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Abstract—We collaborate with environmental scientists to
study the hydrodynamics and water quality in an urban district,
where the surface wind distribution is an essential input but
undergoes high spatial and temporal variations due to the
complex urban landform created by surrounding buildings. In
this work, we study an optimal sensor placement scheme to
measure the wind distribution over a large urban reservoir with a
limited number of wind sensors. Unlike existing sensor placement
solutions that assume Gaussian process of target phenomena, this
study measures the wind which inherently exhibits strong non-
Gaussian yearly distribution. By leveraging the local monsoon
characteristics of wind, we segment a year into different monsoon
seasons which follow a unique distribution respectively. We also
use computational fluid dynamics to learn the spatial correlation
of wind in the presence of surrounding buildings. The output of
sensor placement is a set of the most informative locations to
deploy the wind sensors, based on the readings of which we can
accurately predict the wind over the entire reservoir surface in
real time. 10 wind sensors are finally deployed around or on the
water surface of an urban reservoir. The in-field measurement
results of more than 3 months suggest that the proposed sensor
placement and spatial prediction approach provides accurate
wind measurement which outperforms the state-of-the-art Gaus-
sian model based or interpolation based approaches.

Keywords—Sensor placement; Spatial prediction; Wind mea-
surements; Water Quality; Urban reservoir

I. INTRODUCTION

A healthy aquatic ecosystem and water quality monitoring
is essential for good understanding of the water resources
and social security, especially for countries with limited water
resources like Singapore. Recent limnological studies [1, 2]
reveal that the distribution of wind stress on the surface of a
lake can significantly impact water hydrodynamics and affects
water quality. Most existing limnological studies are conducted
in rural lakes and based on simple assumptions of surface
wind including uniform [1] or interpolated surface wind dis-
tribution [3]. In this work, we collaborate with environmental
scientists to understand the effect of wind on the water quality
of Marina Reservoir in Singapore, a typical urban water field.
It is located in downtown of Singapore with a water surface
of 2.2km2, as depicted in Fig. 1. Due to seasonal effects and
the urban landform created by a variety of high-rise buildings
surrounding two basins of the reservoir, the wind field is of
high temporal and spatial variations.

To investigate the impact on water quality evolution
numerically, the wind distribution above water surface as

well as other environmental parameters (e.g., air temperature
and precipitation) are used as inputs to a three-dimensional
hydrodynamics-ecological model, Estuary Lake and Coastal
Ocean Model - Computational Aquatic Ecosystem Dynamics
Model (ELCOM-CAEDYM) [3]. In a previous study on sen-
sitivity analysis [4], based on uniform wind distributions, we
have found that in Marina Reservoir, wind forcing variability
has significant impact on vertical and spatial variability of
phytoplankton distribution which can cause substantial change
to the water quality. In this study, we deploy a limited number
of wind sensors to measure the wind direction and speed.
Based on the limited sensor readings, we derive the wind
distribution over the entire Marina reservoir. The accurate
wind distribution is critical for studying and predicting the
water quality in Marina reservoir. In order to maximize the
accuracy of field measurements, we need to find the most
informative locations to deploy the wind sensors, based on the
observations from which we can accurately predict the wind
at other unobserved locations. The optimal sensor placement
together with the spatial prediction is therefore the key problem
this paper will address.

The problem of optimal sensor placement has been studied
in many applications that monitor spatial phenomenon, like
temperature sensing [5] and field soil moisture estimation [6].
Techniques like spatial statistics [7] and subset selection [8]
have been proposed in previous works. As commonly assumed
in those studies, the underlying phenomenon at one location
can be modeled by a Gaussian distribution and the phenomena
over the target area is thus a Gaussian Process (GP), where
the marginal and conditional distributions of a multi-variant
Gaussian distribution are still Gaussian. The optimal sensor
placement is then calculated as the most informative locations
by information theory criteria like entropy [7] or mutual in-
formation [9]. Based on the sensor readings, spatial prediction
is performed by estimating the posterior values of unobserved
locations through Gaussian regression. In this paper, we also
refer to wind distribution as the wind field over the target area
at a given point in time.

Unfortunately, existing GP based approaches cannot be
applied to wind measurement in this study mainly due to the
following three challenges. First, as we will detail in Section II,
the wind directions in the field do not follow Gaussian process
over time. Blindly applying GP based approaches assuming
Gaussian distribution of wind directions leads to sub-optimal
sensor placement and incurs large errors in spatial prediction.
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Fig. 1: Water surface and surrounding topography of Marina
Reservoir in Singapore.

Second, existing approaches typically require sufficient prior
knowledge on data distribution (usually collected from a denser
pre-deployment) to train their GP model so as to capture
pairwise correlations among different locations. Such prior
knowledge is not available in our study. We do not possess
historical wind distribution data of the field and it is cost
prohibitive for us to pre-deploy numerous wind sensors to gain
such knowledge. Third, in our study the water quality in the
reservoir has varied sensitivity to the wind input at different
locations due to diverse morphometrics and flow patterns,
which calls for non-uniform measurement accuracy over the
field. We need to optimize the sensor placement in a sense that
the sensors are deployed at locations with higher sensitivity to
wind variations.

In this paper we propose a novel sensor placement and
measurement approach to address the above challenges. We
propose a mixture model of wind as the sum of several Gaus-
sian and uniform distributions. Inspired by the local monsoon
characteristics of wind in Singapore, we do time series segmen-
tation and divide one year into periods of different monsoon or
intermonsoon seasons, during which the wind can be described
or transformed to different Gaussian distributions and different
prediction models can thus be trained. To derive the prediction
model in each season, we obtain wind correlations among
different locations in the field through Computational Fluid
Dynamics (CFD) simulation instead of learning from pre-
deployments. The optimal sensor placement is determined
based on the information utility for all seasons and adjusted
according to the sensitivity of water quality to wind in the
field. When the sensor readings are collected at real-time, we
use an online clustering algorithm to flexibly determine the
boundaries of these seasons with instant wind measurement
in different years, and thus perform proper spatial prediction
accordingly. Finally, to further consider water quality predic-
tion before deploying any wind sensors, we conduct a series
of ELCOM-CAEDYM simulations for sensitivity analysis of
water quality to the wind input and adjust accordingly the
sensor placement scheme to factor the non-uniform accuracy
requirement in wind measurement.

10 wind sensors are finally deployed around or on the water
surface of Marina Reservoir according to the sensor placement
scheme obtained from our analytical results. More than 3

month in-field measurement results suggest that the proposed
approach provides accurate spatial prediction of wind in both
time and space. Compared with previous GP or interpolation
based approaches, our approach reduces average root-mean-
squared error of measurement in wind direction by 81% and
26% respectively.

The rest of this paper is organized as follows. Section II
gives the problem statement and presents the overview of the
proposed approach. Section III presents the detailed design
and analysis of the approach. Section IV describes the in-
field deployment experience and presents the experimental
evaluation results. Section V summarizes the lessons we learnt
from this work and Section VI introduces related works.
Section VII concludes this paper.

II. PROBLEM STATEMENT AND OVERVIEW

In this section, we formally formulate the sensor placement
and spatial prediction problem. We present the unique chal-
lenges from our application and an overview of our approach.

A. Problem Statement

In this wind measurement application, we divide Marina
Reservoir into small grids of 20m*20m. We assume that each
grid is a location with uniform wind field. Totally, we need
to cover more than 5k locations. The set of all locations
over Marina Reservoir is denoted as V , where |V| = N .
The observations at each location vi ∈ V can be modeled
as a random variable Xi. All variables jointly form a random
process. The objective of optimal sensor placement is to select
a subset A, A ⊂ V and |A| = K << N , from which we can
predict the observations of the other locations, presented as
V\A, with minimum estimation errors.

Common approaches that have been applied to similar spa-
tial prediction problems assume that the random variable Xi

at each location follows a Gaussian distribution and the joint
distribution of the variables over all locations can be modeled
as a Gaussian process [5, 10]. With such GP assumption,
existing approaches benefit from the feature that the marginal
and conditional distributions of a multi-variant Gaussian distri-
bution are still Gaussian. Therefore, the most important sensor
locations can be selected by some informative criteria like
entropy [7] or mutual information [9]. The observations on the
other unobserved locations can then be predicted as the mean
of conditional distribution XV\A|XA with an uncertainty σ2

v|A:

µv|A = µv +
∑

vA
∑−1
AA(xA − µA) (1)

σ2
v|A =

∑
v,v −

∑
vA
∑−1
AA
∑T

vA (2)

where
∑

vA is a vector of covariance between v and each
element in A, and

∑
AA is the covariance matrix of A.

The GP assumption, however, does not hold for wind
directions over a large time period in our application. As
depicted in Fig. 3a, the actual distribution of wind directions
over one year is far from Gaussian. The data is collected
by the meteorological station in Marina Channel over the
year 2007. The inaccurate Gaussian fitting leads to large
errors in understanding correlations within the wind field. As
a result, it jeopardizes the results of sensor placement and
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Fig. 2: Framework of the proposed approach. The design procedure is illustrated by the sequence number in brackets.

spatial prediction. As will be shown in Section IV, the average
prediction error of wind direction will reach as high as 89◦ if
we blindly apply such a biased and mis-modeled fitting.

In addition, to train the GP model, existing approaches
require full prior-knowledge of data distribution over the entire
field such that the pairwise correlations of all locations in the
field can be captured. For instance, in [9], the training data
for the GP model is collected with 54 temperature sensors
pre-deployed for 5 days with a sampling interval of 0.5min.
Another example is community sensing in [11] which provides
the best route prediction based on a GP model trained by
2110 route planning requests obtained from volunteers during
2006 and 2007. Such full prior knowledge about the wind
over Marina Reservoir, however, is not available. Intrusively
gaining such knowledge through pre-deploying sensors is also
not possible. First, it is cost prohibitive to deploy an adequate
number of sensors (more than 5k) to precisely cover the
underlying field. In our study, the cost of a land sensor is
about 6000 USD and a floating sensor on the water surface
costs about 8000 USD. We can only plan the most informative
sensor placement beforehand and then deploy a limited number
of sensors (10 in this study). Second, due to topography and
regulatory requirements in such an iconic center of the city,
we are not able to deploy sensors at all desired places for full
data survey. As a matter of fact, it took us several months to
get permits from Singapore government agencies for deploying
the wind sensors in the allowed areas as shown in Fig. 10 of
Section III).

Finally, the wind measurements are often not the final
objective but used to infer some consequential phenomena
such as energy distribution [12] and water circulation in a
lake [3]. We need to consider the water quality modeling
during designing the optimal sensor placement scheme since
the winds of different locations impose variant impact on water
quality of a whole lake due to diverse morphometries and flow
patterns. Although much effort is made to reduce the spatial
prediction errors as small as possible, the wind distributions
obtained by estimating the observations through the readings
of limited deployed sensors will inevitably contain some
errors. Therefore, we intend to provide direct measurements

by deploying sensors at locations with high impact on the final
water quality studies and eliminate the prediction inaccuracy
for the other unobserved locations maximally.

B. Approach Overview

We propose a novel approach to address the sensor place-
ment and spatial prediction problem by considering the unique
features of wind measurement applications. Fig. 2 illustrates
the main framework in steps. First, we possess the historical
wind data from the two meteorological stations at Marina
Bay (2007-2008) and Marina Channel (2007-2008 and 2011-
2013). We find clear difference of the dominant wind directions
between different time periods, which is consistent with the
monsoon climate in Singapore1. We develop a time series
segmentation method and divide the sensor data of the whole
year into two monsoon seasons and two intermonsoon seasons.
In each segment, the wind at one location can thus be modeled
or transformed to a Gaussian distribution, and the optimal
sensor locations are selected according to certain information
criteria, e.g., entropy in this work. The results of all seasons are
combined to calculate the optimal sensor placement scheme in
a whole year.

We incorporate CFD modeling to simulate the wind dis-
tributions above Marina Reservoir based on 3D geographical
information. CFD modeling can capture the detailed impact of
surrounding high-rise buildings to the wind distribution by nu-
merically solving the classic formulas of fluid mechanics [13].
In this study, we perform offline CFD simulations to generate
coarse wind distributions at different conditions and learn the
correlations in the field rather than obtaining the final wind
distribution in real time since CFD modeling is computational
complex and time-consuming.

To further consider the water quality sensitivity before
deploying any wind sensors, we conduct a series of ELCOM-
CAEDYM simulations to quantify the sensitivity of water

1Singapore has two monsoon seasons every year, Northeast (NE, roughly
Dec.-Mar.) and Southwest (SW, roughly Jun.-Sep.). The name indicates
their dominant wind direction. The monsoon seasons are separated by two
intermonsoon periods, PreSW and PreNE, in which the wind is more evenly
distributed.



quality to the wind input at different locations over Marina
Reservoir. We then adjust accordingly the sensor placement
scheme to factor the non-uniform accuracy requirement in
wind measurement.

Once we have obtained the optimal sensor locations, we
deploy a certain number of wind sensors at the most critical
locations. Based on a wireless data collection system, the
technical details of which are beyond the scope of this paper,
we retrieve the real time sensor readings from our server.
Finally, we use an online clustering algorithm to dynamically
identify the transitional point between different monsoon and
intermonsoon seasons with instant wind measurements. Differ-
ent spatial prediction parameters are applied in the identified
seasons with real sensor readings.

III. WIND MEASUREMENT APPROACH

In this section, we present the detailed development pro-
cedure of our approach for wind measurements, including
monsoon based time series segmentation, data set generation
based on CFD modeling, optimized sensor placement and
spatial prediction.

A. Monsoon based Time Series Segmentation

Fig. 3a presents the histograms of wind direction and speed
in the whole year of 2007 drawn by the data of meteorological
station at Marina channel. From the historical data, we see
that two obvious peaks in the density of wind directions
corresponds to the two monsoon seasons in one year of
Singapore, which are caused by the seasonal changes in global
atmospheric circulation upon asymmetric heating of land and
sea [14]. In each monsoon season, the wind is mainly from
a dominant direction. It has been found from historical wind
data of multiple years [15] that the wind directions of the
two monsoon seasons are strongly Gaussian and the wind
during the intermonsoon seasons is weak and more evenly
distributed over all directions. The distribution of the whole
year is the sum of all segments, exhibiting a mixture model.
In this section, we introduce our monsoon based time series
segmentation such that a whole year is segmented into different
monsoon or intermonsoon seasons that follow different GP
model.

1) Time Series Segmentation Algorithm: The traditional
monsoon division scheme based on experience only provides
month level granularity. The start and end of a monsoon season
may largely vary at different years. We thus need an accurate
segmentation scheme to find the critical changing time points
for monsoon season transitions.

The objective is to find four critical change points to make
the wind directions in the monsoon seasons the most follow a
Gaussian distribution and the wind directions in the intermon-
soon seasons the most follow a uniform distribution. We use
Maximum Likelihood (ML) method to find the optimal time
points that separate the one-year data from an meteorological
station into four segments including M , N , K and J samples
respectively, which maximize the likelihood function of the

Algorithm 1 Heuristic ML-based time series segmentation

1: Input: One year wind data.
2: Output: Time points, t1, t2, t3 and t4.
3: Initialization: t1,old = Mar.15; t2,old = t2 = Jun.1;
t3,old = Oct.1; t4,old = t4 = Dec.1;

4: Step 0: concatenate the start and end of data, so that the
last NE part is merged to the first NE part;

5: Step 1: In (t4, t2), search t1 in a Gaussian/Uniform
mixture model by an equation similar to Eq. (3);

6: Step 2: In (t2, t4), search t3 as Step 1;
7: Step 3: Based on the updated t1 and t3, search t2 in (t1,
t3) and search t4 in (t3, t1);

8: if (t1 6=t1,old||t2 6=t2,old||t3 6=t3,old||t4 6=t4,old) then
9: t1,old = t1; t2,old = t2; t3,old = t3; t4,old = t4;

10: go to Step 1;
11: else
12: return t1, t2, t3 and t4;
13: end if

mixture model (two Gaussian and two uniform).

L(µ1, σ1, θ1, µ2, σ2, θ2|x1, x2, . . . , xM+N+K+J)

=

M∏
i=1

1
√
2πσ1

exp

[
−

1

2σ2
1

(xi − µ1)
2

]
∗
[
1

θ1

]N
(3)

∗
K+M+N∏
i=1+M+N

1
√
2πσ2

exp

[
−

1

2σ2
2

(xi − µ2)
2

]
∗
[
1

θ2

]J

where µ1 = (1/M)
∑M

i=1 xi and σ1 = (1/(M − 1))
∑M

i=1
(xi − µ1)

2 are the unbiased estimation of parameters in
the first Gaussian distribution including M samples, and
(1 + 1/N)max(xM<i≤N+M ) and (1 + 1/J)max(
xM+N+K<i≤N+M+K+J) are the unbiased estimation of pa-
rameters (θ1 and θ2) in the two uniform distributions.

The computation complexity to solve Eq. (3) is O(n3)
where n is the search space for each time point. Since we
know the approximate start and end of each monsoon season,
we can restrict the search space. Algorithm 1 presents the ML-
based time series segmentation algorithm searching the optimal
time points heuristically. We can obtain the same results with
the method searching in the whole data set exhaustively, but
with much less computation. If we search in two months span
centered at the experience based time point which starts with
the first day of relative transitional month (e.g., April 1st for
the transition from NE monsoon season to PreSW monsoon
season), it takes less than 1 hour to converge.

Fig. 3 presents the decomposed monsoon seasons for year
2007. Two intermonsoon seasons are combined together since
they present the same pattern. We see that the wind direction in
each individual season is well fitted by a Gaussian or uniform
model. Fig. 3 also shows that the wind speed of each season
can be perfectly modeled as a Gaussian distribution. It is
because the wind speed of the whole year is also Gaussian
distributed. Therefore, we mainly focus on the segmentation
of wind direction. The wind speed will automatically follow
a Gaussian distribution processed according to the results of
wind direction.
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Fig. 3: Density of wind direction and speed over the year 2007 and its decomposed monsoon seasons. The red line is normal or
uniform fitting curve for relative distributions.

2) Segmentation Result Analysis: Likelihood ratio, D =
2(lnLnew− lnLnull), is normally used to compare the fitness
of two models. It expresses how many times more likely
the data are under one model than the other. The likelihood
ratio D between the mixture model derived by the proposed
segmentation algorithm (Lnew) and the uni-Gaussian model
(Lnull) used by traditional sensor placement approach is 16.8k.
The winds divided by the proposed segmentation algorithm
are modeled obviously better than the uni-Gaussian model.
We also divide the winds by the fixed division scheme based
on experience. The likelihood ratio between this experience
based mixture model and the uni-Gaussian model is 13.8k,
which also shows that the division scheme derived by our
segmentation algorithm can better fit the winds into proper
statistical models.

3) Application to Wind Measurements: To apply the seg-
mentation results generated with the historical data of one
meteorological station over one year, we need to answer two
questions. Do the other locations in the target area hold the
same segmentation scheme? Can the segmentation scheme
generated by one year historical data be applied to other years
or even to the current year?

All locations in Marina Reservoir area share the same
monsoon division scheme. The segmentation derived from
the historical data of Marina Channel meteorological station
can be applied to other locations, since it is based on a
general environmental phenomenon which is consistent across
the region. The monsoon climates are caused by the seasonal
changes in global atmospheric circulation due to the asymmet-
ric heating of land and sea [14]. Compared with the large scale
atmospheric circulation, Marina Reservoir is small in size and
therefore all locations are dominated by the same monsoon
pattern. For example, we study the historical data (2007) from
both observatory sites at Marina Bay and Marina Channel and
find the exactly same segmentation results (Dec. 1 to Mar. 15
for NE monsoon season and Jun. 9 to Sep. 15 for SW).

It has also been proven based on historical wind data [15]
that the main directions of winds in monsoon seasons are stable
for different years and the winds in intermonsoon seasons are
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Fig. 4: Wind Density for two consecutive years (2007 and
2008) collected at Marina Bay meteorological station.

evenly distributed. Fig. 4 presents the wind statistics from
Marina Bay meteorological station for two consecutive years
(2007-2008) which suggest highly similar distributions. As we
find later, the derived parameters of GP models based on the
data from different years are very close to each other for the
same seasons. The most likely variation from year to year is the
variance of Gaussian distribution for monsoon seasons. Such
small fluctuation is easily flattened by looking at multi-year
wind data. For the wind data of multiple years (e.g., 2007-
2008 data from Marina Channel meteorological station), the
division is performed for each year respectively and the relative
parts of different years are combined together to derive the best
Gaussian fitting. Beside wind direction, according to Fig. 4, the
wind speeds are stable for different years and always follow
Gaussian.

B. CFD Modeling

We apply CFD modeling to obtain simulated surface wind
distributions above Marina Reservoir for different wind di-
rections above the atmospheric boundary layer. CFD studies
the physical aspects of fluid flows by algebraically solving
the fundamental governing equations like continuity and mo-
mentum conservation. Numerical results are finally obtained at
discrete points in time and space. The CFD modeling of wind
distribution takes two inputs, atmospheric flow and topography



 

Fig. 5: 3D CFD model of geographical in-
formation around Marina Reservoir

                                     

(a) (b)  

Fig. 6: CFD modeling results of wind velocity (m/s) distribution at 1.5 meter
height with an incoming atmospheric flow from North (a) and South (b)

information of the land surface. On one hand, since Marina
Reservoir is relatively small in size compared with the large
scale atmospheric circulation, the atmospheric motion above
this area can be treated as uniform. The atmospheric flow is
therefore a vector comprising of a dominant wind direction and
speed. On the other hand, a three dimensional CFD model of
Marina Reservoir area is developed based on the geographical
information that contains building locations, building shapes
as well as heights. Fig. 5 depicts the built 3D CFD model
of topography around Marina Reservoir, which models all
buildings located within 3 blocks from the reservoir offshore.
The computational domain is 3.5km long, 2.5km wide and
0.8km high. The number of computational cells used for each
simulation is approximately 40 million.

The commercial CFD software FLUENT 13.0 is used to
calculate the surface wind distribution over Marina Reservoir
area. To capture the turbulent nature of the flow around build-
ings, the popular k-ε turbulence model is chosen because of its
high computational efficiency [13]. Standard and second-order
discretization schemes are adapted for pressure interpolation.
It takes almost 2 days for one simulation case to be converged
using a workstation of 12 cores (running 8 parallel-Fluent
licenses) and 32GB memory.

The CFD modeling results cannot provide accurate instant
wind distribution due to the following two limitations. First,
CFD requires the real time and accurate atmospheric circula-
tion data as input to derive instant wind distribution, which is
difficult to obtain. Second, CFD simulation is computationally
complex and time-consuming, which makes the instant CFD
computation impossible. To capture the main characteristics
of all possible wind distributions over the water surface, we
run many simulations with different atmospheric flow inputs.
16-point compass rose is used to categorize the incoming
atmospheric flows into 16 directions evenly spanning 0◦ to
360◦. For each direction, we run 10 gradually increasing
speeds to explore all possible atmospheric motion velocities
(0∼9m/s) in Singapore. By doing this, we obtain a data
set of 160 independent surface wind distributions for the
underlying area. Two examples are given in Fig. 6, with an
incoming atmospheric flow from north and south respectively.
We can see that the surface wind distributions have distinctive
patterns for different incoming flows due to the influence of
surrounding architectures.

For all wind distribution results of CFD simulations, the

wind direction and speed at the location of Marina Channel
meteorological station is one-to-one mapped to the incoming
atmospheric flow, because Marina Channel is in a relatively
free space. In the data set, we extract a wind vector at the
location of Marina Channel meteorological station from each
of the 160 CFD wind distributions. At the same time, these
vectors divide the historical wind data of Marina Channel
meteorological station for the year 2007 into 160 segments.
The occurrence frequency of each wind distribution in the
whole year or in each monsoon or intermonsoon season can
thus be computed. Based on this information and all 160
CFD wind distributions, we can derive the GP model over
all locations of Marina Reservoir for each season. The key
parameters of the GP models (e.g., mean vector and covariance
matrix) used in the consequential sensor placement and spatial
prediction are thus obtained. We will show in Section IV
that the derived GP models are fine enough to provide high
prediction accuracy.

C. Sensor Placement

Once we divided one year into different monsoon seasons
and obtained the prior knowledge on the wind distributions
in each segment, we can learn the spatial correlation between
any two locations over the target area and find the optimal
sensor locations in each segment. For intermonsoon seasons,
we need to transform the uniform wind direction distribution to
a Gaussian distribution. Finally, a permanent sensor placement
scheme can be obtained by combining the results of all
segments and considering the water quality sensitivity.

1) Sensor Placement for Single Monsoon Season: With
the data set of CFD modeling, we obtain a GP of wind for
each season. It is NP-hard to select optimal sensor locations
for predicting the mean, maximum or minimum of other
locations [8]. Two widely used criteria to guide the sensor
placement are entropy [7] and mutual information [9]. For
entropy, the optimal sensor locations form a set which can
provide the largest joint entropy.

argmax
A:|A|=K

H(A) (4)

H(A) = H(Xak|ak−1,...,aa1
) + · · ·+H(Xa2|a1

) +H(Xa1
)

Heuristic algorithms can be used to find the locations
with largest entropy or conditional entropy iteratively. The
selected locations provide the best prediction of observations
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Fig. 7: Transformation of uniform distribution in intermonsoon
season of year 2007 at Marina Channel meteorological station
to Gaussian distribution.

at unobserved locations. For each location v, we treat the wind
direction and speed as a random variable vector. Its entropy
is calculated as H(Xv) =

1
2 log|2πe

∑
v,v|, where

∑
v,v is the

covariance matrix of direction and speed at v.

The entropy criterion finds the most informative locations
which are located far away from each other. An alternative [9]
searches for locations that most significantly reduce the uncer-
tainty of rest space through maximizing the mutual information
between the selected locations and the rest, presented as
MI(V\A,A) = H(V\A)−H(V\A|A).

2) Transformation of Uniform Distribution: The uniform
distribution of winds in intermonsoon seasons can be trans-
formed to a Gaussian distribution using Inverse Transform
Sampling (ITS). If X is uniformly distributed on [0, 1] and
F (yi) = xi, the random variable Y is drawn from a normal
distribution described by its cumulative function F = 1/2 +
1/2erf(x/

√
2). Fig. 7 depicts that the transformed data by

ITS can be fitted by a Gaussian distribution. The advantage
of ITS is that it supports bidirectional transformation. We
can transform the wind data to Gaussian distribution to study
the sensor placement and spatial prediction, and convert the
estimated values of unobserved locations back to normal
readings after processing.

3) Sensor Placement for the Whole Year: The sets of sensor
locations found for different monsoon or intermonsoon seasons
are not exactly the same. Ideally, we deploy sensors in one
season according to its optimal placement scheme and move
the sensors according to another optimal placement scheme
when the next season starts. However, in reality, we cannot
do that due to high reinstallation cost in terms of both finance
and time. We resort to provide a suboptimal solution to find a
best balance among different seasons.

We consider the above problem while calculating the
entropy of each location. Assuming the entropy of location
v in jth time segment is H(Xv,j), the entropy of that location
for all segments can be computed as:

H(Xv) =
∑3

j=1 wj ∗H(Xv,j) (5)

where wj is the weight of jth time segment in the entire time
series totally including two monsoon seasons and one com-
bined intermonsoon season. From the viewpoint of information
theory, by doing this, the information utility of each location
is the sum of its entropies in each time segment weighted

by the relative proportion. Once the location of the highest
entropy is found, we search for the second and consequential
locations by calculating the weighted conditional entropy until
the maximum number of sensors we can deploy. The optimal
sensor placement scheme for one year is also the best solution
for multiple years, as the wind pattern simply repeats with
negligible changes for different years.

4) Sensitivity of water quality: To consider water quality
during the design of the optimal wind sensor placement
scheme, a sensitivity analysis is conducted to find the relative
influence of wind at each location on the water quality in
Marina Reservoir. We first run the water quality simulation
with uniform wind distribution of whole area and then repeat
that simulation by doubling the wind speed at one location.
We record the differences of all water quality parameters at
each location between the two simulations. Fig. 8 depicts
the obvious differences of chlorophyll distributions for two
scenarios. The chlorophyll sensitivity to the wind at location
v is calculated as:

Sv =

N∑
j=1

∣∣∣∣CHLv
j − CHLj

CHLj

∣∣∣∣ (6)

where N is the number of possible sensor locations and
CHLv

j is the chlorophyll value of jth location when the
wind speed at location v is doubled. The sensitivity of water
quality is the average of all water quality parameters including
chlorophyll, temperature and dissolved oxygen. We find the
water quality sensitivity to the wind at each location by
repeating the experiments with doubled wind speed at that
location. Fig. 9 shows that the sensitivities of water quality at
different locations are significantly distinct.

We factor the sensitivity analysis in calculating sensor
placement by adjusting the information utility of each location
with its normalized sensitivity.

H ′(Xv) = Sv ∗H(Xv) (7)

We normalize the raw sensitivity of each location by the
highest sensitivity over Marina Reservoir which is at location
(1750, 2250). From the viewpoint of information theory, the
information utility is the quantity one location can offer to
eliminate the uncertainty of wind distribution of the whole
reservoir. We reduce the information utility at one location if it
has small impact on water quality. By doing this, the locations
with high sensitivity will have more chance to be selected
and wind sensors are deployed at the selected locations which
provide direct measurements with minimal error. The final
studies over water quality will be benefitted from these wind
fields with intended error distribution.

After the final adjustment to the sensor placement scheme
according to sensitivity analysis, we calculate the entropy
for all locations and obtain the final sensor placement with
locations of the highest entropy or conditional entropy. Due to
topography and regulatory constraints, we cannot install wind
sensors at all desired locations. The allowed area we may
finally get permit to deploy sensors are depicted in Fig. 10.
We therefore choose the first location only if it has the highest
entropy and is available to deploy sensor. If the location of the
highest entropy is not permitted for sensor deployment, we turn
to the next location with the highest entropy. We repeat this
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Reservoir

Fig. 10: The red region shows
the allowed area for installing
wind sensors.

procedure until enough sensor locations are found. The number
of sensors to deploy is constrained to the project budget and the
prediction accuracy. In this study, we finally deployed 10 wind
sensors which can provide acceptable prediction accuracy. The
deployment layout of wind sensors is given in Section IV.

D. Spatial Prediction

We predict the observations at the unobserved locations as
the mean of conditional distribution XV\A|XA in Eq. (1), with
the decomposed Gaussian models and the input of real-time
sensor readings. One problem is to determine which GP model
should be used to perform the prediction. Because the start and
end of monsoon seasons are variable for different years, we
cannot cluster the sensor readings according to a fixed division
scheme derived using the time series segmentation algorithm
in Section III-A1.

An online temporal clustering algorithm is developed to
dynamically search for the critical change point of monsoon
seasons. When a new sensor reading is received, the likelihood
of last N samples is calculated using the statistical model
(Gaussian or Uniform distribution) of current monsoon season.
When the likelihood decreases to a user-defined threshold, τ ,
we infer that the transition of monsoon seasons occurs.

When a set of sensor readings measured by all deployed
wind sensors at a given time point is categorized to a certain
monsoon season, the relative GP model can then be applied
to estimate the wind field on other unobserved locations using
Eq. (1).

IV. DEPLOYMENT AND EVALUATION

In this section, we introduce the in-field deployment of
wireless wind sensor network in Marina Reservoir area and
evaluate the performance of the proposed sensor placement and
spatial prediction approaches with real measurement results.

In summary, the measurement results show that com-
pared with the traditional single Gaussian sensor placement
method (presented as UniGau) and the linear interpolation,
the proposed approach improves the wind direction prediction
accuracy by 81% and 26% respectively. For wind speed, the
performance of our approach and UniGau is comparable and
they both improve the performance of Interpolcation by 26%.
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Fig. 11: Locations of deployed wind sensors and the test
positions of the mobile sensor.

A. Deployment of Wireless Sensor Network

The potential deployment area covers a water surface
space of 2.2km2 plus the terrain space within 100m from
the water’s edge since some locations on land may provide
more information than those on water surface to infer the wind
observations on other locations. We divide the underlying area
of Marina Reservoir into small grids of 20m ∗ 20m which
provides finest resolution. More than 5k locations need to be
considered.

10 wind sensors are finally deployed, as marked by the
red dots in Fig.11, including 5 land sensors installed on the
ground around the water and 5 floating sensors on the water
surface. The locations are selected according to the proposed
approach based on the historical data of the meteorological
station on Marina Channel over two years from 2007 to 2008.
Due to high computational complexity of calculating mutual
information over the large set of potential locations, entropy is
used as the criterion for selecting the optimal sensor locations.

For the wind sensor, the wind monitor model 05305L of
R.M. YOUNG is used. It provides an accuracy of 0.2m/s for
speed and 3◦ for direction. With the current design, all wind
sensors are equipped with a RTCU DX4 data logger and GSM
communication module. The minutely measured data is first
logged and then transmitted back to our backend server directly
through cellular network. The real time data is then hosted
in the server and can be accessed online. Accurate clock is
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Fig. 12: Three types of wind sensors.

provided in the data logger and the readings of all wind sensors
are instantly synchronized in-field. A solar panel is equipped
on each wind sensor to provide continuous power to the wind
anemometer and data logger.

Fig. 12 depicts the wind sensors that we construct in this
study. A land based sensor as depicted in Fig. 12a is fixed
on the ground with an absolute reference direction. A floating
sensor (Fig. 12b) is anchored to the bottom of the water but
floats on the water surface. It has limited rotational freedom.
We add a compass of high accuracy for each floating sensor
to determine the instant reference direction which will be used
to calculate the absolute wind direction by offsetting the raw
measurement. We also build a mobile wind sensor, as depicted
in Fig. 12c. It can be easily moved and set up temporarily
at an arbitrary location. We use the mobile sensor to collect
wind data for performance evaluation. Instead of solar panel,
a portable battery is used to provide energy. All the other
components are the same as other permanent wind sensors.

B. Experiment Setup

We evaluate the performance of the proposed approach by
real measurements. With the deployed wireless wind sensor
network, we have collected the wind data since July 2013.
We study the accuracy of spatial prediction with reference of
UniGau and linear interpolation. The latter method is widely
used by current environmental analysis.

The performance gain of our proposed approach comes
from two aspects: optimal sensor placement and accurate spa-
tial prediction. Spatial prediction is based on sensor placement
and they share the same system model. Since the advantages
of Gaussian-based sensor placement over random deployment
have completely proved in previous works [5, 6] and it is costly
in terms of budget and time (more than 3 months) to reinstall
sensors, we focus on evaluating the potential improvement
of spatial prediction accuracy by comparing our approach
(MIX) with UniGau and Interpolation. The prediction error is
measured by the average Root-Mean-Squared Error (RMSE)
between the estimated values of unobserved locations X̂V\A
and their actual values XV\A.

RMSE(XV\A|XA) =
1

T

T∑
t=1

√∑N
i∈V\A(X̂

t
i −Xt

i )
2

N
(8)

Assume we have T sets of samples to conduct the evaluation
and N locations are included in V\A. The result is the average
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Fig. 13: Time series of wind direction and speed from 00:00
to 23:29 on 1 September 2013

error in both temporal and spatial aspects.

C. Measurement Results

Fig. 13 presents a snapshot of the measured wind distribu-
tion and speed for 24 hours at wind sensor W01. The minutely
measured data is plotted as the black line and the smoothed
data with a 30 minute moving average window is depicted as
the red line. The latter is required as a stable input to feed the
ELCOM-CAEDYM model. We will evaluate the performance
of the proposed approach and the benchmark methods using
the moving average data.

Overall performance in space. To evaluate the spatial
prediction accuracy at different locations, we measure wind
direction and speed at 20 randomly selected locations along
the water’s edge of Marina Reservoir using the mobile wind
sensor. The test positions are depicted in Fig. 11. At each
location, minutely wind data is collected for 1∼2 hours. Fig.14
presents the average RMSE of predicted direction and speed
for each location. The default linear interpolation method
implemented in matlab, griddata, is used. For some locations,
we cannot perform the linear interpolation since they are
located outside the effective region of this approach.

Compared with UniGau and interpolation, the proposed
approach reduces average RMSE of wind direction prediction
by 81% and 26% respectively. By the monsoon based time
series segmentation, MIX can accurately model the wind and
provide high prediction accuracy. Because the wind direction
distribution for the entire year is not Gaussian, UniGau gives
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Fig. 14: Average prediction RMSE of wind direction and speed
for 20 test positions

large errors. The average RMSE of interpolation is relative
large because it does not consider the effect of surrounding
buildings to wind field and thus cannot accurately capture
the spatial variation of wind distribution. For wind speed
prediction, the performance of MIX and UniGau is comparable
since the wind speed of whole year is still Gaussian. They
reduce the average RMSE of Interpolation by 26%. From
Fig.14, we can also see that the average RMSE of locations
near installed sensors or in open space is relatively small,
because the wind patterns can be better captured by the statistic
models and CFD modeling.

Overall performance in time. To further investigate the
performance of proposed approach for long term wind mea-
surement, we use the measurement data of all 10 sensors for
three months. At one time, we choose one sensor and use
the measurement data from the rest 9 sensors to predict its
wind direction and speed. We use its own measurement as the
reference to calculate RMSE. We perform this evaluation in
10 rounds for all 10 sensors. We do not have data from W09
since it was missing a short time after installation. We are
redeploying it to the opposite edge of the Kallang river which
is more secure and provides the same level of information.

Fig.15 presents the cumulative distribution of the absolute
difference between predicted observation and the measured
value for each sample. In this case, T and N in Eq. (8)
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Fig. 15: Prediction error of wind direction and speed validated
by the installed wind sensors

are both equal to one. Similar to the results of the mobile
sensor testing, MIX improves the prediction accuracy of wind
direction by 87% for UniGau and 27% for Interpolation, and
the performances of MIX and UniGau for speed prediction are
comparable and 21% higher than that of Interpolation. MIX
offers an average spatial prediction accuracy of 24◦. The error
is larger than the mobile test since the data of one installed
wind sensor is used as the reference for evaluation but not
included in the calculation of spatial prediction.

Sensitivity of water quality. We take into account water
quality while solving the sensor placement problem so as to
obtain an intended error distribution in space. Fig.16 presents
the average RMSE at each test position in the experiment with
the mobile sensor corresponding to the sensitivity of water
quality at that location. The results show that the average
RMSE is relatively low at locations with high water quality
sensitivity. The linear regression between the water quality
sensitivities and the relative RMSEs of predicted direction for
different locations reveals such an inverse trend.

Online clustering algorithm. We use historical data to
evaluate the efficiency of our online clustering algorithm.
The experiments are done using the historical wind data of
Marina Channel meteorological station over the year 2008.
The likelihood calculated by the online clustering algorithm
is the average likelihood of all N samples in the sliding
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Fig. 17: Likelihood calculated online and offline.

window. Only the last N samples before the time point
under consideration are used in the calculation. We set the
sliding window size N to 1440 samples corresponding to one
day and the likelihood threshold τ to 5.45. The likelihood
calculated offline is obtained using the monsoon based time
series segmentation algorithm introduced in Section III-A with
the whole year data. It is the sum likelihood of all samples.
Fig.17 shows that the likelihoods calculated online and offline
peak almost at the same time point for the transition from NE
monsoon season to PreSW intermonsoon season. The online
temporal clustering algorithm can find the critical change point
of time series with a small error of 3.6 days in this case.

V. LESSONS LEARNT

The wind we measure in this study exhibits distinct non-
Gaussian process from previously studied phenomena. Besides,
no full prior-knowledge is possessed to model the spatial
correlation in the field. To work with these challenges, we
therefore developed a unique sensor placement approach in-
cluding monsoon based time series segmentation and the data
set generate using CFD modeling.

The proposed approach, on the other hand, demonstrates a
complete procedure which extends the state-of-the-art sensor
placement and spatial prediction methodology to solve a wider

range of applications. There are many other phenomena which
exhibit similar non-Gaussian process captured by a mixture
model over time, e.g., city traffic flow [16], soil pollutant [17],
etc. Generalizing the time series segmentation approach in such
applications will significantly improve the accuracy of sensor
placement and spatial prediction over clustered time periods.

Incorporating computational simulation, e.g., CFD in this
work, to build a data set and study the field data correlation
provides us a new thought to gain prior-knowledge when intru-
sive way of learning such knowledge is not preferred. We do
not need to run the time-consuming computational simulations
online, but just conduct enough simulations to cover most cases
and capture the statistical features of the target phenomena.
In many applications in which it is impractical to pre-deploy
enough sensors due to various constraints, computational sim-
ulation procedure can provide coarse yet sufficient knowledge
to statistically capture the spatial correlations that we need.

VI. RELATED WORKS

The optimal sensor placement problem has been addressed
in many previous works [18–20]. Among them, GP based
approaches [8–10] have been used in many applications
monitoring spatial phenomena like temperature [5] and soil
moisture [6]. However, they cannot be directly applied to
wind distribution measurement due to the temporal and spatial
variations of wind.

The coverage problem of sensor networks has been exten-
sively studied [21–23]. However, most of the existing theo-
retical works are based on the deterministic disc model. Data
fusion is considered in [24, 25]. The coverage and connectivity
in duty-cycled sensor network are analyzed in [26–28].

CFD modeling is a widely used tool to capture the fluid
patterns in many applications, such as environmental engi-
neering and aircraft design [13]. In [29], CFD has been
successfully applied for geospatial risk assessment of wind
channels in urban area with high accuracy. CFD modeling
has also been used in sensor placement problem [30] and
temperature forecasting [31] in data center environment. CFD
models are built to capture extra hot spot scenarios. A thermal
forecasting model is proposed in [32] to model and predict
temperatures around servers in data center based on principles
from thermodynamics and fluid mechanics.

The time series segmentation algorithms [33, 34] search
for critical change points by iteratively dividing data into
small segments with the same statistical model (e.g., Gaussian
distribution). However, they cannot be applied for our mixture
model of different statistic models, i.e., Gaussian and Uniform.
Expectation Maximum algorithms [35] are utilized widely to
divide a Gaussian mixture into individual Gaussian distribu-
tions. However, they cannot be used in the application of
wind measurement either. First, the spatial correlation cannot
be calculated since the samples of all locations at a given
time point are not clustered in the same cluster. Second, the
samples in the same cluster are not continuous in time. As a
consequence, it is difficult to assign the online sensor readings
to a proper cluster and apply the relative spatial prediction.



VII. CONCLUSIONS

In this paper, we propose a novel sensor placement and spa-
tial prediction approach for wind distribution measurements.
It leverages the monsoon characteristics of wind to study its
statistic properties. A data set is built using CFD modeling
which captures the impact of surrounding buildings on wind
distribution. Optimal sensor locations are selected through
segmented wind statistical models and adjusted according to
the sensitivity of water quality to wind at different locations.
We deployed 10 wind sensors around or on the water surface of
an urban reservoir. The observations of unobserved locations
are predicted by the readings of deployed sensors clustered
through an online algorithm. The in-field measurement results
show that the proposed approach can significantly improve the
accuracy of wind measurements.

We believe the proposed solution best exploits the under-
lying nature of wind measurement in our study and achieves
optimal accuracy with a limited number of sensors. Such a
procedure nevertheless can be generalized to handle other
applications in observing phenomenon of similar nature.
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