
When Data Management Systems Meet Approximate
Hardware: Challenges and Opportunities

Bingsheng He
Nanyang Technological University, Singapore

ABSTRACT
Recently, approximate hardware designs have got many
research interests in the computer architecture community.
The essential idea of approximate hardware is that the
hardware components such as CPU, memory and storage
can trade off the accuracy of results for increased perfor-
mance, reduced energy consumption, or both. We propose
a DBMS ApproxiDB with its design, implementation and
optimization aware of the underlying approximate hardware.
ApproxiDB will run on a hybrid machine consisting of both
approximate hardware and precise hardware (i.e., the con-
ventional hardware without sacrificing the accuracy). With
approximate hardware, ApproxiDB can efficiently support
the concept of approximate query processing, without the
overhead of pre-computed synopses or sampling techniques.
More importantly, ApproxiDB is also beneficial to precise
query processing, by developing non-trivial hybrid execution
mechanisms on both precise and approximate hardware. In
this vision paper, we sketch the initial design of ApproxiDB,
discuss the technical challenges in building this system and
outline an agenda for future research.

1. INTRODUCTION
In the last few decades, data management systems have

been significantly improved and re-designed for performance
and energy consumption. Among various factors, hardware
evolution is one of the key and the enabling factors for
driving the evolution of data management systems. There-
fore, hardware-conscious (or architecture-aware) databases
have been a fruitful research area [2, 10, 7]. We have
witnessed fruitful research results and performance improve-
ment brought by hardware-conscious optimizations, from
CPU cache optimizations on addressing the memory wall,
emerging storage techniques (such as solid state memories)
on easing the I/O bottleneck, to multi-core/many-core
processing for parallel databases. We strongly believe that
hardware evolution continues to be a major driving force for
architectural evolutions of future data management systems.
“Prediction is very difficult, especially if it’s about the

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain
permission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 10
Copyright 2014 VLDB Endowment 21508097/14/06.

future”. The radical vision that we make in this paper is:
data management on approximate hardware.

Recently, computer architecture researchers have pro-
posed various emerging designs on approximate hardware,
such as CPU [15, 12, 4], main memory [9] and storage [13].
The essential idea of approximate hardware is that the
hardware components such as CPU, memory and storage
can trade off the accuracy of results for increased perfor-
mance, reduced energy consumption, or both. To illustrate,
consider the approximate CPU. One may reduce the energy
consumption of floating point operations, by ignoring part
of the mantissa in the operands. As observed in the previous
study [15], a floating-point multiplier using 8-bit mantissas
reduces over 78% of energy per operation than a full 24-bit
multiplier. Another example is approximate storage [13],
which improves write latencies by 1.7× on average by
trading off less than 10% of accuracy. We note that,
approximate hardware does not mean that the hardware
is fault-prone or unreliable. In fact, the error distribution
of approximate hardware conforms to certain distributions
(e.g., normal), which represent a programmable tradeoff
between the accuracy and the performance/energy con-
sumption. We give a quick introduction on approximate
hardware in Section 2.

Approximate hardware opens up various optimization
opportunities for the performance and energy consumption
of data management systems. Approximate hardware can
not only efficiently support approximate query processing
(AQP), where users do not need accurate answers or it is
too costly to get accurate answers, but also enables new
optimization dimensions for precise query processing, where
users require precise query answers (details are presented
in Section 3.1). We propose a new data management
system, ApproxiDB, with its design, implementation and
optimization aware of the underlying approximate hardware.
ApproxiDB will run on a hybrid machine consisting of both
approximate hardware and precise hardware. It supports
both AQP, and precise query processing. The interest-
ing interplay between data management and approximate
hardware raises various challenging issues on hardware and
software co-design. In this vision paper, we sketch our initial
design for ApproxiDB, along with the underlying challenges.

2. APPROXIMATE HARDWARE BASICS
We use approximate storage as an example for a closer

look at approximate hardware. Approximate storage has
been designed for solid-state memories, particularly for
multi-level cell (MLC) configurations [13]. Examples of

Figure 1: The probability of reading a given analog
value after writing one of the levels in a precise
(a) and approximate (b) four-level cell. The shaded
areas are the target regions for writes to each level
(figures are reproduced from [14]).

solid-state memories include flash and PCM (Phase Change
Memory), which have been widely studied in databases
(e.g., [8, 16]).
Let us first describe how precise storage works. Analog

reads and writes are inherently imprecise. Thus, some
guard bands are defined to separate different analog values
so that they can safely represent different digital values.
Figure 1 illustrates the idea of guard bands for a four-
level cell design. On the other hand, due to process
variation and nondeterministic material behavior, a single
programming pulse typically has poor precision of achieving
the guard band. Therefore, current MLC designs for both
flash and PCM adopt iterative program-and-verify (P&V)
mechanisms [11, 14]. In each P&V iteration, the cell’s
resistance is adjusted and read back to check whether the
correct value has been achieved. The process continues
until an acceptable resistance value has been set. The
performance and energy consumption of a write are almost
proportional to the number of P&V iterations during the
write.
We now describe the design of approximate solid state

memory proposed by Sampson et al. [13]. Unlike pre-
cise storage with relatively strict and wide guard bands,
approximate storage reduces the guard bands to speed
up iterative P&V writes at the cost of occasional errors.
Figure 1 illustrates the idea of a smaller guard band in the
approximate storage. Since the guard band is reduced, we
need a smaller number of P&V iterations to achieve the
acceptable accuracy.
Formally speaking, the performance/energy consumption

of a write on approximate storage satisfy certain monoton-
ically increasing functions: t = T (c) and e = E(c), where
t, e and c (0 ≤ c ≤ 1) denote the elapsed time, energy
consumption and the accuracy of the write, respectively.

The accuracy c is defined to be c = 1 − |v−v′|
v

, where v
and v′ are the actual value and the value that we write in,
respectively. We also note that the distribution of errors
(1 − c) conforms to certain distributions (such as normal
distributions for approximate MLC). Thus, the errors are
bounded for each cell, and also we can derive the error
bound for an access unit of the approximate storage. For
example, the access unit for external memory is a page. We
assume that each access unit of the approximate storage can
be programmed with different accuracy settings.
Finally, the accuracy-performance/energy tradeoff on ap-

proximate storage is mainly for writes, and reads are almost
the same as the precise storage. Nevertheless, storage reads
may exploit accuracy-performance/energy tradeoff of other
approximate hardware components in the machine, e.g.,
approximate main memory and CPUs.

3. APPROXIDB: AN INITIAL DESIGN

We start with identifying some concrete opportunities
on optimizing data management systems on approximate
hardware, and then give an initial design of ApproxiDB.

3.1 Opportunities
The approximate hardware brings a new and important

dimension for database system design, ranging from op-
erator implementation to query optimizations. There are
many opportunities for performance/energy optimizations,
if we examine the space exposed by approximate hardware.
Particularly, we identify the following three kinds of opti-
mization opportunities (O1 , O2 and O3). In a nutshell,
O1 and O2 represent the opportunities that approximate
hardware can efficiently support approximate query process-
ing, whereas O3 represents the opportunities for improving
precise query processing (i.e., the query requires precise
results).

O1. The data are inherently imprecise, and thus can
tolerate loss of accuracy. There are many such data from
real-world applications such as sensor data, image, video
and audio. For example, the reading from a temperature
sensor may not need the accuracy to “last decimal”. One can
improve the performance and/or the energy consumption of
writes (especially for writes in high-speed streaming sensor
data) by strong the data on approximate storage/main
memory.

O2. The query processing itself can tolerate loss of
accuracy, and the result can be imprecise/approximate.
There are many queries such as aggregate queries, where
exact answers are not always required [6]. Approximate
hardware can offer better performance/energy consumption
by trade off the accuracy. Query processing of those queries
or operators can be performed on approximate hardware.
For example, the query execution can be performed on
approximate CPU, and intermediate/final output can be
stored on approximate storage/main memory.

O3. Although the query processing requires precise final
result, a hybrid execution on precise hardware and approx-
imate hardware could have better performance/energy con-
sumption than the execution with precise hardware only. We
propose an non-trivial paradigm for the hybrid execution:
Approximate-and-refine. The basic idea has two steps: 1) we
use approximate hardware in some of the processing steps to
get some intermediate results (to be precise, they must form
the superset of the final results), and 2) we run on precise
hardware to refine the intermediate results and obtain the
final result. Since approximate executions in Step 1) can be
faster or more energy efficient than precise executions, this
hybrid scheme wins when the refinement overhead of Step
2) is low. We give the following two examples to illustrate
this paradigm.

EXAMPLE 1: selection. We use the selection as an ex-
ample to illustrate the benefit of approximate CPU. As shown
in Figure 2(a), a selection is performed on the precise CPU.
Assume a scan on the entire relation, and we have eight precise
operations on key comparisons. In contrast, we may consider
some approximate execution (we simply assume the approximate
CPU supports some approximate operation for key comparison
with comparing the integer part only). A hybrid execution is
illustrated in Figure 2(b). First, we perform the approximate
execution on the relation. We refine the filtering condition to
be R.x >= 4.0 and R.x < 6.0, and get two candidate results.
Second, we perform the precise key comparison with the original
condition (R.x > 4.5 and R.x < 5.9) and get the final output. In
this hybrid execution, we have eight approximate key comparisons

Figure 2: Examples on O3 : (a, b) selection (R.x > 4.5
and R.x < 5.9), and (c, d) sort in increasing order.

and two precise key comparisons. If the cost of an approximate
key comparison is 50% of the precise key comparison, the hybrid
execution can be 33% faster than the precise execution in terms
of key comparison costs. We note that the cost difference
between the hybrid execution and the precise execution depends
on several factors, including the accuracy of the approximate
execution as well as the selectivities of the precise selection and
the approximate selection.

EXAMPLE 2: sort. We use the merge sort as an example

to illustrate the benefit of approximate storage. The idea is

illustrated in Figures 2(c, d). Suppose the sort is performed on an

input with each tuple consisting keys and record ids. The merge

sort has two kinds of writes (writes for intermediate outputs

and writes for the final output). In Figures 2(c), all writes

go to the precise storage. In a hybrid execution, we consider

writing the intermediate output to approximate storage (which

can improve the performance/energy of those writes). Thus, the

hybrid execution of merge sort has three stages: 1) in the first

run of merge sort, we read from precise storage, sort the chunk

and output the sorted chunk to approximate storage, 2) perform

sorting entirely on approximate storage, and 3) refinement on

precise storage. In Stage 2), the values have errors, and we

assume that record ids are stored in the precise storage. After

Stage 2), we get a nearly sorted output on approximate storage

(in the example, only r6 and r8 are out of order). In Stage 3), we

apply the efficient adaptive sorting algorithm [5] and output the

sorted data to precise storage. The hybrid execution can be faster,

since reads are much faster than writes (reads are in the last

stage of the hybrid execution) on current solid state memories,

and writes on approximate storage are much faster than those

on precise storage. Similar to the selection in Example 1, the

accuracy is still a tuning parameter for the hybrid execution.

We also note that, approximate CPU can be helpful in further

reducing the cost of key comparisons.

3.2 Initial Design
As a start, we focus on leveraging approximate storage

and approximate CPU in ApproxiDB, and the main memory
is precise. We discuss integration of other approximate
hardware in Section 4. ApproxiDB runs on a hybrid machine
consisting of both precise storage/CPU and approximate
storage/CPU. This is because some data by design should be
precise, for example, pointers and some critical data. Those
data should be stored in the precise storage.
Our initial design for ApproxiDB extends an existing

column-based DBMS (such as MonetDB). We choose a
column-based DBMS other than a row-based DBMS, be-
cause column stores are more efficient for approximate
storage. Figure 3 shows the architecture of ApproxiDB
in our initial design. The storage and CPU have the

Figure 3: The architecture of our initial design of
ApproxiDB

hybrid design. For either CPU or storage layer, precise
hardware and approximate hardware can be loosely or
tightly integrated. For example, the precise CPU and the
approximate CPU could be integrated on a single die or
different dies.

The following extensions are made to the existing DBMS.
We extend the physical design (e.g., CREATE TABLE/VIEW)

by allowing users to specify which column can be stored in
approximate storage as well as the accuracy requirement.
Given the accuracy requirement on each column, we are able
to figure out the accuracy requirement on each access unit of
approximate storage. The calculation depends on the data
types, and we can adopt the existing technique [12].

With hybrid CPUs and storage, we have four query pro-
cessing modes: M1) precise query execution on precise data,
which is the conventional processing without approximate
hardware, M2) precise query execution on approximate
data, M3) approximate query execution on precise data,
andM4) approximate query execution on approximate data.
To exploit optimization opportunities (O1–O3), ApproxiDB
chooses suitable modes to support both approximate query
processing and precise query processing.

Particularly, the access methods (such as table scan and
indexes) and relational operators in the existing DBMS can
be extended to support these four query processing modes.
Each method and each operator need to support those
four modes. We adopt the overloading concept to select
the suitable mode according to the accuracy requirement,
in order to keep the interfaces of access methods and
operators unchanged. Basically, before performing any of
those operations, we need to first determine the data source
(either precise storage or approximate storage), and next
to select the suitable CPU instructions according to the
accuracy requirement (e.g., choose adders with different
accuracy levels), and then execute them in the same way
as the original algorithm (either on precise CPU or on
approximate CPU). That means, we pretend that the data
stored in approximate storage as accurate in query process-
ing, which is quite different from existing probabilistic query
processing [3]. The intermediate outputs are stored in the
approximate storage, if 1) the input data to the operation
is already stored in the approximate storage, and/or 2) the
operator can be executed in the approximate manner, such
as aggregate queries. We allow users to annotate an SQL
query to specify the query operator that can execute on
approximate storage/CPU.

For the query optimizer and the cost model in the DBMS,
the major change is that the cost model needs to consider the
performance/energy consumption tradeoff of approximate
hardware and the statistics (updated by the error generated

from approximate hardware).
Still, we will develop new query processing schemes or

query optimization mechanisms for O3. Particularly, we will
revisit the physical operator implementation as well as query
processing executions to see how we can exploit the third
kind of optimization opportunities (O3). As we can see from
the examples, there are tuning knobs on the accuracy as well
as other database statistics that affect the effectiveness of
the approximate-and-refine paradigm. We plan to use the
extended cost model to determine the suitable accuracy so
that the performance/energy consumption is optimized.

4. EXTENSIONS AND OPEN PROBLEMS
Automated physical design: We may wish to reduce

the burden of physical design from users (e.g., deciding
whether a column can be approximate or not), and also to
enable more fine-grained design (for example, we may store
only some frequently written tuples to approximate storage,
instead of the entire column). ApproxiDB might be able
to automate the physical design by extending the existing
automated physical design techniques in databases.
Multi-level approximate hardware: There have been

designs on different kinds of approximate hardware, in-
cluding CPUs, main memory and storage. If we apply
more than one kind of approximate hardware, we may
have various challenging and interesting problems. We
give two examples. First, errors are propagated along
the execution flow among different kinds of approximate
hardware. Second, there can be data consistency issues.
Consider the buffer management if we read data from the
approximate storage and store the data to the buffer in the
approximate memory. The data are inconsistent among the
storage and the buffer, which makes the data flow among
different approximate hardware complicated.
Probabilistic query processing. Probabilistic databas-

es [3] are relevant to ApproxiDB, because the data in
the approximate hardware are uncertain. Approximate
hardware usually offers the error distributions [13], which
make the techniques in probabilistic databases feasible to
query processing on approximate hardware. That makes an
interesting case for hardware and software co-design.
Query-level tradeoff between accuracy and perfor-

mance/energy: Instead of letting users specify the accura-
cy requirement on each column and operator, we may expose
the tradeoff between accuracy and performance/energy to
users. Particularly, when a user submits a query, she may
specify the tradeoff as well (e.g., minimizing the execution
time when the accuracy of the query output is higher than
80%). This adds a multi-criteria optimization requirement
on query optimizer. We will develop a new DBMS optimizer
that incorporates the user inputs on error tolerance and the
tradeoff on accuracy and performance/energy consumption
of approximate hardware, and generates the optimized query
plan given the accuracy requirement. As a result, the query
processing output of ApproxiDB will comprise not only the
result but also the accuracy of the output.

5. RELATED WORK
Approximate query processing (AQP) has been widely

studied in the literatures [6, 1]. AQP mainly leverages
some pre-computed synopses or sampling techniques to
answer queries. Unlike AQP, ApproxiDB does not rely
on any pre-computed synopses or sampling. With little
storage overhead and precomputation overhead, ApproxiDB

may be an ideal candidate for mobile platforms or sensors.
More importantly, ApproxiDB can also improve the perfor-
mance/energy of precise query processing.

Along the line of architecture-aware databases [2, 10, 7],
ApproxiDB investigates a new dimension of hardware fea-
tures – the tradeoff on the accuracy and performance/energy
consumption. More broadly, we not only need to deal with
a certain kind of hardware (either approximate or precise),
but also consider non-trivial interactions and collaborations
between precise hardware and approximate hardware.

6. CONCLUSIONS
We outline our radical vision for ApproxiDB: a data

management system that runs on hybrid hardware with both
approximate hardware and precise hardware. We demon-
strate the optimization opportunities for both approximate
and precise query processing. We have defined a number of
concrete problems in architecting ApproxiDB, ranging from
physical design and query processing to multi-criteria opti-
mization. We believe that approximate hardware will bring
various research challenges and opportunities to database
management research as well as interesting problems on
hardware-software co-design. Also, we conjecture that
the promising result on faster and greener databases on
approximate hardware can drive the development and im-
plementation of other data processing (e.g., key/value stores
and transaction processing) on approximate hardware.

Acknowledgement
The author would like to thank Yinan Li, Qiong Luo,
Saurabh Jha, Mian Lu and anonymous reviewers for their
insightful comments.

7. REFERENCES
[1] S. Acharya and et al. Join synopses for approximate query

answering. In SIGMOD, 1999.

[2] J. Cieslewicz and K. A. Ross. Architecture-conscious database
system. In Encyclopedia of Database Systems. 2009.

[3] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. The VLDB Journal, 2007.

[4] H. Esmaeilzadeh and et al. Architecture support for disciplined
approximate programming. In ASPLOS, 2012.

[5] V. Estivill-Castro and D. Wood. A survey of adaptive sorting
algorithms. ACM Comput. Surv., 1992.

[6] M. N. Garofalakis and P. B. Gibbon. Approximate query
processing: Taming the terabytes. In VLDB, 2001.

[7] B. He and et al. Relational query coprocessing on graphics
processors. ACM TODS, 2009.

[8] Y. Li and et al. Tree indexing on solid state drives. Proc.
VLDB Endow., pages 1195–1206, 2010.

[9] S. Liu and et al. Flikker: Saving dram refresh-power through
critical data partitioning. In ASPLOS, 2011.

[10] S. Manegold and et al. Database architecture evolution:
Mammals flourished long before dinosaurs became extinct.
PVLDB, 2009.

[11] M. K. Qureshi and et al. Morphable memory system: A robust
architecture for exploiting multi-level phase change memories.
In ISCA, 2010.

[12] A. Sampson and et al. Enerj: Approximate data types for safe
and general low-power computation. In PLDI, 2011.

[13] A. Sampson and et al. Approximate storage in solid-state
memories. In MICRO, 2013.

[14] K. Takeuchi and et al. A multipage cell architecture for
high-speed programming multilevel nand flash memories.
Solid-State Circuits, IEEE Journal of, 1998.

[15] J. Y. F. Tong and et al. Reducing power by optimizing the
necessary precision/range of floating-point arithmetic. IEEE
TVLSI, 8(3), 2000.

[16] S. Viglas. Write-limited sorts and joins for persistent memory.
Proc. VLDB Endow., 2014.

