
1

Decentralized Thermal-aware Task Scheduling for
Large-scale Many-core Systems

Yingnan Cui, Wei Zhang, Vivek Chaturvedi, Bingsheng He

Abstract—Technology scaling has enabled fast increase in the
number of cores integrated in many-core systems. However,
feature size shrinking also makes large-scale many-core systems
vulnerable to thermal failures. Thermal-aware task scheduling
is an efficient technique to reduce the run-time temperatures of
many-core processors. Most existing thermal-aware task schedul-
ing algorithms leverage centralized scheduling schemes to gather
the overall information and generate the task schedule at a
center scheduler. Although that scheme can achieve the optimal
temperature reduction, however, it faces severe computation
bottleneck and communication congestion when the many-core
processors evolve to large-scale with hundreds or thousands
of cores. In this paper, we propose a decentralized thermal-
aware scheduling algorithm to address this problem in large-scale
systems. Experiment results on various benchmarks show that
our decentralized algorithm achieves significant improvement on
scalability (up to 84.3% reduction in monitoring traffic) and sim-
ilar benefits on temperature reduction (by 5%) when compared
to the state-of-the-art thermal-aware scheduling algorithm.

I. INTRODUCTION

Technology scaling has enabled a trend in which the number
of cores integrated inside one chip grows rapidly [1]. Ac-
cording to the technology road map, thousand-core processors
may come into reality in the near future [2]. However, as
a negative side effect, technology scaling makes the many-
core systems vulnerable to thermal malfunctions due to the
increase in power density. Previous studies have shown that
the average power density of 65nm IC is around 2W/mm2

[3], which could result in a chip temperature of above 90◦C.
As the temperature of the chips rises, thermal-related malfunc-
tion phenomenon become more active and can damage the
reliability and shorten the lifespan of the chips [4]. Examples
of thermal malfunctions include negative biased temperature
instability (NBTI), gate oxide break down and electromigra-
tion. All those malfunctions pose significant challenges to
processor reliability. The shrinking of feature size also brings
the problem of dark silicon [5], which severely limits the
number of activated components in a chip. As pointed out by
[6], [7], to solve dark silicon problem, traditional solution of
using the thermal design power (TDP) as the power constraint
is not sufficient. A more promising solution to the dark silicon
problem is to apply thermal constraints to each of the cores in
the processors. In conclusion, efficient thermal management
techniques are critically demanded by modern processors.

In previous studies [8]–[12], thermal-aware scheduling has
been adopted to solve the thermal problems for multi/many-
core systems. Studies like [11], [12] adopt formal optimiza-
tion techniques like linear integer programming to solve the
thermal-aware scheduling problem in design time. On the
contrary, studies like [8]–[10] use heuristic-based solutions to

improve the efficiency of thermal-aware scheduling algorithms
for run-time use. To facilitate the design of thermal-aware
scheduling algorithms, efficient thermal estimation techniques
are also proposed [13].

All the above mentioned studies adopt a centralized sched-
uler to manage the temperature of all cores in a many-
core system. However, large-scale multi-core systems pose
several challenges for centralized thermal-aware scheduling
algorithms. Firstly, as the number of cores contained by a
processor grows, the complexity and communication overhead
of centralized scheduling algorithms also increases rapidly.
For thousand-core processors, the overhead of scheduling
algorithm could become a bottleneck for the performance and
power of the system. Secondly, many large-scale multi-core
processors adopt the voltage/frequency island (VFI) architec-
ture to solve the power supply and synchronization problem
brought by the large-scale integration [14]. In such processors,
the chip is divided into several VFIs, each of which works on
an individual voltage and frequency level regardless of others.
The VFI architecture further increases the complexity of the
centralized scheduling algorithms if the algorithms were to
consider the communication between cores.

To address the above challenges, decentralized scheduling
algorithm is a promising solution. Proposed in previous studies
like [15], [16], the decentralized scheduling algorithms usually
divide the processor into clusters and perform the scheduling
or mapping within each cluster. A verification solution for
decentralized scheduling algorithms is further proposed by
[17]. The benefits of decentralized scheduling algorithms are
as follows. Firstly, by limiting the number of cores considered
in the scheduling, the complexity and communication over-
head of the scheduling algorithms could be efficiently reduced.
Secondly, by making each cluster cover the same range of a
VFI, the architecture model to be considered by the scheduling
algorithm is also largely simplified.

However, the previous decentralized approaches have been
targeting performance or power optimization. In this paper,
we propose a novel decentralized thermal-aware scheduling
algorithm for large-scale many-core systems to minimize the
temperature of the processors in the NoC system while meet-
ing timing constraints of the applications. In the algorithm, the
scheduling of applications is performed in a hierarchical man-
ner. First, the resource demand of the application is summa-
rized and a light-weight global agent selects a suitable cluster
to assign the application considering its performance and tem-
perature metrics. Then the cluster agent of the selected cluster
performs the detailed scheduling of the application inside the
cluster. In our design, a thorough study has been conducted to

2

achieve the best balance of the workload between the global
agent and the cluster agents to minimize the monitoring traffic
while retaining the necessary information communication to
optimize the temperature reduction of the processors. We also
propose an efficient cluster size adjustment method to dynami-
cally merge the clusters to better fit the task graph considering
the critical impact of the cluster size to the scheduling results.
Experimental results show that our algorithm has significantly
improved the scalability as the size of the many-core systems
increases and a total amount of monitoring traffic up to 84.3%
is reduced compared to a state-of-the-art centralized thermal-
aware scheduling algorithm [11]. At the same time, the
achieved average temperature is comparable to the centralized
algorithm (5% higher) while all the timing constraints are
satisfied.

The following sections of this paper are organized as fol-
lows. Section II introduces the preliminaries for our schedul-
ing algorithm. Section III introduces the five-step scheduling
flow of the decentralized thermal-aware scheduling algorithm.
Section IV describes the detailed algorithms for each step
in the scheduling flow. Section V presents the performance
evaluation of the proposed algorithm through experimental
results. Section VI summarizes the related work of thermal-
aware scheduling algorithms. Section VII concludes the paper.

II. PRELIMINARIES

In this section, we introduce the preliminary assumptions
for the paper.

A. VFI-based Large-scale Multi-core Processors

Fig. 1 shows the architecture of the VFI-based many-core
parocessor. The processor is divided into a number of VFIs,
each of which has its individual power supply and clock
circuits. Each VFI contains a number of cores which run
at the same voltage and frequency level. In this study, we
assume that there are two available frequency levels for each
VFI. The higher frequency level, denoted as fH , is used for
normal execution of the applications. The lower frequency
level, denoted as fL, is used for low power execution to
deal with thermal emergencies. In our study, the set of cores
contained by the many-core system is denoted by M , and the
total number of the cores in the system is assumed to be|M |.
The ith core in the system is denoted by mi, where mi ∈M .
We assume that all the cores in the system are homogeneous.

The communication framework for the many-core system is
network-on-chip (NoC), which is the mainstream choice for
large-scale multi-core processors [18] due to its high scala-
bility. Some experimental many-core systems also adopt NoC
as the communication scheme [19]. In VFI-based processors,
the communication channels that lie on the boarder of two
VFIs have a synchronization unit to enable the communication
between cores running at different frequency levels [14].

We use the model proposed in [14] to compute the commu-
nication delay and power consumption for VFI-based multi-
core processors. The communication delay, denoted by tcomm,
is computed by Eq. (1). In the equation, vol is the volume
of the data in the communication, W is the channel width,

core Router

Flow control logic

Crossbar

Input

channles
Output

channles

Input

buffer

synchronization buffer

Voltage/Frequency

Island (VFI)

Fig. 1: A VFI-based multi-core system with 16 cores and 4
VFIs

µs is the number of cycles for the message to traverse a
single router, P is the set of routers on the routing path of
the message, and fi is the frequency level of the ith router on
the routing path, tsync is the unit latency for synchronization
buffers.

tcomm =
∑
i∈P

µs
fi

+ tsyncd
vol

W
e (1)

The energy consumed by the NoC for transmitting one bit
of data, denoted by Ebit, is computed by Eq. (2), where EL,
EB , ES represents the energy consumed by the link, buffer
and switching device in a router with the normal voltage level
VDD, Vi denotes the voltage level of the ith router on the
routing path.

Ebit =
∑
i∈p

(EL + EB + ES)
V 2
i

V 2
DD

(2)

B. Application Model

In this study, the workload of the many-core systems are
assumed to be applications that are modelled by task graphs.
As pointed out by [20], large-scale many-core systems are
designed to meet the increasing demand for high performance
computing applications. Such applications usually have large
amount of thread-level parallelism and can be modeled by task
graphs. Example applications like robot control, sparse matrix
solver and SPEC Fpppp benchmark [21].

A task graph, denoted by G(V,E), is a directed acyclic
graph (DAG), where the vertex set V represents the sub-
tasks in the application, and the edge set E represents the
inter-task communications (usually in the form of input/output
dependency). The task graph has a soft deadline, denoted
by td. Each task of the application, denoted by vi, has two
predefined properties: the length of the task, denoted by li,
and the power of the task, denoted by pi. Each edge of the
application, denoted by ei,j , represents a message transmitting
from task vi to vj . The edge also implies the inter-dependence
relationships between the tasks connected by it, where task vj
can only start to run after vi is finished.

In this study, we assume that the workload for the many-
core system is a set of previously known applications. The
task graph of each application, including all the detailed infor-
mation, could be acquired through off-line profiling [21]. For

3

high performance data centers and some embedded systems,
such assumptions are reasonable and can be found in various
previous studies regarding scheduling problems [11], [15].

C. Thermal Monitoring, Estimation and Emergencies

In this study we assume that for each core in the system
there is a thermal sensor to monitor the temperature of the
core during run-time. The development of thermal diode has
make it possible to attach a thermal sensor to each core in
a multi-core processor [22]. Such assumption has also been
adopted by many previous studies [23], [24].

In our scheduling algorithm, we need to estimate the temper-
ature of a core in the future to make thermal-aware scheduling
choices. In this study, we adopt the thermal estimation model
proposed in [13], which considers both the power generation
of the core and the thermal interference between neighbor
processors. Eq. (3) gives the thermal estimation model, where
τpred is the predicated temperature, τcurr is the current tem-
perature, τi is the temperature of a neighbor processor, p is the
power consumption of the core, and α and β are parameters
depending on the floorplan of the processor. We note that the
equation is used to predict the temperature of the core after a
certain period of time, which is called the thermal prediction
step in this work. To balance the accuracy and the complexity
of the scheduling algorithm, we set the thermal prediction step
as 4ms as in [24].

τpred = τcurr +
∑
i∈Mnb

αi(τi − τcurr) + βp (3)

As we have mentioned in Section I, in order to prevent
thermal failures, it is better to set a threshold temperature for
each cores in a multi-core processor. When the temperature
of a core rises above the threshold, denoted as τth, we call
this event as a thermal emergency. In this study, we assume
when thermal emergencies happen, the frequency level of the
VFI which contains the overheated core is going to be scaled
down to the lower level fL. After the temperature of that core
falls under τth, the voltage and frequency level is going to be
switched back to the normal level fH . This is one of the most
commonly used techniques dealing with thermal emergencies
in previous studies [25], [26].

III. CLUSTER-BASED DECENTRALIZED SCHEDULING
FLOW

Since DVFS is a performance throttling thermal manage-
ment technique, in this study, the objective of our thermal-
aware scheduling algorithm is to minimize the number of
times that voltage scaling down in the system. To achieve
this goal, our thermal-aware scheduling algorithm has to
minimize the peak temperature of each core in the system.
As mentioned in Section I, in order to solve the scalability
issue posed by large-scale many-core systems, we proposed
a decentralized thermal-aware scheduling algorithm. In this
section, we present an overview of the decentralized thermal-
aware scheduling flow with the reasoning of our design.

A. Design Challenges

As discussed in Section I, the key idea of the decentralized
thermal-aware scheduling algorithm is to divide the processor
cores in the system into clusters to avoid the communication
and computation bottleneck. Then the problem of scheduling
is performed in a hierarchical manner. At the global level, a
suitable cluster is selected to execute the application and at the
cluster level, the mapping and scheduling of the application is
performed.

The main challenges of the design of the decentralized
scheduling algorithm lie in two parts. The first challenge
is how to best balance the workload between the global
level scheduling and the cluster level scheduling such that
the monitoring traffic can be minimized while maximizing
the peak power reduction under the deadline constraint. This
challenge can be transformed into a problem of designing
proper cluster selection scheme. Whether a cluster fulfills the
deadline constraint of an application and how the application
affects the temperature of each core in the cluster need to be
evaluated before selecting the proper cluster to execute the ap-
plication. The previous decentralized power-aware scheduling
algorithm, ADAM [15], evaluates the application scheduling
for all the clusters at the global level although the detailed
scheduling is performed inside the cluster. It may still incur
high computation load in the global agent and also require
relatively large amount of monitoring traffic to enable a precise
evaluation. Another extreme solution is to let each cluster give
a schedule of the application and let the global agent select
the best one. However, in reality, many applications have task
graphs containing a large number of nodes. For example, the
task graph of SPEC Fpppp contains over 300 nodes [21]. Even
simple heuristic-based task graph scheduling algorithms have
the complexity growth rate as a quadratic function of the task
graph size, as a result, the “true” distributed solution could
cause a huge waste of computation time and power in a large-
scale many-core system. In addition, the communication cost
of sending the large task graphs to each cluster agent can also
be an bottleneck for the performance and power consumption
of the system.

The second challenge is how to dynamically adjust the
cluster size to best accommodate the application. The cluster
size has important impacts on the scheduling results in terms of
performance and monitoring traffic. Increasing the cluster size
improves the possibility of finding better scheduling results
inside a cluster due to the increase in the search space. On
the other hand, it also increases the computing complexity
correspondingly as well as the monitoring traffic since the
information collected from cores needs to travel a longer
distance. If the cluster size is larger than necessary, the com-
puting and communication overhead may exceed the benefits
on the performance improvement. However, if the cluster size
is too small, it may not be able to execute an application
by its deadline. To make things worse, realistic applications
sometimes vary significantly in sizes, which makes fixed-
size clusters inefficient. Another issue associated with cluster
size is posed by VFIs. When the cluster contains cores from
multiple VFIs, the heterogeneity of the voltage and frequency

4

Cluster 1 Cluster 2

Global agent

Cluster agent

Cluster 3 Cluster 4

Fig. 2: Initial cluster devision and agent deploying in a VFI-
based 16-core system

level and the synchronization of message transfer must be
carefully considered.
B. Proposed Decentralized Approach

To address the above challenges, we have the following
three key designs.

Clusters and Agents Structure: To facilitate the decen-
tralized thermal-aware scheduling algorithm, we propose a
hierarchy of software agents which run on the cores in the
system. On the top level of the hierarchy, there is a global
agent which manages all the agents in the system. The
global agent adjusts the cluster size and selects the cluster
for the application. In each cluster, there is a cluster agent
responsible for scheduling the task graph inside the cluster.
The cluster agents need to collect the processor core status
information inside the cluster for the detailed scheduling. The
cluster agents communicate with each other to exchange the
temperature of processors on the cluster boarder in order to
estimate the temperature of each core according to Eq. (3) in
Section II.

In VFI-based many-core systems, it is better for a cluster to
contain complete VFIs. This is because the when the voltage
and frequency level of a VFI changes at run-time, all the cores
within the VFI are affected. If the cores of a VFI belong to
several different clusters, all the cluster agents that are affected
by the DVFS should take actions. However, if each VFI only
belongs to one cluster, the overhead of dealing with DVFS
could be significantly reduced. In this study, we assume that in
the initial state, each cluster only contain one individual VFI.
The case where each cluster contains a few VFIs is discussed
later in this section. Fig. 2 shows the cluster division and the
deploying of the agents in a many-core system.

This hierarchical design brings the benefits from two as-
pects. Firstly, using cluster limits the problem size and ef-
ficiently reduces the complexity of the algorithm and also
significantly reduces the monitoring traffic of the system.
Secondly, clusters also reduce the routing paths of the inter-
task communication. By carefully adjusting the cluster size and
designing the cluster selection algorithm, we can efficiently
balance the workload between the global agent and cluster
agents to sustain the system scalability while achieving high-
quality scheduling results in terms of the temperature reduction
and performance.

Cluster Selection: As discussed in Section III-A, the first
challenge of the decentralized scheduling algorithm is to

achieve a distributed and efficient assignment and scheduling
of task graphs with high quality and low monitoring traffic. As
pointed out in Section III-A, selecting cluster only in global
agent loses the accuracy of the resource distribution in each
cluster and may also cause communication congestion. On the
other hand, the overhead of scheduling the applications in each
cluster could be overwhelming. In the proposed algorithm, we
use a compressed data structure, called processor load table
(PLT), to summarize the requirements on the execution time
of the application for individual cores in a cluster. In cluster
selection, the global agent send the PLT to each cluster and
each cluster agent estimates whether the cluster could meet the
deadline of the application. The cluster agents also evaluate
the temperature conditions inside each cluster. Based on the
evaluation of the cluster agents, the global agent picks the best
cluster to host this application. By doing so, we can efficiently
reduce the overhead of the “true” distributed solution without
losing the information of the status of each core.

The PLT can be built by scheduling the task graph to a
virtual cluster which is a logical abstraction of the computing
resources contained by the real clusters. The scheduling result
in the virtual cluster binds the tasks in the application to a
limited number of virtual cores. From the result, we summarize
the computing resource demanded by each virtual core. In
this way, using PLT instead of task graphs could significantly
reduce the monitoring traffic caused by cluster selection.

Based on this idea, we propose a three-step procedure for
cluster selection algorithm. First, the global agent generates
the PLT according to the virtual cluster size. Then the PLT is
sent to the cluster agents to evaluate the thermal impact and
deadline constraint of the application according to the run-time
status of the cores in the cluster. Finally, the evaluation results
are sent back to the global agent to pick the best cluster.

Cluster Merging: As mentioned before, in this study we
assume that in initial state, each cluster contains a complete
VFI. When scheduling a new application, the global agent first
checks whether the cluster contains sufficient number of core
to meet the deadline of the application. If the global agent
finds out that the cluster size is not large enough, it initiates
the cluster merging process. In the process, clusters are merged
with pairs to form larger clusters. We note that this merging
is not permanent, but only for one present application. In the
previous method [15], the cluster merging is permanent and
the large cluster only reduces when the other cluster “eats” its
cores. It helps to reduce the merging overhead when the large
applications come in a row, however, it not only requires more
monitoring traffic on boundary control, but also generates hot-
spot when all the large applications are mapped into the same
large cluster. Therefore, we assume that the merging of clusters
only stands valid during the scheduling of one application and
there can be different ways of merging for different application
to achieve the most peak temperature reduction.

We note that the initial size of the cluster is an important
factor which affects the efficiency of the cluster merging. If
the cluster size is too small to meet the deadline requirement
of most applications, cluster merging would be frequently
invoked and generate large amount of overhead. On the other
hand, if the cluster size is too large for most of the applications,

5

the computing complexity of the scheduling algorithms would
increase as well as the monitoring traffic. In Section V, we
experimentally evaluates the impact of initial cluster size and
the efficiency of cluster merging.

C. Overview of the Scheduling Flow

Our cluster-based decentralized thermal-aware scheduling
algorithm contains five steps as shown in Fig. 3.

First, in deadline assignment, the global agent assigns a
deadline to each individual task in the application. It is
because that when there are multiple applications running
simultaneously in the many-core system, our scheduling al-
gorithm has to decide the execution order of the tasks from
different applications. Hence, a deadline assignment step at
the beginning of the scheduling flow is needed to assign a
deadline to each individual task according to the soft deadline
of the application. If the VFIs in the system are not running
at the same frequency level, two set of deadlines should be
assigned to the tasks, where each set of deadline is computed
according to a different frequency level.

Second, in pre-scheduling, the global agent schedules the
application to the virtual cluster and generates the PLT which
represents the resources requirement of the application under
the deadline. If the global agent finds out that the cluster size
is not large enough to meet the timing constraint, it initiates
the cluster merging process. Again, if the VFIs of the system
are not running at the same frequency level, the pre-scheduling
should be performed twice according to the different frequency
levels. Two different PLTs of the application should also be
generated accordingly.

The third step includes two sub-steps performed by the
global agent and the cluster agents, respectively. First, in
cluster assessment, the cluster agents check if the clusters
could guarantee the deadline of the application and how
the application affect the power distribution in the clusters.
These assessments are based on the PLT of the application.
Each cluster agent receives the PLT that is coherent with the
frequency level of the cluster. For clusters that contain multiple
VFIs, the frequency level of the cluster is assumed to be lowest
frequency level of the VFIs. Such assumption could reduce the
workload of pre-scheduling, otherwise the global agent should
generate a different pre-scheduling for each different type of
clusters. Then in cluster assignment, the global agent selects
the best cluster for the application according to the cluster
assessment results sent by the cluster agents.

In the fourth step, named by core binding, the cluster agent
of the chosen cluster assigns the tasks of the application to
the cores in the cluster. Finally, in run-time scheduling, each
core uses the earliest deadline first (EDF) algorithm to decide
the execution order of the tasks during run-time.

IV. ALGORITHM DESCRIPTION

This section presents the detailed algorithm of each step in
our decentralized scheduling flow.

For the clarity of discussion, we use an example in this sec-
tion to help introduce the thermal-aware scheduling algorithm.
The example is shown in Fig. 4. In the example, an application
with 8 tasks needs to be scheduled to the 16-core system which
is divided into four equal-sized clusters. In the initial state,

Pre-scheduling

Cluster
assignment

Deadline
assignment

Application

Processor

Run-time
scheduling

Cluster
assessment

Cluster agent

Global agent

Step 1

Step 2

Step 3

Step 4

Step 5

Deadline met?

Core
binding

Cluster merging

 When DVFS activated:
Create two sets of data
according to different
frequency levels.

Fig. 3: The flow of our cluster-based decentralized thermal-
aware scheduling algorithm

Task 1 2 3 4 5 6 7 8

1

2 3 4

5 6 7

8

Application: ta = 0 d = 180 16-core system

Cluster 1 Cluster 2

Cluster 3 Cluster 4

Length
Power

20
5

30
10

30
10

40
5

40
5

40
10

35
5

20
5

Properties of the tasks

One packet
of message

Fig. 4: The beginning example: an application with eight tasks
is going to be scheduled to a 16-core system with four clusters.

each cluster contain one VFI of the system. The task graph
of the application shows the inter-dependence relationship of
the tasks. The dots on the edges of the task graph represent
the size of messages transferred between tasks, where each
dot stands for one packet of data. The properties of the tasks,
including task length and average power consumption in unit
time, are shown in the table below. In the table, properties
are for the tasks running at the higher frequency level for the
system. For the lower frequency level, the task length and
power can be scaled according to the value of fH and fL.
Without specification, all the examples used in the rest part of
this section are assumed for the higher frequency level.

A. Step 1: Deadline Assignment

In our cluster-based thermal-aware scheduling algorithm,
deadline assignment serves two purposes. First, it provides
information of the timing constraints for an application when
generating the processor load table. Second, it provides each
task with an unique deadline which is required by the in-
processor run-time scheduling. As a result, the deadline as-
signed to each task must meet the following condition: when
the deadline of each task is met, the deadline of the entire

6

8

5

6

74

3

2

1

180140100Time
(cycles)

60

d8 d5, d6, d7

d2, d3

d4
d

1

(da)

Fig. 5: Deadline assignment result of the beginning example

application must be met. If this condition is not satisfied, the
assigned deadline could lead to the violation of the timing
constraints of the applications.

There are various kinds of deadline assignment algorithms
proposed in previous studies with different objectives [27],
[28]. In our work, the only requirement of the deadline
assignment algorithm is to make sure the timing constraint
of the application is not violated. Therefore, we adopt the
simple as late as possible (ALAP) algorithm, which fulfills our
requirement with low complexity. In worst case, the running
time of the algorithm is O(|V |+|E|), where |V | is the number
of tasks in the task graph and |E| is the number of edges. Fig.
5 shows the result of the deadline assignment of the example.

If some of the VFIs in the system are running at the
lower frequency level fL, the deadline assignment should be
performed again to generate a new set of deadlines for the
lower execution speed. We note that the deadlines for the lower
frequency level should be no less than the deadlines for the
higher frequency level.

B. Step 2: Pre-scheduling in Virtual Cluster

In pre-scheduling, the global agent schedules the applica-
tions to a virtual cluster which is of the same size of the real
cluster in the many-core system. Each pre-scheduling result is
used to generate the PLT, which is the summary of the resource
demand of the application. If the pre-schedule cannot meet
the deadline of the application, cluster merging is invoked to
increase the cluster size.

Virtual Cluster: The virtual cluster is composed of a set of
virtual cores which are logical abstractions of the real cores
in the system. In the view of the global agent, a virtual core
has the same execution speed and power consumption as a
real core. On the other hand, the virtual cores do not have the
run-time properties of the real cores including the temperature
and the task queues which store the previously assigned tasks.
We denote the virtual cluster as M ′, while m′i ∈M ′ denotes
each virtual core in the virtual cluster.

Pre-scheduling Algorithm: In designing the pre-scheduling
algorithm, we set the objective of the algorithm as minimizing
the execution time (makespan) of each application. Minimiz-
ing the makespan of an application in pre-scheduling also
reduces the actual execution time of the application during run-
time due to the mechanism of the processor binding, which
is discussed in Section IV-D. This leads to the following
advantages. When the workload of the many-core system is
high, minimizing the makespan can make the deadlines of the
applications more likely to be met; and when the workload
of the system is low, minimizing the makespan leaves the
cores more idle time which may contribute to the cooling

8

741

Time (cycles)

52

63

m1'

m2'

m3'

m4'

0 20 40 60 80 100 120 140

Mp*(v8) = m4'

S*(v8) tfin*

Fig. 6: The Gantt chart of example application generated in
pre-scheduling

down of the temperature in the system. This is the reason
why we choose makespan minimization as the objective of the
pre-scheduling algorithm. Like the deadline assignment, if the
VFIs in the system are not running at a same frequency level,
different pre-schedules with respect to the different frequency
levels should be produced by the global agent.

Since task graph scheduling problems are NP-complete [29],
we adopt an efficient heuristic-based algorithm as the pre-
scheduling algorithm for the sake of run-time use. The algo-
rithm is called highest level first with estimated time (HLFET)
algorithm [29]. The scheduling results can be expressed by
the following two functions. Firstly, the mapping function for
the pre-schedule, denoted as Mp∗(vi), defines which virtual
core each task mapped to. Secondly, the scheduling function
for pre-scheduling, denoted as S∗(vi), defines the starting
time for each task. We also denote the finishing time for the
pre-schedule as t∗fin. We note that in pre-scheduling, the
communication delay of the tasks are computed by Eq. (1)
proposed in Section II-A. The running time of the algorithm
is O(|M ′| × |V |), where |M ′| is the size of the virtual cluster
and |V | is the number of tasks contained by the task graph.
Fig. 6 shows pre-scheduling result of the beginning example,
which is shown in a Gnatt chart. In the example, we use task
8 to show the definition of Mp∗, S∗ and t∗fin. Since task 8
is mapped to virtual core m′4, therefore there isMp∗(v8), and
the start time of v8 is S∗(v8) = 120. Finally, the finish time
of the pre-schedule is at the 140th cycle.

Cluster Merging: It is possible that the pre-scheduling
result does not meet the deadline constraint of the application.
In such case, we consider the problem is caused by insufficient
number of cores in each cluster, since the pre-scheduling
algorithm already aims at minimizing the makespan of the
application. As mentioned in Section III, in the case, cluster
merging is invoked to solve the problems. In this study, we
use pre-defined cluster merging policies. The cluster merging
policy specifically defines which clusters should be merged
into one cluster. Using pre-defined policies could avoid gener-
ating additional monitoring traffic during cluster merging. We
use an example to explain how cluster merging works. For
instance, in Fig. 7, a 16-core system is initially divided into
four 4-core clusters. The merging policy is also illustrated in
Fig. 7. When cluster merging is invoked for the first time,
the original cluster 1 and 2 are merged together into an 8-
core cluster (cluster 5), and cluster 3 and 4 are merged into
cluster 6. Then the global agent repeats pre-scheduling for the
application with the new cluster size. If the 8-core cluster still
cannot meet the requirement, then cluster 5 and 6 should be
merged together into cluster 7 which contains all the cores in
the system.

7

Cluster 2Cluster 1

Cluster 4Cluster 3

Cluster 5

Cluster 6

Cluster 7

Fig. 7: Cluster merging on a 16-core system

PLT Generation: The pre-scheduling result is used to
generate the PLT, which depicts the resources requirement of
the cores in the virtual cluster and is used to evaluate whether
a cluster fulfills the deadline constraints of the application.
Therefore, to achieve this objective, the PLT should contain
the following information. First, the PLT should record the
total running time of each virtual processor. Second, the PLT
should set a deadline to the tasks scheduled to each virtual
core.

Therefore, we give the definition of PLT as follows. A
processor load table, is a table of |M ′| entries, where |M ′|
is the number of virtual cores. The key of each entry is the
identifier of a unique virtual core, m′i, and each entry have
two elements. The first element is the execution time required
by the virtual core and is denoted as l′i. The second element is
the deadline of the virtual core, denoted by d′i. The symbols
and definitions for the three elements are shown in Table I.

To ease the discussion, we use the example shown in Fig. 8
to explain l′i and d′i defined in Table I. To get the PLT, we
first assume that the application is executed according to the
pre-schedule, except for that it ends at the deadline of the
application. As shown in Fig. 8, the pre-schedule is shifted
to the right to end at the 180th cycle. Secondly, the length
of each virtual core equals to the interval between the start
time of the first task mapped to the virtual core and the finish
time of the last task mapped to the virtual core, including the
idle time in between. As shown in Fig. 8, the length of virtual
core m′3 is 75, which equals to the sum of the length of task
3 and task 6 plus the 10 cycle interval in between. Finally, the
deadline of each virtual core equals to the end execution time
of the last task mapped to that virtual core. Again in Fig. 8,
the deadline of virtual core m′3 is at the 155th cycle.

With the above definition of PLT, we can consider each
virtual core as a “super task” with the length and deadline of
l′i and d′i. When the deadline constraint of each virtual core
could be met, then the deadlines of all the tasks mapped in
that virtual core can be met. The influence of communication
delay in PLT is also considered because in the pre-schedule,
the communication between virtual cores is assumed to take
the longest routing path in a real cluster. Therefore, we can
use PLT to represent the requirement of execution times of
the application and evaluate the available execution time in
clusters according to PLT.

Using PLT instead of the original task graph significantly
reduces the communication overhead of the scheduling algo-
rithm. For example, assume that we are scheduling a SPEC

TABLE I: The three elements contained by each in the PLT

Name Symbol Definition

Length l′i
max

vj∈V ′
i

a
(S∗(vj)+lj)− min

vj∈V ′
i

(S∗(vj)+lj)

Deadline d′i

∑
vj∈V ′

i

dj

aV ′i is the set of tasks that have been mapped to virtual core m′i
during pre-scheduling.

mi' li' di'

m1' 100 135

m2' 70 140

m3' 75 155

m4' 20 180

Processor load table

8

741

Time (cycles)

52

63

m1'

m2'

m3'

m4'
40 60 80 100 120 140 160 180

td

20

l3'

d3'

Fig. 8: Processor load table of example application generated
in pre-scheduling

Fpppp application to a many-core system with the cluster size
of 16-core. The original task graph contains 334 nodes and
1145 edges [30], but the PLT only contains 16 entries. The
reduction in the data for transmission is over 90%. When
the cluster size increases, the total communication overhead
for transmitting PLT does not increase much. Because as the
number of entries of the PLT increases, the number of copies
of PLT to be sent decrease as well due to the reduction of the
number of clusters.

C. Step 3: Cluster Selection

As mentioned in Section III-C, cluster selection can be
further divided into two sub-steps: cluster assessment in cluster
agents and cluster assignments in global agent.

1) Cluster assessment: In cluster assessment, each cluster
agent receives the PLT sent by the global agent and checks
the cores of the cluster in two aspects. First, the cluster checks
if the cores in the cluster have sufficient running time to
execute the application before its deadline (deadline assess-
ment). Second, the cluster agent checks the power distribution
in the cluster after mapping the new application (thermal
assessment).

Deadline Assessment: The PLT records the total execution
time and the latest deadline of the tasks assigned to each
virtual core. In deadline assessment, the cluster agent uses
this information to check if the real cores in the cluster could
meet the demand in execution time posed by the PLT. This
problem can be formally formulated as follows:

Assume that we have a cluster in the many-core system,
denoted by Mc, and the cluster agent receives a PLT, denoted
by Gload. In the cluster, each real core, denoted by m, contains
a list of previously assigned tasks waiting for execution,
denoted by Vwait. As defined in Section IV-B, the deadline
of virtual core m′ is d′ and the length of the virtual core is
l′. Assume at a moment, the tasks contained by virtual core
m′ in the PLT is going to be scheduled to the real core m.
To guarantee the deadline constraint, the real processor must
provide enough free execution time, denoted by tf , before
the deadline d′, such that tf > l′. If the match between m′

and m satisfies the condition, we call it a feasible match,
otherwise we call it an unfeasible match. Then the deadline

8

� �

(a) An example of bipartite
graph

� �

(b) A maximum match in the
bipartite graph

Fig. 9: Maximum match problem of bipartite graph

m1' m2' m3' m4'

m2m1 m3 m4

100 70 75 20

75 100 72 45

Fig. 10: An example of core matching graph

assessment problem is to find out that wether there exists an
unique feasible match m in cluster Mc, for each virtual core
m′ in Gload,

This problem can be transformed into a maximum matching
problem of bipartite graphs, which is a well studied problem
in the field of computer science. A bipartite graph is a graph
whose vertices can be divided into two disjoint sets such that
each edge in the graph connects two vertices from different
sets. Fig. 9a shows a bipartite graph in which the gray vertices
are from set A and the white vertices are from set B. In a
bipartite graph, a maximum match is a subset of the edges,
where each edge in the maximum match connects two unique
vertices and all the vertices in the bipartite graph are connected
by the edges in the maximum match. In Fig. 9a, there exists
a maximum match in the bipartite graph, which is shown in
Fig. 9b. The maximum match problem is to determine if there
exists a maximum match in a bipartite graph.

We can transform the cluster assessment problem into a
maximum matching problem of bipartite graphs as follows.
First, we view the virtual cores from PLT and the real cores
in the cluster as the two independent vertices sets of a bipartite
graph. Second, if the free execution time provided by real core
m is sufficient to run the virtual core m′ before its deadline,
we draw an edge between the two nodes in the graph. In this
way, we form a bipartite graph which we call core matching
graph, denoted as Gm. If there exists a maximum matching
in the core matching graph, it means that the cores in the
cluster are capable of executing the application before its
deadline, according to previous discussion. Fig. 10 shows the
core matching graph of the example. Here, the width of the
nodes shows the total execution time required by the virtual
cores (gray blocks) and the free execution time provided by
the real cores (white blocks).

The free execution time provided by real cores is computed
by Eq. 4. In the equation, Ve is a subset of Vwait where the
deadline of each task v ∈ Ve is earlier than d′. Vl is a subset
of Vwait where the deadline of each task v ∈ Vl is later than
d′, yet these tasks have to start execution before d′ to avoid
missing their deadline. As defined in Section II-B, l and d
are the length and the deadline of task v respectively. If free
execution time tf is larger than the total execution time of the

v2

d1 d2

v1

50 100 150 2000

m1'

Virtual core

tf

d1' (135)

m1

Real core

Fig. 11: Example of computing free execution time

virtual core m′, then real core m is feasible for m′. Fig. 11
illustrates how to compute the free execution time of a real
core.

tf = d′ −
∑

v∈Ve

l −
∑

v∈Vl

(l − d+ d′) (4)

The maximum matching problem for bipartite graphs can
be solved by a series of well-developed algorithms. In this
work we select the Dinitz blocking flow algorithm [31] due to
its low complexity. The Dinitz algorithm finds the maximum
number of matches, denoted as Nm, for the bipartite graph
Gm. If the number of matches generated by the algorithm
equals to the number of nodes in PLT, it means that there are
enough cores in the cluster to fulfill the deadline requirement
of the application. The maximum number of matches Nm is
used as the final score of deadline assessment and is sent to the
global agent. Assume for a graph containing V vertices and E
edges, the complexity of the Dinitz blocking flow algorithm
is O(E

√
V).

Thermal Assessment: In thermal assessment, the cluster
agent predicts the temperature of each core in the cluster
and uses the highest predicted temperature as the score for
thermal assessment. We use the highest predicted temperature
as the thermal assessment score for two reasons. Firstly, from
the highest predicted temperature we can predict whether a
thermal emergency is going to happen in the cluster. Secondly,
due to the thermal coupling between adjacent cores in the
system, the highest predicted temperature partially reflects the
temperature distribution of the cluster [32]. In other words, if
the highest predicted temperature of a cluster is very high, the
temperature of adjacent processors is probably also going to
become very high in the future.

To predict the temperature of each core in the cluster, we
use Eq. (3) proposed in Section II-C. In order to get the
current temperature value of all adjacent cores, the cluster
agents communicate with their adjacent neighbors to acquire
the temperature of the cores locating on the cluster boarders.
Since the thermal prediction step mentioned in Section II-C
is quite short comparing to the total length of the application,
it is not feasible to just predict the temperature of the cores
for just one step. In this work, we use Eq. (3) to simulate the
temperature changing in a cluster for 25 steps (0.1 s), which
is set through experiments. The power trace of the thermal
simulation is generated according to a EDF scheduling of the
un-executed tasks inside each core, because as mentioned in
Section III-C, the final step of in processor scheduling adopts
the EDF algorithm. The final score of the thermal assessment,
which is the highest predicted temperature of the cluster, is
denoted as τm.

2) Cluster Assignment: After cluster assessment, cluster
agents send back the scores of the deadline assignment (Nm)

9

Algorithm 1 Cluster selection algorithm
Input: PLT, M ,
Output: Cs

1: for all Ci ∈ M do
2: receive PLT()
3: Nm(i) = deadline assessment()
4: τm(i) = thermal assessment()
5: end for
6: Cs = C1

7: for all Ci ∈ M do
8: if (τm(s) < τth) XOR (τm(i) < τth) then
9: Cs = (τm(s) < τth) ? Cs : Ci

10: else
11: if (Nm(s) == |M ′|) XOR (Nm(i) == |M ′|) then
12: Cs = (Nm(s) == |M ′|) ? Cs : Ci

13: else if (Nm(s) == |M ′|) AND (Nm(i) == |M ′|) then
14: Cs = (τm(s) < τm(i)) ? Cs : Ci

15: else
16: Cs = (Nm(s) > Nm(i))? Cs : Ci

17: end if
18: end if
19: end for

and the thermal assessment (τm) to the global agent. To
find the best cluster to host the application, we propose the
following principles for the global agent to make decisions.
The following principles are listed according to the descending
order of their priorities.
• The global agent always tries to select the cluster whose

highest predicted temperature is lower than the threshold
temperature to avoid thermal emergencies. (τm < τth)

• The global agent always tries to select the cluster which
meets the deadlines of all the virtual cores in the PLT such
that the deadline constraint of the application is fulfilled.
(Nm = |M ′|)

• The global agent always tries to select the cluster which
meets the deadlines of more virtual cores in the PLT
such that the possibility of meeting the deadline of the
application is higher.

• The global agent always tries to select the cluster with
lower highest predicted temperature such that the peak
temperature of the system could be reduced.

The pseudo code of cluster selection is shown in Algo-
rithm 1. The output of the algorithm is the selected cluster
to host the new application, denoted as Cb. Line 1 to line 5 is
the cluster assessment within each cluster and the score of the
cluster assessment is Nm and τm as discussed before. Line
7 to line 19 is the selection process performed by the global
agent. Line 8 to line 9 selects the cluster whose τm does not
exceeds the threshold temperature. Line 10 to line 18 are for
the cases when the thermal constraints of the two clusters are
both met or both violated. In such cases, the global agent first
picks the cluster that fulfills the deadline constraints (line 11,
12). For clusters both meet the constraints, the global agent
picks the cluster with lower highest predicted temperature (line
13, 14). For clusters both miss the deadlines, the global agent
picks the cluster with more feasible matches in the processor
match graph (line 15,16).

D. Step 4: Core Binding

After the global agent selects the cluster to execute the
application, it sends the application together with the pre-
scheduling information to the cluster agent. Then the cluster
agent should bind a real core to each virtual core in the
pre-schedule. In core binding, the first objective is to find a

Algorithm 2 Core binding algorithm
Input: PLT,M , Processor matching graph
Output: Mp : M ′ →M

1: while M 6= ∅ do
2: m′ = find max power(M ′)
3: Mf = find feasible processors(M)
4: if Mf = ∅ then
5: m = find max free time(M)
6: else
7: compute peak temperature()
8: m = find min cost(Mf)
9: end if

10: Mp(m′) = m
11: end while

mapping that meets the deadline constraints of the virtual core,
and the second objective is to minimize the peak temperature
of the cores. Since the algorithm is for run-time use, we design
a heuristic-based algorithm which solves the problem with low
complexity. The basic methodology for processor binding is
to map the virtual core with highest power consumption, p′,
to a real core which results in a scheduling that leads to the
lowest predicted temperature τpred [25]. In processor binding,
we also consider the influence of communication power, which
also contributes to the temperature rise in the system.

The pseudo code of the algorithm in shown in Algorithm
2. In the algorithm, line 2 picks the virtual cores with highest
power consumption from the PLT. To find a proper real core
to host the virtual core, line 3 first finds the feasible cores
which meets the deadline constraint of m′. This is enabled
by referring to the core matching graph generated in deadline
assessment. If there does not exist any feasible core, then the
virtual processor m′ is bound to the real core with most free
execution time where the possibility for meeting the deadline
is higher. Otherwise, we use a cost function to find the best
core among the feasible cores (line 8). The cost function
is defined by Eq. (5), where τpred is the predicted peak
temperature for the real core and Ecomm is the communication
energy and a is a tuning parameter. τpred is computed in
line 7 using Eq. (3) in Section II-C. Firstly, we generate the
power trace of the core according to an EDF schedule of the
tasks in the real core and the virtual core. Secondly, we use
Eq. (3) to estimate the temperature trace of the real core to
the end of the last task in the schedule. Finally, we select the
peak temperature tpred from the temperature trace. Ecomm
can be computed by Eq. (6), where Ebit is defined in Eq. (2)
in Section II-A and volmapped is the total communication
volume between the virtual core which is being mapped and
the virtual cores that are previously bound to real cores. After
the processor binding is finished, the tasks inside each virtual
core are assigned to the real core according to the mapping
results.

cost = τm + a · Ecomm (5)

Ecomm = Ebit · volmapped (6)

E. Step 5: Run-time In-processor Scheduling

After core binding, the cores begins to execute the tasks.
In each core, an earliest deadline first algorithm is adopted to
decide the execution order of the tasks. The detailed structure
of the in-processor scheduler is shown by Fig. 12. Each core

10

Ready queue

Wait queue

v1 v2 v3 v4

va vb vc vd

��������

Execution

Fig. 12: The flow of run-time task scheduling

m1

mN

&

1.25mm

1
.2
5
m
m

Processor

Router

Fig. 13: The general floorplan of the many-core systems in
the experiments

keeps two queues of tasks to be executed. Tasks that are in
the ready queue can start execution immediately. Tasks that
are in the wait queue cannot start execution until all the
messages for their precedence tasks are received. Whenever
a core becomes free, the EDF scheduling algorithm picks the
task with an earliest deadline from the ready queue to execute
on the processor. The deadline of each task has been defined
during the deadline assignment step in the global agent. This
scheme makes it possible for one cluster to simultaneously
execute tasks of multiple applications to improve the utility
rate of the cores.

V. EVALUATION

In this section, we present the experimental results on the
evaluation of the decentralized scheduling scheme.

A. Experiment Setup

Simulation Settings: We adopt the HotSpot thermal simula-
tor as the experimental platform. In the experiments, we model
three many-core systems with different size (64 cores, 256
cores and 1024 cores) for the sake of scalability evaluation.
The cores are fixed to be 28nm ARMv7 architecture. Fig. 13
shows the general floorplan of the many-core systems used
in the experiments. The many-core systems are tile-based,
where each tile contains a processer core and a router. In the
floorplan, each tile is a square with the side length of 1.25mm
and all the tiles are aligned into a square matrix. Table II
summarizes the thermal-related parameters for the many-core
systems which is used in HotSpot. We assume that in each
VFI in the many-core systems contain 16 cores and that the
frequency levels for VFI are 1.9 GHz and 800 GHz.

TABLE II: Thermal-related parameters configuration

Parameter Value
Die thickness 0.15 mm
TIMa thickness 0.02 mm
Silicon heat capacity 1.76× 106 J/(m3 ·K)
Silicon thermal conductivity 148 W/(m ·K)
TIM thermal conductivity 4 W/(m ·K)

athermal interface material

Benchmarks: In the experiments, we adopt the synthesised
task graphs provided by the Standard Task Graph (STG) suite
as the benchmarks. STG is a fair and complete benchmark
suite for randomly generated task graphs and used in previous
studies like [30]. However, the task graphs provided by the
STG do not have power consumption, so we have to manually
generate a power consumption figure for each of the tasks in
the benchmarks. The power consumption figures we generated
are based on the average power consumption of the programs
in SPEC CPU2006 running on a 28nm quad-core ARM Cortex
15 processor with the ARMv7 architecture. The power figures
are acquired by simulation on the cycle-accurate simulator
GEM5 [33]. The observed power consumption per core of
SPEC CPU2006 benchmarks ranges from 0.74 W to 0.56 W.
We assign power consumption to the tasks according to a
uniform distribution of the values in the above range. In
addition, the idle power of each core is assumed to be 0.11 W.

We combine the task graphs from four different packages
of STG to form an application pool. The task graphs from the
four packages respectively contain 50, 100, 200 and 300 nodes
each. The task graphs with 50 nodes represents embedded
applications like FFT (48 nodes). Task graphs with 100 nodes
represents applications like sparse matrix solver (96 nodes).
Task graphs with 200 nodes represents applications like H263E
video decoder (201 nodes). Task graphs with 300 nodes
represents applications like SPEC Fpppp (334 nodes). [21]
In the application pool, each application contains 162.5 nodes
on average. For the 64-core system, we send 16 applications to
the system every 100 ms. The number of applications issued to
the many-core system at one time is proportional to the number
of processors contained by the system. This is to eliminate the
difference in the system load caused by the different amount
of computing resources in different systems.

The deadline of each application is set by Eq. (7). In the
equation, d is the deadline of the application, ta is the arriving
time of the application, lcritical is the length of the critical
path of the application, namely, the minimum makespan of the
application, and α is a tuning factor. We note that α should
not be lower than 1, otherwise the deadline is impossible
to be met. By giving α different values, we could control
the tightness of the deadlines for the applications. In the
experiments, we set α = 2, such that the deadlines are neither
too tight nor too loose.If the deadlines are too tight, the
priority of meeting deadline constraints for our decentralized
thermal-aware scheduling scheme becomes overwhelming and
the search space left for the thermal management is too small.
If the deadlines are too loose, then deadline constraints have
little impact on the scheduling results, which could make the
comparison between our algorithm and the deadline-aware
algorithm meaningless.

d = ta + α× lcritical, α ≥ 1 (7)

Comparison algorithms: Since there is no previous study
directly comparable with our work, we select a number
of thermal-aware scheduling algorithms in different perspec-
tives to thoroughly evaluate our decentralized thermal-aware

11

70

75

80

85

90

95

100

64 core 256 core 1024 core

P
ea

k
te

m
p

e
ra

tu
re

 (
°C

)

PTM ADAM PCP DTAS

Fig. 14: Peak temperature of the many-core systems using
different scheduling algorithms

scheduling algorithm. First, to show the effectiveness of our
algorithm in peak temperature reduction, we compare our work
with a state-of-the-art centralized thermal-aware scheduling
algorithm for task graph. The algorithm is called the predictive
task migration algorithm [34] (denoted as PTM). The PTM
algorithm aims at balancing the temperature distribution in
many-core systems by dynamically migrating tasks from hot
cores to cool cores. We use PTM algorithm for comparison is
because it is the most similar study as our work. It is designed
for thermal-aware task graph scheduling problem and it is also
a dynamic solution. Second, to evaluate the scalability and
efficiency of our work, besides the centralized thermal-aware
scheduling algorithm, we also compare our work to the cluster-
based decentralized scheduling algorithm, similar as ADAM
[15]. ADAM is a power-aware scheduling algorithm, which
adopts the cluster-based decentralization method and evaluates
the cluster selection at the global agent. Thirdly, to evaluate
the performance of our algorithm on meeting the deadlines,
we select a deadline-aware task graph scheduling algorithm
called the partial critical path algorithm [35] (denoted as PCP).
We extend the similar approach for thermal-aware scheduling

for better comparison. In the experiments, our decentralized
thermal-aware scheduling algorithm is denoted as DTAS.

B. Performance in Thermal Management

Fig. 14 shows the comparison of peak temperature of
the many-core systems without DVFS achieved by different
scheduling algorithms. In Fig. 14, PCP results in highest peak
temperature because it is not designed for thermal manage-
ment. ADAM shows the second highest peak temperature for
the same reason but when compared to PCP, the power saving
feature of ADAM also slightly reduces the peak tempera-
ture. PTM achieves the lowest peak temperature in all the
cases due to the global optimization. However, PTM causes
3.74% of the applications to miss their deadlines on average
since the algorithm is not designed for deadline constraints.
Our decentralized thermal-aware scheduling algorithm, on the
other hand, guarantees the deadlines of all the applications in
the experiments. The decentralized algorithm achieves peak
temperature only 3.68% higher than PTM on average. In addi-
tion, when considering the communication overhead generated
for each application, our decentralized algorithm significantly
outperforms the centralized algorithm. In experiments, an
average 34.7% reduction of communication delay and 48.9%
reduction of communication power is achieved by our DTAS
algorithm when compared to the centralized thermal-aware
scheduling algorithm PTM.

0%

20%

40%

60%

80%

100%

64 core 256 core 1024 core

Th

e
rm

al
 E

m
er

ge
n

ci
es

PTM ADAM PCP DTAS

Fig. 15: Normalized number of thermal emergencies in the
many-core systems using different scheduling algorithms

0%

50%

100%

150%

200%

16 64 256 1024 4096

N
o

rm
al

iz
ed

 M
o

n
it

o
ri

n
g

tr
af

fi
c

System size (# cores)

PTM ADAM PCP DTAS

Fig. 16: Normalized monitoring traffic generated by the
scheduling algoirhtms.

Fig. 15 shows the normalized number of thermal emer-
gencies appeared in the system when different scheduling
algorithms are applied. In this experiments, the threshold
temperature for each core is set at 75◦C. The threshold
temperature is selected to avoid dark silicon problem [7].
In the figure, we can see that in all cases, PTM achieves
the least number of thermal emergencies due to is global
optimization, when compared to PCP, 59.7% of the thermal
emergencies are reduced on average. Our DTAS algorithm
achieves an average reduction of 46.3% compared to PCP.
When considering the deadline constraint, PCP and ADAM
cause 14.8% and 12.9% deadline miss due to the frequently
happened thermal emergencies. PTM causes 7.8% deadline
miss due to the lack of deadline meeting scheduling policies.
Our DTAS algorithm, however, only causes 1.2% deadline
miss with specific concerns for the deadline constraints under
DVFS.

C. Monitoring Traffic

Fig. 16 compares the normalized total monitoring traffic
generated by the scheduling algorithms. In small scale systems
like the 16-core and 64-core systems, the monitoring traffic of
centralized algorithms (PTM and PCP) is lower than the de-
centralized algorithms (ADAM and DTAS). This is due to the
additional monitoring traffic generated by the communications
between agents. However, when the system size reaches 256
core, significant monitoring traffic reduction can be achieved
by decentralized scheduling algorithms. When compared with
ADAM, our DTAS algorithms consumes slightly higher mon-
itoring traffic due to the transfer of PLTs. When compared
to centralized scheduling algorithms, our DTAS scheduling
algorithm achieves up to 84.3% of monitoring traffic reduction.

D. Exploration of Initial Cluster Size

In this section, we explore the influence of the initial-cluster
size on the decentralized thermal-aware scheduling algorithms.

12

78

80

82

84

0

100

200

300

400

500

16 64 256 1024

Pe
ak

 T
em

p
er

at
u

re
 (

°C
)

M
o

n
it

o
ri

n
g

Tr
af

fi
c

(K
B

)

Temp. Traffic

Fig. 17: Peak temperature and monitoring traffic under differ-
ent initial cluster size

0%

20%

40%

60%

80%

100%

120%

16 64 256 1024

Th

er
m

al
 E

m
er

ge
n

ci
es

Cluster size

Fig. 18: Normalized number of thermal emergencies under
different initial cluster size

In the experiments, the task graphs in the benchmarks are
scheduled to the 1024-core system by our decentralized
thermal-aware scheduling algorithm. We use four setting for
the initial cluster size: 16-core, 64-core, 256-core and 1024-
core, respectively. In the initial state, each cluster is set to
be a square array of cores in the system. This is to prevent
different shapes of the clusters from affecting the results of
the experiments.

Fig. 17 shows the peak temperature and monitoring traffic of
the system without DVFS. As the initial cluster size increases,
the peak temperature of the system shows a slight reduction.
As we have discussed previously, this is due to the increase
in the search space of the algorithm. However, we can also
observe a significant increase in the monitoring traffic with
cluster size increase.

Fig. 18 shows the normalized number of thermal emergen-
cies happened on the system with DVFS presented. Similar as
the trend shown in Fig. 17, the number of thermal emergencies
decreases as the cluster size grows. This is due to the search
space for the processor binding algorithm increases and the
possibility of finding a more thermal efficient schedule also
increases.

E. Evaluation of Cluster Merging

To further demonstrate the benefits of the cluster merging,
we conduct an experiment of our decentralized thermal-aware
scheduling algorithm without the cluster merging technique
(denoted as DTAS (no merge)). Whether or not the pre-
scheduling results meet the deadline constraints, the global
agent sends the PLT to the cluster agents to continue the
scheduling process. The experiment is carried out on the 1024-
core system with the initial cluster size of 16-core.

Table III shows the experimental results. First, the schedul-
ing algorithm with cluster merging significantly outperforms
the one without cluster merging in deadline miss rate. This is

TABLE III: Performance evaluation of cluster merging

Scheduling algorithm DTAS DTAS (no merge)
Deadline miss rate 0 12.97%
Peak temperature (◦C) 82.42 84.91
Avg. montr. traffic (KB) 573.45 496.47

the motivation of implementing the cluster merging technique:
to provide more computing resources for large applications
to meet their deadline constraint. Second, with the cluster
merging technique, the decentralized thermal-aware schedul-
ing algorithm achieves lower peak temperature in the system.
This is because cluster merging results in larger clusters in
the system, which could lead to potential improvement in the
scheduling results. Finally, as the overhead of cluster merging,
the monitoring traffic of the system increases by 15.5%.
This overhead is acceptable considering the improvement in
deadline miss rate, more importantly with the gain of lower
temperature.

VI. RELATED WORK

With the development in technology scaling, microproces-
sors have become more vulnerable to thermal failures due to
the ever increasing power density. In order to improve the
reliability of the microprocessors, as well as to reduce the
cost spent on cooling systems, dynamic thermal management
(DTM) has become an important focus of the research in
microprocessors. Previous studies have proposed various kinds
of DTM techniques, which can be classified into two main
categories [36]. The core-throttling techniques directly control
the power consumption of the processors by affecting the
execution speed of the hardware, which usually adopt DVFS
scheme [23]. The non-core-throttling techniques, which are
mainly composed of thermal-aware scheduling algorithms, are
pure software-level DTM solutions. In general, core-throttling
techniques outperform non-core-throttling techniques in con-
trol accuracy and response speed. However, non-core-throttling
techniques have much lower implementation cost and do not
affect the performance of the processors.

When dealing with different kinds of workloads, the
thermal-aware scheduling algorithms adopt different method-
ologies. Many of the studies in thermal-aware scheduling
algorithms are proposed for independent tasks. Recent studies
usually solve the thermal management problems considering
different kinds of architecture-level features. For instance,
Donald et al. [37] proposed a scheduling algorithm for si-
multaneous multi-threading (SMT) processors, which balances
the power consumption of the processors by simultaneously
running high-power and low-power tasks. Khdr et al. [38]
proposed a thermal constrained resource management solution
for tasks with both instruction level parallelism and thread
level parallelism.

As parallel computing becomes pervasive, there is growing
interest on the thermal-aware scheduling algorithms using task
graphs. Thermal-aware scheduling algorithms for task graphs
can be classified by the type of scheduling algorithms adopted
[39]. Algorithmic schemes are capable of producing optimal
or near-optimal scheduling solutions through high-complexity
algorithms. Puschini et al. [12] adopted gaming theory to
reduce the peak temperature of NoC systems. Conskun et
al. [34] formulated the problem as a mixed integer linear

13

programming problem (ILP). The study not only provided
the formal ILP solution which guarantees optimal results,
but also provided a simplified heuristic-based solution for
dynamic use. Heuristic scheduling algorithms are fast enough
for on-line scheduling and carefully designed heuristics can
achieve comparable performance as the algorithmic algorithms
under most real-life workloads. Hung et al. [8] proposed a
power-balancing heuristic which effectively reduces the peak
temperature in multi-core systems. Coskun et al. [34] pro-
posed a heuristic to mitigate the temperature gradient between
adjacent cores in the system. The algorithm proposed in that
study required on-line thermal simulation to estimate temper-
ature difference between cores. Khdr et al. [40] proposed a
scheduling algorithm combined with DVFS to achieve multiple
objectives in thermal management. Their solution not only
reduces the peak temperature of the system, but also minimizes
the temperature differences in adjacent cores.

However, all the above mentioned algorithms are centralized
techniques, which are performed by a centralized scheduler in
the system,. As the system scale grows larger, these algorithms
are highly susceptible to failure due to the increasing commu-
nication. To address the scalability issue, several decentralized
thermal-aware scheduling techniques have been studied [15]–
[17], [41]. Ebi et al. [41] transformed the thermal-aware
scheduling problem into an economic trading model. In the
economic model, each core acted like a trading agent to sell
out or buy in power budgets. Then the scheduler assigned
tasks to each core according to the power budgets. In [16],
they further proposed a hierarchical solution for assigning
power budgets to the cores in NoC for thermal management.

However, the studies only considered independent tasks.
In a closely related work, Faruque et al. [15] proposed a
decentralized task graph mapping algorithms for heteroge-
neous many-core systems. Ismail et al. [17] proposed a model
checker to formally verify the performance of decentralized
thermal aware scheduling algorithms. However, this work
was not designed for thermal management, instead it aimed
at minimizing communication overhead.

VII. CONCLUSIONS

In this paper, we propose a decentralized thermal-aware
scheduling algorithm for large-scale many-core systems. By
dividing the system into clusters, our algorithm gains high
scalability and efficiently reduces the peak temperature of
the many-core systems as well as meets all the deadlines
compared to scheduling algorithms which aim at only perfor-
mance. When compared to centralized scheduling algorithms,
our work shows significant reduction up to 84.3% in the
monitoring traffic overhead and computing complexity with
comparable peak temperature reduction in the large-scale
multi-core systems.

ACKNOWLEDGMENTS

This work is partly supported by MoE AcRF Tier 2 grants
(MOE2012-T2-2-067 and MOE2012-T2-1-126) in Singapore,
and by A*Star - SERC Public Sector Funding (PSF) of
Singapore under Grant No. 1121202015.

REFERENCES

[1] H. Iwai, “Roadmap for 22nm and beyond,” Tech. Rep. 7, 2009.
[2] S. Borkar, “Thousand core chips: a technology perspective,” in Pro-

ceedings of the 44th annual Design Automation Conf. ACM, 2007, pp.
746–749.

[3] G. M. Link and N. Vijaykrishnan, “Thermal trends in emerging tech-
nologies,” in Proceedings of the 7th Int. Symp. on Quality Electronic
Design. IEEE Computer Society, 2006, pp. 625–632.

[4] G. Gielen, P. De Wit, E. Maricau, J. Loeckx, J. Martı́n-Martı́nez,
B. Kaczer, G. Groeseneken, R. Rodrı́guez, and M. Nafrı́a, “Emerging
yield and reliability challenges in nanometer cmos technologies,” in
Proceedings of the conference on Design, automation and test in Europe.
ACM, 2008, pp. 1322–1327.

[5] H. Esmaeilzadeh and et al., “Dark silicon and the end of multicore
scaling,” in Computer Architecture (ISCA), 2011 38th Annual Int. Symp.
on. IEEE, 2011, pp. 365–376.

[6] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The eda challenges
in the dark silicon era,” in Design Automation Conf. (DAC), 2014 51st
ACM/EDAC/IEEE. IEEE, 2014, pp. 1–6.

[7] J. Henkel, H. Khdr, S. Pagani, and M. Shafique, “New trends in dark sili-
con,” in Design Automation Conf. (DAC), 2015 52nd ACM/EDAC/IEEE.
IEEE, 2015, pp. 1–6.

[8] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,
“Thermal-aware task allocation and scheduling for embedded systems,”
in Proceedings of the conference on Design, Automation and Test in
Europe-Volume 2. IEEE Computer Society, 2005, pp. 898–899.

[9] J. Choi and et al., “Thermal-aware task scheduling at the system software
level,” in Proc. of the 2007 international symposium on Low power
electronics and design. ACM, 2007, pp. 213–218.

[10] C.-L. Chou and R. Marculescu, “Incremental run-time application map-
ping for homogeneous nocs with multiple voltage levels,” in Hard-
ware/Software Codesign and System Synthesis (CODES+ ISSS), 2007
5th IEEE/ACM/IFIP Int. Conf. on. IEEE, 2007, pp. 161–166.

[11] A. K. Coskun, T. S. Rosing, K. A. Whisnant, and K. C. Gross,
“Temperature-aware mpsoc scheduling for reducing hot spots and gra-
dients,” in Proc. of the 2008 Asia and South Pacific Design Automation
Conf. IEEE Computer Society Press, 2008, pp. 49–54.

[12] D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, and L. Torres,
“Temperature-aware distributed run-time optimization on mp-soc using
game theory,” in Symp. on VLSI, 2008. ISVLSI’08. IEEE Computer
Society Annual. IEEE, 2008, pp. 375–380.

[13] F. Zanini, D. Atienza, L. Benini, and G. De Micheli, “Multicore thermal
management with model predictive control,” in Circuit Theory and
Design, 2009. ECCTD 2009. European Conf. on. IEEE, 2009, pp.
711–714.

[14] U. Y. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu, “Voltage-
frequency island partitioning for gals-based networks-on-chip,” in Proc.
of the 44th annual Design Automation Conf. ACM, 2007, pp. 110–115.

[15] A. Faruque, M. Abdullah, R. Krist, and J. Henkel, “Adam: run-time
agent-based distributed application mapping for on-chip communica-
tion,” in Proc. of the 45th annual Design Automation Conf. ACM,
2008, pp. 760–765.

[16] T. Ebi, D. Kramer, W. Karl, and J. Henkel, “Economic learning for
thermal-aware power budgeting in many-core architectures,” in Hard-
ware/Software Codesign and System Synthesis (CODES+ ISSS), 2011
Proc. of the 9th Int. Conf. on. IEEE, 2011, pp. 189–196.

[17] M. Ismail, O. Hasan, T. Ebi, M. Shafique, and J. Henkel, “Formal
verification of distributed dynamic thermal management,” in Proc. of
the Int. Conf. on Computer-Aided Design. IEEE Press, 2013, pp. 248–
255.

[18] L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,”
Computer, vol. 35, no. 1, pp. 70–78, 2002.

[19] S. R. Vangal and et al., “An 80-tile sub-100-w teraflops processor in 65-
nm cmos,” Solid-State Circuits, IEEE J. of, vol. 43, no. 1, pp. 29–41,
2008.

[20] J. Held, J. Bautista, and S. Koehl, “From a few cores to many: A tera-
scale computing research overview,” white paper, Intel, 2006.

[21] W. Liu and et al., “A noc traffic suite based on real applications,” in
ISVLSI, 2011, pp. 66–71.

[22] B. Goel and et al., “Portable, scalable, per-core power estimation for
intelligent resource management,” in Green Computing Conf., 2010 Int.
IEEE, 2010, pp. 135–146.

[23] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained power con-
trol for chip multiprocessors with online model estimation,” in ACM
SIGARCH computer architecture news, vol. 37, no. 3. ACM, 2009, pp.
314–324.

14

[24] D. Brooks and M. Martonosi, “Dynamic thermal management for high-
performance microprocessors,” in High-Performance Computer Archi-
tecture, 2001. HPCA. The Seventh Int. Symp. on. IEEE, 2001, pp.
171–182.

[25] K. Stavrou and P. Trancoso, “Thermal-aware scheduling: A solution
for future chip multiprocessors thermal problems,” in Digital System
Design: Architectures, Methods and Tools, 2006. DSD 2006. 9th EU-
ROMICRO Conf. on. IEEE, 2006, pp. 123–126.

[26] X. Zhou, J. Yang, Y. Xu, Y. Zhang, and J. Zhao, “Thermal-aware
task scheduling for 3d multicore processors,” Parallel and Distributed
Systems, IEEE Tran. on, vol. 21, no. 1, pp. 60–71, 2010.

[27] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of scientific
workflow applications on utility grids,” in e-Science and Grid Comput-
ing, 2005. First Int. Conf. on. IEEE, 2005, pp. 8–pp.

[28] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in Proc. of 2011 Int. Conf.
for High Performance Computing, Networking, Storage and Analysis.
ACM, 2011, p. 49.

[29] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys
(CSUR), vol. 31, no. 4, pp. 406–471, 1999.

[30] T. Tobita and H. Kasahara, “A standard task graph set for fair evaluation
of multiprocessor scheduling algorithms,” J. of Scheduling, vol. 5, no. 5,
pp. 379–394, 2002.

[31] Y. Dinitz, “Dinitzalgorithm: The original version and evens version,” in
Theoretical Computer Science. Springer, 2006, pp. 218–240.

[32] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Tran. on Architecture and Code Optimization
(TACO), vol. 1, no. 1, pp. 94–125, 2004.

[33] N. Binkert and et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[34] A. K. Coskun, T. S. Rosing, K. A. Whisnant, and K. C. Gross, “Static
and dynamic temperature-aware scheduling for multiprocessor socs,”
Very Large Scale Integration (VLSI) Systems, IEEE Tran. on, vol. 16,
no. 9, pp. 1127–1140, 2008.

[35] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 158–169, 2013.

[36] J. Donald and M. Martonosi, “Techniques for multicore thermal manage-
ment: Classification and new exploration,” in ACM SIGARCH Computer
Architecture News, vol. 34, no. 2. IEEE Computer Society, 2006, pp.
78–88.

[37] ——, “Leveraging simultaneous multithreading for adaptive thermal
control,” in Second Workshop on Temperature-Aware Computer Systems.
Citeseer, 2005.

[38] H. Khdr, S. Pagani, M. Shafique, and J. Henkel, “Thermal constrained
resource management for mixed ilp-tlp workloads in dark silicon chips,”
in Proc. of the 52nd Annual Design Automation Conf. ACM, 2015, p.
179.

[39] H. F. Sheikh, I. Ahmad, Z. Wang, and S. Ranka, “An overview and
classification of thermal-aware scheduling techniques for multi-core
processing systems,” Sustainable Computing: Informatics and Systems,
vol. 2, no. 3, pp. 151–169, 2012.

[40] H. Khdr, T. Ebi, M. Shafique, H. Amrouch, and J. Henkel, “mdtm: multi-
objective dynamic thermal management for on-chip systems,” in Proc.
of the conference on Design, Automation & Test in Europe. European
Design and Automation Association, 2014, p. 330.

[41] T. Ebi, M. Faruque, and J. Henkel, “TAPE: Thermal-aware agent-
based power econom multi/many-core architectures,” in Computer-Aided
Design-Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM Int.
Conf. on. IEEE, 2009, pp. 302–309.

Yingnan Cui Yingnan Cui received his Bachelor
degree in Automation from Harbin Institute of Tech-
nology (2006-2010). He is now a Ph.D. student in
School of Computer Engineering, Nanyang Techno-
logical University, Singapore (2010-). His research
topic focuses on run-time thermal management of
multi-core systems.

Wei Zhang Dr. Wei Zhang received her Ph.D.
degree in Electrical Engineering from Princeton Uni-
versity. She joins Hong Kong University of Science
and Technology in 2013 and establishes Reconfig-
urable System Lab. She was an assistant professor
in School of Computer Engineering at Nanyang
Technological University, Singapore (2010-2013).
She is a co-investigator of Singapore-MIT Alliance
for Research and Technology and works on low-
power electronics.

Vivek Chaturvedi Dr. Vivek Chaturvedi is currently
working as a research fellow at Nanyang Techno-
logical University, Singapore. Dr. Chaturvedi grad-
uated with a Ph.D. in Electrical Engineering from
Department of Electrical and Computer Engineering,
Florida International University, Miami in 2013. He
received his M.S. degree from Syracuse University,
NY in 2008.

Bingsheng He Dr. Bingsheng He received the bach-
elor degree in computer sicence from Shanghai Jiao
Tong University (1999-2003), and the Ph.D. degree
in computer science in Hong Kong University of
Science and Technology (2003-2008). Dr. He is an
assistant professor in School of Computer Engineer-
ing of Nanyang Technological University, Singapore.
His research interests are high performance comput-
ing, cloud computing, and database systems.

