12202414).

REFERENCES

[1] S. Byun, “Transaction management for flash media databases in
portable computing environments,” J. Intell. Inf. Syst., vol. 30,
pp. 137–151, 2008.

[2] S. Chen, “Flashlogging: Exploiting flash devices for synchronous
logging performance,” in Proc. ACM SIGMOD Int. Conf. Manag.
Data, 2009, pp. 73–86.

[3] S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons, R. Johnson,
I. Pandis, and R. Stoica, “TPC-E vs. TPC-C: Characterizing the
new TPC-E benchmark via an I/O comparison study,” SIGMOD
Rec., vol. 39, pp. 5–10, 2010.

[4] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking database algo-
rithms for Phase-change memory,” in Proc. 5th Biennial Conf. Inno-
vative Data Syst. Res., 2011, pp. 21–31.

[5] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Lim, Y.
Oh, D. Kown, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang, J. Lee,
Y. Kwon, S. Kim, J. Kim, Y. J. Lee, Q. Wang, S. Cha, S. Ahn, H.
Horii, J. Lee, K. Kim, H.-S. Joo, K. Lee, Y.-T. Lee, J.-H. Yoo, and G.
Jeong, “A 20nm 1.8V 8Gb PRAM with 40MB/s program
bandwidth,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2012,
pp. 46–48.

[6] T. Chung, D. Park, S. Park, D. Lee, S. Lee, and H. Song, “A survey of
flash translation layer,” J. Syst. Archit., vol. 55, pp. 332–343, 2009.

3344 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 12, DECEMBER 2015

[7] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,
and D. Coetzee, “Better I/O through Byte-addressable, persistent
memory,” in Proc. 22nd Symp. Operating Syst. Principles, 2009,
pp. 133–146.

[8] G. P. Copeland, T. W. Keller, R. Krishnamurthy, and M. G. Smith,
“The case for safe RAM,” in Proc. 15th Int. Conf. Very Large Data
Bases, 1989, pp. 327–335, .

[9] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik,
“Anti-caching: A new approach to database management system
architecture,” Proc. VLDB, vol. 6, pp. 1942–1953, 2013.

[10] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang, “High-perfor-
mance database logging using Storage-class memory,” in Proc.
IEEE 27th Int Conf. Data Eng., 2011, pp. 1221–1231.

[11] S. Gao, J. Xu, B. He, B. Choi, and H. Hu, “PCMLogging: Reducing
transaction logging overhead with PCM,” in Proc. 20th ACM Int.
Conf. Inf. Knowl. Manage., 2011, pp. 2401–2404.

[12] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price,
F. Putzolu, and I. Traiger, “The recovery manager of the system
R database manager,” ACM Comput. Surv., vol. 13, pp. 223–242,
1981.

[13] T. H€arder and A. Reuter, “Principles of Transaction-oriented data-
base recovery,”ACMComput. Surv., vol. 15, no. 4, pp. 287–317, 1983.

[14] P. Helland, H. Sammer, J. Lyon, R. Carr, P. Garrett, and A. Reuter,
“Group commit timers and High-volume transaction systems,” in
Proc. Int. Workshop High-Perform. Trans. Syst., 1987, pp. 301–329.

[15] W. W. Hsu, A. J. Smith, and H. C. Young, “I/O reference behavior
of production database workloads and the TPC benchmarks—An
analysis at the logical level,” in Univ. of California, Berkeley,
Germany, UC Berkeley Rep. UCB/CSD-99-1071, 1999.

[16] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A.
Ailamaki, “Aether: A scalable approach to logging,” Proc. VLDB
Endowment, vol. 3, pp. 681–692, 2010.

[17] N. A. H. Kim, S. Seshadri, C. Clement, and L. Chiu, “Evaluating
phase change memory for enterprise storage systems: A study of
caching and tiering approaches,” in Proc. 12th USENIX Conf. File
Storage Technol., 2014, pp. 33–45.

[18] B. C. Lee, P. Zhou, J, Yang, Y. Zhang, B. Zhang, E. Ipek, O. Mutlu,
and D. Burger, “Phase-change technology and the future of main
memory,” IEEE Micro, vol. 30, no. 1, pp. 131–141, Jan. 2010.

[19] S. W. Lee and B. Moon, “Design of Flash-based DBMS: An in-page
logging approach,” in Proc. SIGMOD Int. Conf. Manage. Data, 2007,
pp. 55–66.

[20] K. J. Lee, B.-H. Cho, W.-Y. Cho, S. Kang, B.-G. Choi, H.-R. Oh, C.-S.
Lee, H.-J. Kim, J.-M. Park, Q. Wang, M.-H. Park, Y.-H. Ro, J.-Y.
Choi, K.-S. Kim, Y.-R. Kim, I.-C. Shin, K.-W. Lim, H.-K. Cho, C.-H.
Choi, W.-R. Chung, D.-E. Kim, K.-S. Yu, G.-T. Jeong, H.-S. Jeong,
H.-S. Jeong, C.-K. Kwak, C.-H. Kim, and K. Kim, “A 90nm 1.8V
512Mb Diade-switch PRAM with 226 MB/s read throughput,”
IEEE J. Solid-State Circ., vol. 43, no. 1, pp. 472–616, Feb. 2007.

[21] D. Liu, T. Wang, Y. Wang, Z. Qin, and Z. Shao, “PCM-FTL: A
Write-activity-aware NAND flash memory management scheme
for PCM-based embedded systems,” in Proc. IEEE 32nd Real-Time
Syst. Symp., 2011, pp. 357–366.

[22] M. Rosenblum and J. K. Ousterhout, “The design and implemen-
tation of a Log-structured file system,” ACM Trans. Comput. Syst.,
vol. 10, pp. 26 –52, 1992.

[23] K. Kim, S.-W. Lee, B. Moon, C. Park, and J.-Y. Hwang, “IPL-P:
In-page logging with PCRAM,” VLDB Endowment, vol. 5,
pp. 1363–1366, 2011.

[24] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A transaction recovery method supporting Fine-granu-
larity locking and partial rollbacks using Write-ahead logging,’
ACM Trans. Database Syst., vol. 17, pp. 94–162, 1992.

[25] Y. J. Nam and C. Park, “An adaptive High-low water mark
destage algorithm for cached RAID5,” in Proc. Pacific Rim Int.
Symp. Dependable Comput., 2002, p. 177.

[26] S. T. On, J. Xu, B. Choi, H. Hu, and B. He, “Flag commit: Support-
ing efficient transaction recovery on Flash-based DBMSs,” IEEE
Trans. Knowl. Data Eng., vol. 24, no. 9, pp. 1624–1639, Sep. 2012.

[27] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The Log-struc-
tured Merge-tree (LSM-tree),” Acta Inf., vol. 33, pp. 351–385, 1996.

[28] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge, “Storage
management in the NVRAM era,” Proc. VLDB Endowment, vol. 7,
pp. 121–132, 2014.

[29] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, “Transactional
flash,” in Proc. 8th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2008, pp. 147–160.

[30] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High-
performance Main-memory system using Phase-change memory
technology,” in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009,
pp. 24–33.

[31] E. Rahm, “Performance evaluation of extended storage architec-
tures for transaction processing,” in Proc. SIGMOD Int. Conf.
Manage. Data, 1992, pp. 308–317.

[32] R. Ramakrishnan and J. Gehrke, Database Management Systems.
New York, NY, USA: McGraw-Hill, 2003.

[33] R. Sears and E. Brewer, “Segment-based recovery: Write-ahead
logging revisited,” in Proc. VLDB Endowment, vol. 2, pp. 490–501,
2009.

[34] R. Sears and R. Ramakrishnan, “bLSM: A general purpose log
structured merge tree,” in Proc. SIGMOD Int. Conf. Manage. Data,,
2012, pp. 217–228, .

[35] A. Varma and Q. Jacobson, “Destage algorithms for disk arrays
with non-volatile caches,” IEEE Trans. Comput., vol. 47, no. 2,
pp. 228–235, Feb. 1998.

[36] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi, “LogBase:
A scalable Log-structured database system in the cloud,”Proc.
VLDB Endowment, vol. 5, pp. 1004–1015, 2012.

[37] T. Wang and R. Johnson, “Scalable logging through emerging
Non-volatile memory,” Proc. VLDB Endowment, vol. 7, pp. 865–
876, 2014.

[38] C.-H. Wu, T.-W. Kuo, and L.-P. Chang, “Efficient initialization
and crash recovery for Log-based file systems over flash memo-
ry,” in Proc. ACM Symp. Appl. Comput., 2006, pp. 896–900.

[39] R. Agrawal and H. V. Jagadish, “Recovery algorithms for database
machines with nonvolatile main memory,” in Proc. 6th Int. Work-
shop Database Mach., 1989, pp. 269–285.

[40] S. Akyurek and K. Salem, “Management of Partially-safe buffers,”
in Proc. 5th Int. Symp. High Perform. Comput. Archit., 1993, pp. 394–
407.

[41] Disksim. [Online]. Available: http://www.pdl.cmu.edu/
DiskSim/, 2012.

[42] Micron, Phase change memory. [Online]. Available: http://www.
micron.com/products/phase-change-memory, 2013.

[43] OSDL Database Test 2. [Online]. Available: http://osdldbt.
sourceforge.net, 2013.

[44] PostgreSQL. [Online]. Available: http://www.postgresql.org/,
2013.

[45] (2010). Samsung. [Online]. Available: http://www.samsung.
com/us/business/semiconductor/news View.do?news_id=1149

[46] TPC Benchmark C, Standard Specification. [Online]. Available:
http://www.tpc.org/tpcc/ spec/tpcc-current.pdf, 2012

[47] Nokia Network Database. [Online]. Available: http://hstore.cs.
brown.edu/wordpress/wp-content/uploads/2011/05/Nokia_
TM1_Description.pdf, 2014.

Shen Gao received the BSc degree in computing
studies (information systems) from the Hong
Kong Baptist University. He is working toward
the MPhil degree in the Department of Computer
Science at Hong Kong Baptist University. His
research interest is on data management for
next-generation storage devices.

Jianliang Xu received the BEng degree in com-
puter science and engineering from Zhejiang
University, Hangzhou, China, in 1998 and the
PhD degree in computer science from the Hong
Kong University of Science and Technology in
2002. He is a professor in the Department of
Computer Science, Hong Kong Baptist Univer-
sity. He held a visiting positions at Pennsylvania
State University and Fudan University. His
research interests include data management,
mobile/pervasive computing, wireless sensor net-

works, and distributed systems. He has published more than 150 techni-
cal papers in these areas. He is an associte editor of the IEEE
Transactions on Knowledge and Data Engineering (TKDE). He was a
vice chairman of ACM Hong Kong Chapter and is a senior member of
the IEEE.

GAO ET AL.: PCMLOGGING: OPTIMIZING TRANSACTION LOGGING AND RECOVERY PERFORMANCEWITH PCM 3345

Theo H€arder received the PhD degree in com-
puter science from the TU Darmstadt in 1975. As
a full professor, he is leading the research group
DBIS at the TU Kaiserslautern since 1980. His
research interests are in all areas of database
and information systems; in particular, DBMS
architecture, transaction systems, information
integration, and XML database systems. He is a
author/co-author of seven textbooks and of more
than 280 scientific contributions with 160+ peer-
reviewed conference papers and 70+ journal

publications. His professional services include numerous positions as a
chairman of the GI-Fachbereich Databases and Information Systems,
an associate editor of Information Systems (Elsevier), World Wide Web
(Kluver), and the ACM Transactions on Database Systems.

Bingsheng He received the bachelor’s degree
in computer science from Shanghai Jiao Tong
University from 1999 to 2003 and the PhD degree
in computer science from the Hong Kong Univer-
sity of Science and Technology from 2003 to
2008. He is an assistant professor in the Division
of Computer Science, School of Computer Engi-
neering of Nanyang Technological University,
Singapore. His research interests are high perfor-
mance computing, distributed and parallel sys-
tems, and database systems.

Byron Choi received the bachelor of engineering
degree in computer engineering from the Hong
Kong University of Science and Technology
(HKUST) in 1999, and the MSE and PhD degrees
in computer and information science from the
University of Pennsylvania in 2002 and 2006,
respectively. He is now an associate professor
in the Department of Computer Science at the
Hong Kong Baptist University.

Haibo Hu received the PhD degree in computer
science from the Hong Kong University of Sci-
ence and Technology in 2005. He is a research
assistant professor in the Department of Com-
puter Science, Hong Kong Baptist University.
Prior to this, he held several research and teach-
ing posts at HKUST and HKBU. His research
interests include mobile and wireless data man-
agement, location-based services, and privacy-
aware computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

3346 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 12, DECEMBER 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

