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Sensor Placement and Measurement of Wind for Water Quality
Studies in Urban Reservoirs
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We study the water quality in an urban district, where the surface wind distribution is an essential input but
undergoes high spatial and temporal variations due to the impact of surrounding buildings. In this work, we
develop an optimal sensor placement scheme to measure the wind distribution over a large urban reservoir
using a limited number of wind sensors. Unlike existing solutions that assume Gaussian process of target
phenomena, this study measures the wind that inherently exhibits strong non-Gaussian yearly distribution.
By leveraging the local monsoon characteristics of wind, we segment a year into different monsoon seasons
that follow a unique distribution respectively. We also use computational fluid dynamics to learn the spatial
correlation of wind. The output of sensor placement is a set of the most informative locations to deploy the
wind sensors, based on the readings of which we can accurately predict the wind over the entire reservoir in
real time. Ten wind sensors are deployed. The in-field measurement results of more than 3 months suggest
that the proposed sensor placement and spatial prediction scheme provides accurate wind measurement
that outperforms the state-of-the-art Gaussian model based on interpolation-based approaches.
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1. INTRODUCTION

A healthy aquatic ecosystem and water-quality monitoring is essential for good un-
derstanding of the water resources and the security of social systems, especially for
countries with limited water resources like Singapore. Recent limnological studies
[Alexander and Imberger 2009; Xing et al. 2014a] reveal that the distribution of
wind stress on the surface of a lake can significantly impact water hydrodynamics
and affects water quality. In a previous study on sensitivity analysis [Xing et al.
2014b], based on uniform wind distributions, we also find that in the Marina Reser-
voir, wind-force variability has a significant impact on vertical and spatial variabil-
ity of phytoplankton distribution, which can substantially change water quality. Ac-
curate wind distribution measurement is thus critical for studying and predicting
the water quality in the Marina Reservoir. To investigate the impact on water qual-
ity evolution numerically, the wind distribution above the water surface as well as
other environmental parameters (e.g., air temperature and precipitation) are used
as input to a three-dimensional hydrodynamics-ecological model, Estuary Lake and
Coastal Ocean Model—Computational Aquatic Ecosystem Dynamics Model (ELCOM-
CAEDYM) [Laval et al. 2003]. Based on the calculation in the model, we can obtain
the distribution of water quality in the whole reservoir. We can also study the effect
of different environmental parameters on water-quality evolution, and predict water
quality of the reservoir in the future with a time step of 30 seconds.

Most existing limnological studies are conducted in rural lakes and based on simple
assumptions of surface wind including uniform [Alexander and Imberger 2009] or
interpolated surface wind distribution [Laval et al. 2003]. In this work, we collaborate
with environmental scientists to understand the effect of wind on the water quality
of the Marina Reservoir in Singapore, a typical urban water field. It is located in
downtown Singapore with a water surface of 2.2km2, as depicted in Figure 1. Due to
seasonal effects and the urban landform created by a variety of high-rise buildings
surrounding two basins of the reservoir, the wind field has high temporal and spatial
variations. In Figure 2, from the wind roses drawn by the historical data in 2007 of
the meteorological stations, we see that the wind patterns in one year at these 3 main
basins of the Marina Reservoir are totally different. Furthermore, we will show in
Section 3 that the wind patterns at locations close to each other are different inside
each basin because of the impact from the surrounding buildings.

In order to obtain an accurate wind distribution over the water surface of the Marina
Reservoir, we deploy many wind sensors to measure the wind direction and speed.
Based on the sensor readings at some discrete locations, we derive the wind distri-
bution over the entire reservoir. However, constrained by the budget and government
restrictions, we cannot deploy plenty of wind sensors all over the Marina Reservoir. To
maximize the accuracy of field measurements, we need to find the most informative
locations to deploy a limited number of wind sensors, based on the observations from
which we can accurately predict the wind at other unobserved locations. Optimal sen-
sor placement together with spatial prediction is therefore the key problem this article
will address.

The problem of optimal sensor placement has been studied in many applications
that monitor spatial phenomena, such as temperature sensing [Krause et al. 2006] and
field soil moisture estimation [Wu et al. 2012]. Techniques such as spatial statistics
[Cressie 1993] and subset selection [Das and Kempe 2008] have been proposed in pre-
vious works. As commonly assumed in those studies, the underlying phenomenon at
one location can be modeled by a Gaussian distribution and the phenomena over the
target area is thus a Gaussian Process (GP), where the marginal and conditional distri-
butions of a multi-variant Gaussian distribution are still Gaussian. The optimal sensor
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Fig. 1. Water surface and surrounding topography of the Marina Reservoir in Singapore.

Fig. 2. Wind roses drawn by the historical data in 2007 from the meteorological stations at three different
locations [Xing et al. 2014b].

placement is then calculated as the most informative locations by information theory
criteria such as entropy [Ko et al. 1995] or mutual information [Guestrin et al. 2005;
Krause et al. 2011]. Based on the sensor readings, spatial prediction is performed by
estimating the posterior values of unobserved locations through Gaussian regression.
In this article, we also refer to wind distribution as the wind field over the target area
at a given point in time.

Existing GP-based approaches cannot be applied to wind measurement in this study
mainly due to the following three challenges. First, as we will detail in Section 2, the
wind directions in the field do not follow Gaussian process over time. Blindly apply-
ing GP-based approaches assuming Gaussian distribution of wind directions leads to
suboptimal sensor placement and incurs large errors in spatial prediction. Second,
existing approaches typically require sufficient prior knowledge on data distribution
(usually collected from a denser predeployment) to train their GP model so as to capture
pairwise correlations among different locations. Such prior knowledge is not available
in our study. We do not possess historical wind distribution data of the field and it
is cost prohibitive for us to predeploy numerous wind sensors to gain such knowl-
edge. Third, in our study water quality in the reservoir has varied sensitivity to wind
input at different locations due to diverse morphometrics and flow patterns, which
calls for nonuniform measurement accuracy over the field. We need to optimize sensor
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placement so that the sensors are deployed at locations with higher sensitivity to wind
variations.

In this article, we propose a novel sensor placement and measurement approach to
address these challenges. We propose a mixture model of wind as the sum of several
Gaussian and uniform distributions. Inspired by the local monsoon characteristics of
wind in Singapore, we do time series segmentation and divide one year into periods of
different monsoon or intermonsoon seasons, during which the wind can be described
or transformed to different Gaussian distributions and different prediction models can
be trained. To derive the prediction model in each season, we obtain wind correlations
among different locations in the field through Computational Fluid Dynamics (CFD)
simulation instead of learning from predeployments. The optimal sensor placement
is determined based on the information utility for all seasons and adjusted according
to the sensitivity of water quality to wind in the field. When the sensor readings are
collected in real time, we use an online clustering algorithm to flexibly determine
the boundaries of these seasons with instant wind measurement in different years,
performing proper spatial prediction accordingly. Finally, to further consider water
quality prediction before deploying any wind sensors, we conduct a series of ELCOM-
CAEDYM simulations for sensitivity analysis of water quality to the wind input and
adjust accordingly the sensor placement scheme to factor the nonuniform accuracy
requirement in wind measurement.

Ten wind sensors are finally deployed around or on the water surface of the Ma-
rina Reservoir according to the sensor placement scheme obtained from our analytical
results. More than 3 months of in-field measurement results suggest that the pro-
posed approach provides accurate spatial prediction of wind in both time and space.
Compared with previous GP or interpolation-based approaches, our approach reduces
average root-mean-squared error of measurement in wind direction by 81% and 33%,
respectively.

The rest of this article is organized as follows. Section 2 gives the problem statement
and presents the overview of the proposed approach. Section 3 presents the detailed
design and analysis of the approach. Section 4 describes the in-field deployment ex-
perience and presents the experimental evaluation results. Section 5 summarizes the
lessons we learned from this work and Section 6 discusses the applications and limita-
tions of the proposed approach. Section 7 introduces related works. Section 8 presents
our conclusions.

2. PROBLEM STATEMENT AND OVERVIEW

In this section, we formally formulate the sensor placement and spatial prediction
problem. We present the unique challenges from our application and an overview of
our approach.

2.1. Problem Statement

In this wind measurement application, we divide the Marina Reservoir into small grids
of 20m*20m. We assume that each grid is a location with uniform wind field. It is also
the smallest grid size required by the water quality study in the ELCOM-CAEDYM
model. Even smaller grid size will not help the water quality study much. Totally, we
need to cover more than 5k locations. The set of all locations over the Marina Reservoir
is denoted as V, where |V| = N. The observations at each location vi ∈ V can be modeled
as a random variable Xi. All variables jointly form a random process. The objective of
optimal sensor placement is to select a subset A, A ⊂ V and |A| = K << N, from which
we can predict the observations of the other locations, presented as V\A, with minimal
estimation errors.
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Fig. 3. Wind direction histograms for the year 2007. The red line is the Gaussian fitting curve of the wind
direction density. Wind from the north is represented as 0 degrees.

Common approaches that have been applied to similar spatial prediction problems
assume that the random variable Xi at each location follows a Gaussian distribu-
tion and the joint distribution of the variables over all locations can be modeled as a
Gaussian process [Osborne et al. 2008; Krause et al. 2006]. With such GP assumptions,
existing approaches benefit from the feature that the marginal and conditional dis-
tributions of a multi-variant Gaussian distribution are still Gaussian. Therefore, the
most important sensor locations can be selected by some informative criteria such as
entropy [Ko et al. 1995] or mutual information [Guestrin et al. 2005]. The observations
on the other unobserved locations can then be predicted as the mean of conditional
distribution XV\A|XA with an uncertainty σ 2

v|A:

μv|A = μv +
∑
vA

−1∑
AA

(xA − μA) (1)

σ 2
v|A =

∑
v,v

−
∑

vA

−1∑
AA

∑T

vA
, (2)

where
∑

vA is a vector of covariance between v and each element in A, and
∑

AA is the
covariance matrix of A.

This GP-based approach has been successfully used in many applications, such as
temperature monitoring [Krause et al. 2006] and data collection tour planning [Meliou
et al. 2007]. However, it cannot be directly applied in wind field measurements since the
unique application features cannot support some of its prerequisites and assumptions.
As depicted in Figure 3, the actual distribution of wind directions over one year is far
from Gaussian. The data are collected by the meteorological stations in Marina Bay
and Marina Channel over the year 2007. The inaccurate Gaussian fitting leads to large
errors in understanding correlations within the wind field. As a result, it jeopardizes
the results of sensor placement and spatial prediction. As will be shown in Section 4,
the average prediction error of wind direction will reach as high as 89◦ if we blindly
apply such a biased and mismodeled fitting.

In addition, to train the GP model, existing approaches require full prior knowledge of
data distribution over the entire field such that the pairwise correlations of all locations
in the field can be captured. For instance, in Guestrin et al. [2005], the training data for
the GP model are collected with 54 temperature sensors predeployed for 5 days with a
sampling interval of 0.5min. Another example is community sensing by Krause et al.
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Fig. 4. Framework of the proposed approach. The design procedure is indicated by the sequence numbers
in parentheses.

[2008], who provide the best route prediction based on a GP model trained by 2110
route planning requests obtained from volunteers during 2006 and 2007. Such full
prior knowledge about the wind over the Marina Reservoir, however, is not available.
Intrusively gaining such knowledge through predeploying sensors is also not possible.
First, it is cost prohibitive to deploy an adequate number of sensors (more than 5k)
to precisely cover the underlying field. In our study, the cost of a land sensor is about
6,000 USD and a floating sensor on the water surface costs about 8,000 USD. We
can only plan the most informative sensor placement beforehand and then deploy a
limited number of sensors (10 in this study). Second, due to topography and regulatory
requirements in such an iconic center of the city, we are not able to deploy sensors at
all desired places for full data survey. It took us several months to get permits from
Singapore government agencies for deploying the wind sensors in the allowed areas,
as shown in Figure 12, Section 3).

Finally, the wind measurements are often not the final objective but used to infer
some consequential phenomena such as energy distribution [Burton et al. 2011] and
water circulation in a lake [Laval et al. 2003]. We need to consider the water quality
modeling while designing the optimal sensor placement scheme since the winds of
different locations impose variant impact on water quality of a whole lake due to
diverse morphometries and flow patterns. Although much effort is made to reduce the
spatial prediction errors to the smallest range possible, the wind distributions obtained
by estimating the observations through the readings of limited deployed sensors will
inevitably contain some errors. Therefore, we intend to provide direct measurements
by deploying sensors at locations with high impact on the final water quality studies
and eliminate the prediction inaccuracy for the other unobserved locations maximally.

2.2. Approach Overview

We propose a novel approach to address the sensor placement and spatial prediction
problem by considering the unique features of wind measurement applications. Figure 4
illustrates the main framework in steps. First, we possess the historical wind data
from the two meteorological stations at Marina Bay (2007–2008) and Marina Channel
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(2007–2008 and 2011–2013). We find a clear difference between the dominant wind
directions in different time periods, which is consistent with the monsoon climate in
Singapore.1

We develop a time series segmentation method and divide the sensor data of the
whole year into two monsoon seasons and two intermonsoon seasons. In each segment,
the wind at one location can thus be modeled or transformed to a Gaussian distribution.
The optimal sensor locations are selected according to certain information criteria, for
example, entropy in this work. The results of all seasons are combined to calculate the
optimal sensor placement scheme in a whole year.

We incorporate CFD modeling to simulate the wind distributions above the Ma-
rina Reservoir based on 3D geographical information. CFD modeling can capture the
detailed impact of surrounding high-rise buildings to the wind distribution by numer-
ically solving the classic formulas of fluid mechanics [Anderson et al. 1995]. In this
study, we perform offline CFD simulations to generate coarse wind distributions at
different conditions and learn the correlations in the field rather than obtaining the
final wind distribution in real time since CFD modeling is computationally complex
and time-consuming.

To further consider the water quality sensitivity before deploying any wind sensors,
we conduct a series of ELCOM-CAEDYM simulations to quantify the sensitivity of
water quality to the wind input at different locations over the Marina Reservoir. We
then adjust accordingly the sensor placement scheme to factor the nonuniform accuracy
requirement in wind measurement.

Once we have obtained the optimal sensor locations, we deploy a certain number of
wind sensors at the most critical locations. Based on a wireless data collection system
[Du et al. 2014a], the technical details of which are beyond the scope of this article,
we retrieve the real-time sensor readings from our server. Finally, we use an online
clustering algorithm to dynamically identify the transitional point between different
monsoon and intermonsoon seasons with instant wind measurements. Different spatial
prediction parameters are applied in the identified seasons with real sensor readings.

3. WIND MEASUREMENT APPROACH

In this section, we present the detailed development procedure of our approach for wind
measurements, including monsoon-based time series segmentation, dataset generation
based on CFD modeling, optimized sensor placement, and spatial prediction.

3.1. Monsoon-Based Time Series Segmentation

Figure 5(e) presents the histograms of wind direction and speed for the entire year
of 2007 drawn by the data of the meteorological station at Marina Channel. From
the historical data, we see that two obvious peaks in the density of wind directions
correspond to the two monsoon seasons in one year in Singapore, which are caused
by the seasonal changes in global atmospheric circulation upon asymmetric heating of
land and sea [Trenberth et al. 2000]. In each monsoon season, the wind is mainly from
a dominant direction. It has been found from historical wind data of multiple years
[Chia et al. 1991] that the wind directions of the two monsoon seasons are strongly
Gaussian and the wind during the intermonsoon seasons is weak and more evenly
distributed over all directions. The distribution of the whole year is the sum of all
segments, exhibiting a mixture model. In this section, we introduce our monsoon-based

1Singapore has two monsoon seasons every year, Northeast (NE, roughly December–March) and Southwest
(SW, roughly June-September). The names indicate the seasons’ dominant wind direction. The monsoon
seasons are separated by two intermonsoon periods, PreSW and PreNE, in which the wind is more evenly
distributed.

ACM Transactions on Sensor Networks, Vol. 11, No. 3, Article 41, Publication date: February 2015.



41:8 W. Du et al.

Fig. 5. Density of wind direction and speed over the year 2007 and its decomposed monsoon seasons. The
two rows are the distributions of wind direction and wind speed, respectively. In each row, the first subfigure
is the wind distribution of one year, and the following three subfigures present the wind distributions of
the NE monsoon season, intermonsoon season, and SW monsoon season. In each subfigure, the red line is
normal or the uniform fitting curve for relative distributions.

time series segmentation such that a whole year is segmented into different monsoon
or intermonsoon seasons that follow different GP models.

3.1.1. Time Series Segmentation Algorithm. The traditional monsoon division scheme
based on experience only provides month-level granularity. The start and end of a mon-
soon season may largely vary in different years. We thus need an accurate segmentation
scheme to find the critical changing time points for monsoon season transitions.

The objective is to find four critical change points to make the wind directions in
the monsoon seasons follow a Gaussian distribution as closely as possible and the
wind directions in the intermonsoon seasons follow a uniform distribution as closely
as possible. We use the Maximum Likelihood (ML) method to find the optimal time
points that separate the one-year data from a meteorological station into four segments
including M, N, K, and J samples, respectively, which maximize the likelihood function
of the mixture model (two Gaussian and two uniform).

L(μ1, σ1, θ1, μ2, σ2, θ2|x1, x2, . . . , xM+N+K+J)

=
M∏

i=1

1√
2πσ1

exp

[
− 1

2σ 2
1

(xi − μ1)2

]
∗

[
1
θ1

]N

(3)

∗
K+M+N∏

i=1+M+N

1√
2πσ2

exp

[
− 1

2σ 2
2

(xi − μ2)2

]
∗

[
1
θ2

]J

,

where μ1 = (1/M)
∑M

i=1 xi and σ1 = (
1/(M − 1)

)∑M
i=1(xi − μ1)2 are the unbiased es-

timation of parameters in the first Gaussian distribution including M samples, and
(1 + 1/N)max(xM<i≤N+M) and (1 + 1/J)max(xM+N+K<i≤N+M+K+J) are the unbiased esti-
mation of parameters (θ1 and θ2) in the two uniform distributions.

The computation complexity to solve Equation (3) isO(n3), where n is the search space
for each time point. Since we know the approximate start and end of each monsoon
season, we can restrict the search space. Algorithm 1 presents the ML-based time
series segmentation algorithm searching the optimal time points heuristically. We can
obtain the same results with the method searching in the whole dataset exhaustively,
but with much less computation. If we search in a 2-month span centered at the
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ALGORITHM 1: Heuristic ML-Based Time Series Segmentation
1: Input: One year wind data.
2: Output: Time points, t1, t2, t3 and t4.
3: Initialization: t1,old = Mar.15; t2,old = t2 = Jun.1; t3,old = Oct.1; t4,old = t4 = Dec.1;
4: Step 0: concatenate the start and end of data, so that the last NE part is merged to the first

NE part;
5: Step 1: In (t4, t2), search t1 in a Gaussian/Uniform mixture model by an equation similar to

Equation (3);
6: Step 2: In (t2, t4), search t3 as Step 1;
7: Step 3: Based on the updated t1 and t3, search t2 in (t1, t3) and search t4 in (t3, t1);
8: if (t1 �= t1,old||t2 �= t2,old||t3 �= t3,old||t4 �= t4,old) then
9: t1,old = t1; t2,old = t2; t3,old = t3; t4,old = t4;
10: go to Step 1;
11: else
12: return t1, t2, t3 and t4;
13: end if

experience-based time point that starts with the first day of the relative transitional
month (e.g., April 1st for the transition from NE monsoon season to PreSW monsoon
season), it takes less than 1 hour to converge.

Figure 5 presents the decomposed monsoon seasons for the year 2007. Two inter-
monsoon seasons are combined since they present the same pattern. We see that the
wind direction in each individual season is well fitted by a Gaussian or uniform model.
Figure 5 also shows that the wind speed of each season can be perfectly modeled as
a Gaussian distribution, because the wind speed of the whole year is also Gaussian
distributed. Therefore, we mainly focus on the segmentation of wind direction. The
wind speed will automatically follow a Gaussian distribution processed according to
the results of wind direction.

3.1.2. Segmentation Result Analysis. Likelihood ratio, D = 2(lnLnew−lnLnull), is normally
used to compare the fitness of two models. It expresses how many times more likely
the data are under one model than the other. The likelihood ratio D between the
mixture model derived by the proposed segmentation algorithm (Lnew) and the uni-
Gaussian model (Lnull) used by traditional sensor placement approach is 16.8k. The
winds divided by the proposed segmentation algorithm are modeled obviously better
than the uni-Gaussian model. We also divide the winds by the fixed division scheme
based on experience. The likelihood ratio between this experience-based mixture model
and the uni-Gaussian model is 13.8k, which also shows that the division scheme derived
by our segmentation algorithm can better fit the winds into proper statistical models.
We will show in Section 4 that the mixture model derived from the proposed time series
segmentation algorithm provides much more accurate sensor placement and spatial
prediction than the uni-Gaussian model.

3.1.3. Application to Wind Measurements. To apply the segmentation results generated
with the historical data of one meteorological station over one year, we need to answer
two questions. Do the other locations in the target area hold the same segmentation
scheme? Can the segmentation scheme generated by one year’s worth of historical data
be applied to other years or even to the current year?

All locations in the Marina Reservoir area share the same monsoon division scheme.
The segmentation derived from the historical data of the Marina Channel meteorologi-
cal station can be applied to other locations, since it is based on a general environmental
phenomenon that is consistent across the region. The monsoon climates are caused by
the seasonal changes in global atmospheric circulation due to the asymmetric heating
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Fig. 6. Wind density for two consecutive years (2007 and 2008) collected at the Marina Bay meteorological
station.

of land and sea [Trenberth et al. 2000]. Compared with the large-scale atmospheric
circulation, the Marina Reservoir is small in size; therefore, all locations are dominated
by the same monsoon pattern. For example, we study the historical data (2007) from
both observatory sites at Marina Bay and Marina Channel and find exactly the same
segmentation results (December 1 to March 15 for NE monsoon season and June 9 to
September 15 for SW).

It has also been proven based on historical wind data [Chia et al. 1991] that the main
directions of winds in monsoon seasons are stable for different years and the winds
in intermonsoon seasons are evenly distributed. Figure 6 presents the wind statistics
from the Marina Bay meteorological station for two consecutive years (2007–2008)
which suggest highly similar distributions. As we find later, the derived parameters of
GP models based on the data from different years are very close to each other for the
same seasons. The most likely variation from year to year is the variance of Gaussian
distribution for monsoon seasons. Such small fluctuation is easily flattened by looking
at multi-year wind data. For the wind data of multiple years (e.g., 2007–2008 data
from the Marina Channel meteorological station), the division is performed for each
year respectively and the relative parts of different years are combined to derive the
best Gaussian fitting. Beside wind direction, according to Figure 6, the wind speeds
are stable for different years and always follow Gaussian.

3.2. Correlation Learning

Once the wind direction in every segment divided by the proposed segmentation al-
gorithm follows a Gaussian distribution for each individual location, the multivariate
Gaussian distribution formed by all locations can be referred to as a Gaussian process.
To learn the pairwise correlation between any two locations in the target area, we need
to obtain the parameters of the GP model. We apply CFD modeling to obtain simulated
surface wind distributions above the Marina Reservoir for different wind directions
above the atmospheric boundary layer. We build a dataset composed of many wind
distributions and calculate the parameters of the GP model.

3.2.1. CFD Modeling. CFD studies the physical aspects of fluid flows by algebraically
solving the fundamental governing equations like continuity and momentum conser-
vation. Numerical results are finally obtained at discrete points in time and space. The
CFD modeling of wind distribution needs two inputs: atmospheric flow and topography
information of the land surface. On one hand, since the Marina Reservoir is relatively
small in size compared with the large-scale atmospheric circulation, the atmospheric
motion above this area can be treated as uniform. The atmospheric flow is therefore
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Fig. 7. 3D CFD model of geographical information around the Marina Reservoir.

a vector comprised of a dominant wind direction and speed. On the other hand, a
three-dimensional CFD model of the Marina Reservoir area is developed based on the
geographical information that contains building locations, building shapes as well as
heights. Figure 7 depicts the built 3D CFD model of topography around the Marina
Reservoir, which models all buildings located within 3 blocks of the reservoir offshore.
The computational domain is 3.5km long, 2.5km wide and 0.8km high. The number of
computational cells used for each simulation is approximately 40 million.

The commercial CFD software FLUENT 13.0 is used to calculate the surface wind
distribution over the Marina Reservoir area. To capture the turbulent nature of the flow
around buildings, the popular k-ε turbulence model is chosen because of its high com-
putational efficiency [Anderson et al. 1995]. Standard and second-order discretization
schemes are adapted for pressure interpolation. It takes almost 2 days for one simu-
lation case to be converged using a workstation of 12 cores (running 8 parallel-Fluent
licenses) and 32GB memory.

3.2.2. Dataset Generation. The CFD modeling results cannot provide accurate instant
wind distribution due to the following two limitations. First, CFD requires real-time
and accurate atmospheric circulation data as input to derive instant wind distribution,
which is difficult to obtain. Second, CFD simulation is computationally complex and
time-consuming, which makes the instant CFD computation impossible.

To capture the main characteristics of all possible wind distributions over the water
surface, we run many simulations with different atmospheric flow inputs. A 16-point
compass rose is used to categorize the incoming atmospheric flows into 16 directions
evenly spanning 0◦ to 360◦. For each direction, we run 10 gradually increasing speeds to
explore all possible atmospheric motion velocities (0∼9m/s) in Singapore. By doing this,
we obtain a dataset of 160 independent surface wind distributions for the underlying
area. Two examples are given in Figure 8, with an incoming atmospheric flow from
north and south, respectively. We can see that the surface wind distributions have
distinctive patterns for different incoming flows due to the influence of surrounding
architectures.

For all wind distribution results of CFD simulations, the wind direction and speed at
the location of the Marina Channel meteorological station is one-to-one mapped to the
incoming atmospheric flow, because Marina Channel is in a relatively free space. In the
dataset, we extract a wind vector at the location of the Marina Channel meteorological
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Fig. 8. CFD modeling results of wind velocity (m/s) distribution at a height of 1.5 m with an incoming
atmospheric flow from north (a) and south (b).

station from each of the 160 CFD wind distributions. At the same time, these vectors
divide the historical wind data of the Marina Channel meteorological station for the
year 2007 into 160 segments. The occurrence frequency of each wind distribution in the
whole year or in each monsoon or intermonsoon season can thus be computed. Based
on this information and all 160 CFD wind distributions, we can generate a time series
of wind distributions above the entire Marina Reservoir over many years as long as we
possess the relative historical data of the meteorological station at Marina Channel.

3.2.3. Gaussian Process Model. Once we divided one year into different monsoon seasons
and built the dataset as prior knowledge on the wind distributions in each segment,
we could learn the spatial correlation between any two locations over the target area.
The key parameters of the GP models, that is, mean vector and covariance matrix

∑
VV ,

used in the consequential sensor placement and spatial prediction are thus obtained.
We will show in Section 4 that the derived GP models are fine enough to provide high
prediction accuracy.

3.3. Sensor Placement

Through the GP model learned by the CFD-based dataset, we can find the optimal
sensor locations in each monsoon season and intermonsoon season. For intermonsoon
seasons, we need to first transform the uniform wind direction distribution to a Gaus-
sian distribution. Finally, a permanent sensor placement scheme can be obtained by
combining the results of all segments and considering the water quality sensitivity.

3.3.1. Sensor Placement for Single Monsoon Season. With the dataset of CFD modeling,
we obtain a GP of wind for each season. It is NP-hard to select optimal sensor locations
for predicting the mean, maximum, or minimum of other locations [Das and Kempe
2008]. Two widely used criteria to guide the sensor placement are entropy and mutual
information. For entropy, the optimal sensor locations form a set that can provide the
largest joint entropy.

arg max
A:|A|=K

H(A) (4)

H(A) = H(Xak|ak−1,...,aa1
) + · · · + H(Xa2|a1 ) + H(Xa1 )

Heuristic algorithms can be used to find the locations with largest entropy or condi-
tional entropy iteratively. The selected locations provide the best prediction of obser-
vations at unobserved locations. For each location v, we treat the wind direction and
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Fig. 9. Transformation of uniform distribution in the intermonsoon season of the year 2007 at the Marina
Channel meteorological station to Gaussian distribution, and inverse transformation of the transformed
Gaussian distribution to a uniform distribution.

speed as a random variable vector. Its entropy is calculated as H(Xv) = 1
2log|2πe

∑
v,v|,

where
∑

v,v is the covariance matrix of direction and speed at v.
The entropy criterion finds the most informative locations that are located far away

from each other. An alternative [Guestrin et al. 2005], searches for locations that most
significantly reduce the uncertainty of rest space through maximizing the mutual
information between the selected locations and the rest, presented as MI(V\A,A) =
H(V\A) − H(V\A|A).

3.3.2. Transformation of Uniform Distribution. The uniform distribution of winds in inter-
monsoon seasons can be transformed to a Gaussian distribution using Inverse Trans-
form Sampling (ITS). If X is uniformly distributed on [0, 1] and F(yi) = xi, the random
variable Y is drawn from a normal distribution described by its cumulative function
F = 1/2 + 1/2er f (y/

√
2). Therefore, when we have the time series of wind direction in

the intermonsoon season xi, which follows a uniform distribution, we can transform it
to a time series of Gaussian distribution, yi, where yi = √

2er f −1(2xi/360 − 1). Figure 9
shows that the transformed data by ITS can be fitted by a Gaussian distribution.

The advantage of ITS is that it supports bidirectional transformation. We can trans-
form the wind data to Gaussian distribution to study the sensor placement and spatial
prediction, and convert the estimated values of unobserved locations back to normal
readings after processing. When we receive the real-time sensor readings, we first con-
vert them to the transformed Gaussian domain and estimate the observations at the
unobserved locations based on the transformed data. After that, we can convert the
estimated data back to normal wind readings zi through zi = 1/2 + 1/2er f (yi/

√
2).

Figure 9 also shows that the inversely transformed data follows the exact distribution
of the original data.

3.3.3. Sensor Placement for the Whole Year. The sets of sensor locations found for dif-
ferent monsoon or intermonsoon seasons are not exactly the same. Ideally, we deploy
sensors in one season according to its optimal placement scheme and move the sensors
according to another optimal placement scheme when the next season starts. However,
in reality, we cannot do that due to high reinstallation cost in terms of both finance
and time. We resort to providing a suboptimal solution to find a best balance among
different seasons.

We consider this problem while calculating the entropy of each location. Assuming
that the entropy of location v in jth time segment is H(Xv, j), the entropy of that location
for all segments can be computed as:

H(Xv) =
3∑

j=1

w j ∗ H(Xv, j), (5)

ACM Transactions on Sensor Networks, Vol. 11, No. 3, Article 41, Publication date: February 2015.



41:14 W. Du et al.

Fig. 10. The chlorophyll distribution differences between uniform wind and speed doubled at locations
(1750, 2250) and (1850, 2250).

where w j is the weight of jth time segment in the entire time series including two
monsoon seasons and one combined intermonsoon season. From the viewpoint of infor-
mation theory, by doing this, the information utility of each location is the sum of its
entropies in each time segment weighted by the relative proportion. Once the location
of the highest entropy is found, we search for the second and consequential locations
by calculating the weighted conditional entropy until reaching the maximum number
of sensors we can deploy. The optimal sensor placement scheme for one year is also
the best solution for multiple years, as the wind pattern simply repeats with negligible
changes for different years.

3.3.4. Sensitivity of Water Quality. To consider water quality during the design of the
optimal wind sensor placement scheme, a sensitivity analysis is conducted to find
the relative influence of wind at each location on the water quality in the Marina
Reservoir. We first run the water-quality simulation with uniform wind distribution of
the whole area and repeat that simulation by doubling the wind speed at one location.
We record the differences of all water-quality parameters at each location between the
two simulations. Figure 10 depicts the obvious differences in chlorophyll distributions
for two scenarios. The chlorophyll sensitivity to the wind at location v is calculated as:

Sv =
N∑

j=1

∣∣∣∣∣CHLv
j − CHLj

CHLj

∣∣∣∣∣ , (6)

where N is the number of possible sensor locations and CHLv
j is the chlorophyll value

of jth location when the wind speed at location v is doubled. The sensitivity of wa-
ter quality is the average of all water-quality parameters including chlorophyll, tem-
perature, and dissolved oxygen. We find the water quality sensitivity to the wind at
each location by repeating the experiments with doubled wind speed at that location.
Figure 11 shows that the sensitivities of water quality at different locations are signif-
icantly distinct.

We factor the sensitivity analysis in calculating sensor placement by adjusting the
information utility of each location with its normalized sensitivity.

H′(Xv) = Sv ∗ H(Xv) (7)

We normalize the raw sensitivity of each location by the highest sensitivity over the
Marina Reservoir, which is at location (1750, 2250). From the viewpoint of information

ACM Transactions on Sensor Networks, Vol. 11, No. 3, Article 41, Publication date: February 2015.



Sensor Placement and Measurement of Wind for Water Quality Studies in Urban Reservoirs 41:15

Fig. 11. Water-quality sensitivity to wind at different locations in the Marina Reservoir.

Fig. 12. The red region shows the area for which permission may be granted to install wind sensors.

theory, the information utility is the quantity one location can offer to eliminate the
uncertainty of wind distribution of the whole reservoir. We reduce the information
utility at one location if it has small impact on water quality. By doing this, the locations
with high sensitivity will have more chance to be selected and wind sensors are deployed
at the selected locations, which provide direct measurements with minimal error. The
final studies of water quality will benefit from these wind fields with intended error
distribution.

After the final adjustment to the sensor placement scheme according to sensitivity
analysis, we calculate the entropy for all locations and obtain the final sensor place-
ment with locations of the highest entropy or conditional entropy. Due to topography
and regulatory constraints, we cannot install wind sensors at all desired locations.
The area for which we may finally get permission to deploy sensors is depicted in
Figure 12. We therefore choose the first location only if it has the highest entropy and
is available to deploy sensors. If the location of the highest entropy is not permitted
for sensor deployment, we turn to the next location with the highest entropy. We re-
peat this procedure until enough sensor locations are found. The number of sensors to
deploy is constrained by the project budget and the prediction accuracy. In this study,
we finally deployed 10 wind sensors which can provide acceptable prediction accuracy.
The deployment layout of wind sensors is given in Section 4.
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Fig. 13. Locations of deployed wind sensors and the test positions of the mobile sensor.

3.4. Spatial Prediction

We predict the observations at the unobserved locations as the mean of conditional
distribution XV\A|XA in Equation (1), with the decomposed Gaussian models and the
input of real-time sensor readings. One problem is to determine which GP model should
be used to perform the prediction. Because the start and end of monsoon seasons are
variable for different years, we cannot cluster the sensor readings according to a fixed
division scheme derived using the time series segmentation algorithm in Section 3.1.1.

An online temporal clustering algorithm is developed to dynamically search for the
critical change point of monsoon seasons. When a new sensor reading is received, the
likelihood of last N samples is calculated using the statistical model (Gaussian or
uniform distribution) of current monsoon season. When the likelihood decreases to a
user-defined threshold, τ , we infer that the transition of monsoon seasons occurs.

When a set of sensor readings measured by all deployed wind sensors at a given time
point is categorized to a certain monsoon season, the relative GP model can then be
applied to estimate the wind field on other unobserved locations using Equation (1).

4. DEPLOYMENT AND EVALUATION

In this section, we introduce the in-field deployment of a wireless wind sensor network
in the Marina Reservoir area and evaluate the performance of the proposed sensor
placement and spatial prediction approaches with real measurement results.

4.1. Deployment of Wireless Sensor Network

The potential deployment area covers a water surface space of 2.2km2 plus the terrain
space within 100m from the water’s edge since some locations on land may provide
more information than those on the water surface to infer the wind observations on
other locations. We divide the underlying area of the Marina Reservoir into small grids
of 20m ∗ 20m, which provides the finest resolution. More than 5k locations need to be
considered.

Ten wind sensors are finally deployed, as marked by the red dots in Figure 13,
including 5 land sensors installed on the ground around the water and 5 floating sensors
on the water surface. The locations are selected according to the proposed approach
based on the historical data of the meteorological station on Marina Channel over two
years (from 2007 to 2008). Due to the high computational complexity of calculating
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Fig. 14. Three types of wind sensors.

Fig. 15. The collected wind speed data drawn on the data access user interface.

mutual information over the large set of potential locations, entropy is used as the
criterion for selecting the optimal sensor locations. Figure 13 also depicts the 3 sets
of underwater sensors we deploy to measure some key parameters of water quality,
such as dissolved oxygen, conductivity, chlorophyll, pH value, and temperature. The
observations of underwater sensors will be used to study the water quality of the entire
reservoir and validate our results on water quality.

Figure 14 depicts the wind sensors that we construct in this study. A land-based
sensor, depicted in Figure 14(a), is fixed on the ground with an absolute reference
direction. A floating sensor (Figure 14(b)) is anchored to the bottom of the water but
floats on the water surface. It has limited rotational freedom. We add a compass of high
accuracy for each floating sensor to determine the instant reference direction that will
be used to calculate the absolute wind direction by offsetting the raw measurement.
We also build a mobile wind sensor, depicted in Figure 14(c). It can be easily moved
and set up temporarily at an arbitrary location. We use the mobile sensor to collect
wind data for performance evaluation. Instead of a solar panel, a portable battery is
used to provide energy. All the other components are the same as other permanent
wind sensors.
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Fig. 16. Time series of wind direction and speed from 00:00 to 23:29 on September 1, 2013 and their
smoothed values with a 30-minute moving average window.

For each sensor, the wind monitor model 05305L of R. M. Young is used, which
provides an accuracy of 0.2m/s for speed and 3◦ for direction. In an early version of the
data collection system, all wind sensors are equipped with a RTCU DX4 data logger. An
accurate clock is provided in the data logger and all the sensor readings are instantly
synchronized in-field. A solar panel is equipped to provide continuous power to the
wind anemometer and data logger. For the mobile wind sensor, a portable battery is
used to offer energy instead of a solar panel; all the other components are same as the
land and floating wind sensors.

The minutely measured data are first logged and then transmitted back to our
backend server directly through a cellular network. The real-time data are hosted in
the server and can be accessed online through our data collection user interface. With
this user interface, we can also monitor the status of each wind sensor. For example,
Figure 16(b) presents the wind speed collected on January 6, 2014, shown by our data
analysis tool on the Web site.

4.2. Experiment Setup

We evaluate the performance of the proposed approach by real measurements. With
the deployed wireless wind sensor network, we have collected the wind data since July
2013. We study the accuracy of spatial prediction with reference to UniGau and linear
interpolation. The latter method is widely used by current environmental analysis. The
distance-weighted linear interpolation algorithm is adopted in our study, as shown in
Equation (8):

xi∈V|A =
∑

j∈A xj ∗ 1
dj∑

j∈A
1
dj

. (8)

The performance gain of our proposed approach comes from two aspects: optimal
sensor placement and accurate spatial prediction. Spatial prediction is based on sensor
placement, and they share the same system model. Since the advantages of Gaussian-
based sensor placement over random deployment have been completely proven in pre-
vious works [Krause et al. 2006; Wu et al. 2012] and it is costly in terms of budget
and time (more than 3 months) to reinstall the deployed wind sensors, we focus on
evaluating the potential improvement of spatial prediction accuracy by comparing
our approach (MIX) with UniGau and Interpolation based on the real wind measure-
ments on the optimal sensor placement. The prediction error is measured by the av-
erage Root-Mean-Squared Error (RMSE) between the estimated values of unobserved
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Fig. 17. Spatial prediction results derived by the proposed approach.

locations X̂V\A and their actual values XV\A:

RMSE(XV\A|XA) = 1
T

T∑
t=1

√ ∑N
i∈V\A(X̂t

i − Xt
i )

2

N
. (9)

Assume we have T sets of samples to conduct the evaluation and N locations are
included in V\A. The result is the average error in both temporal and spatial aspects.

4.3. Results

Figure 16 presents a snapshot of the measured wind distribution and speed for 24 hours
at wind sensor W01. The minutely measured data is plotted as the black line and the
smoothed data with a 30-minute moving average window is depicted as the red line.
The latter is required as a stable input to feed the ELCOM-CAEDYM model. We will
evaluate the performance of the proposed approach and the benchmark methods using
the moving average data.

Figure 17 shows one example distribution of wind direction and speed derived by our
proposed approach. From this example, we see that the spatial variation is large and
our approach can provide a distribution with a fine-grained resolution. Since we cannot
obtain the ground truth of the wind distribution over the whole reservoir at that time
point, we will evaluate the accuracy of our approach based on the real measurements
of many locations for long time periods.

Overall performance in space. To evaluate the spatial prediction accuracy at different
locations, we measure wind direction and speed at 20 randomly selected locations
along the water’s edge of the Marina Reservoir using the mobile wind sensor. The test
positions are depicted in Figure 13. At each location, per-minute wind data is collected
for 1∼2 hours. Figure 18 presents the average RMSE of predicted direction and speed
for each location.

Compared with UniGau and interpolation, the proposed approach reduces average
RMSE of wind direction prediction by 81% and 33%, respectively. By the monsoon-
based time series segmentation, MIX can accurately model the wind and provide high
prediction accuracy. Because the wind direction distribution for the entire year is not
Gaussian, UniGau produces large errors. The average RMSE of interpolation is rela-
tively large because it does not consider the effect of surrounding buildings to wind
field, thus cannot accurately capture the spatial variation of wind distribution. For
wind speed prediction, the performance of MIX and UniGau is comparable since the
wind speed of whole year is still Gaussian. They reduce the average RMSE of inter-
polation by 25%. From Figure 18, we can also see that the average RMSE of locations
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Fig. 18. Average prediction RMSE of wind direction and speed for 20 test positions.

Fig. 19. Prediction error of wind direction and speed validated by the installed wind sensors.

near installed sensors or in open space is relatively small, because the wind patterns
can be better captured by the statistic models and CFD modeling.

Overall Performance in Time. To further investigate the performance of the pro-
posed approach for long-term wind measurement, we use the measurement data of all
10 sensors for 3 months. At one time, we choose one sensor and use the measurement
data from the remaining 9 sensors to predict its wind direction and speed. We use its
own measurement as the reference to calculate RMSE. We perform this evaluation in
10 rounds for all 10 sensors. We do not have data from W09 since it was missing a
short time after installation. We are redeploying it to the opposite edge of the Kallang
River, which is more secure and provides the same level of information for the spatial
prediction over the target area.

Figure 19 presents the cumulative distribution of the absolute difference between
predicted observation and the measured value for each sample. In this case, T and N
in Equation (9) are both equal to 1. Similar to the results of the mobile sensor testing,
MIX improves the prediction accuracy of wind direction by 87% for UniGau and 27%
for interpolation, and the performances of MIX and UniGau for speed prediction are
comparable and 21% higher than that of interpolation. MIX offers an average spatial
prediction accuracy of 24◦. The error is larger than the mobile test since the data of
one installed wind sensor is used as the reference for evaluation but not included in
the calculation of spatial prediction.
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Table I. Computational Efficiency of Spatial Prediction

Performance metrics Results
Total time for wind direction prediction(s) 7.09

Number of grids 30846
Time per grid(s) 2.3e-04

Fig. 20. The RMSE of direction prediction corresponding to the water-quality sensitivity for each mobile
test location. The red line is the linear fitting curve of the scatter points.

Computational Efficiency. Table I presents the online computational efficiency of
our spatial prediction approach. Since the sensor placement calculation is done offline
before the deployment of sensors, we only measure the computational time of spatial
prediction, which should be done as fast as possible once the real-time sensor readings
are collected on the server. In Table I, we see that when a set of sensor readings
measured at one time point from 10 locations are received, it takes 7.09s to calculate the
distribution of wind direction over the entire Marina Reservoir. The spatial prediction
of wind speed shares the same process with wind direction. Therefore, we need 14.18s to
generate the final results for the following water quality studies. The test is conducted
on a 64-bit server composed of a 3.2GHz Intel(R) Xeon(R) CPU and 16GB RAM. From
the results, we can also see that the computation time for an even smaller granularity,
for example, a grid size of 10m*10m, is 56.72s, which is still acceptable.

Sensitivity of water quality. We take into account water quality while solving the sen-
sor placement problem so as to obtain an intended error distribution in space. Figure 20
presents the average RMSE at each test position in the experiment with the mobile
sensor corresponding to the sensitivity of water quality at that location. The results
show that the average RMSE is relatively low at locations with high water quality sen-
sitivity. The linear regression between the water-quality sensitivities and the relative
RMSEs of predicted direction for different locations reveals such an inverse trend.

Online clustering algorithm. We use historical data to evaluate the efficiency of our
online clustering algorithm. The experiments are done using the historical wind data
of the Marina Channel meteorological station over the year 2008. The likelihood calcu-
lated by the online clustering algorithm is the average likelihood of all N samples in the
sliding window. Only the last N samples before the time point under consideration are
used in the calculation. We set the sliding window size N to 1,440 samples correspond-
ing to one day and the likelihood threshold τ to 5.45. The likelihood calculated offline is
obtained using the monsoon-based time series segmentation algorithm introduced in
Section 3.1 with the whole-year data. It is the sum likelihood of all samples. Figure 21
shows that the likelihoods calculated online and offline peak almost at the same time
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Fig. 21. Likelihood calculated online and offline.

point for the transition from NE monsoon season to PreSW intermonsoon season. The
online temporal clustering algorithm can find the critical change point of time series
with a small error of 3.6 days in this case.

5. LESSONS LEARNED

The wind we measure in this study exhibits a distinct non-Gaussian process from
previously studied phenomena. Besides, we had no full prior knowledge to model the
spatial correlation in the field. To work with these challenges, we developed a unique
sensor placement approach including monsoon-based time series segmentation and the
dataset generated using CFD modeling.

The proposed approach, on the other hand, demonstrates a complete procedure that
extends the state-of-the-art sensor placement and spatial prediction methodology to
solve a wider range of applications. There are many other phenomena that exhibit a
similar non-Gaussian process captured by a mixture model over time, for example, city
traffic flow [Sun et al. 2006], soil pollutant [Lin et al. 2010], and so forth. Generalizing
the time series segmentation approach in such applications will significantly improve
the accuracy of sensor placement and spatial prediction over clustered time periods.

Incorporating computational simulation, for example, CFD in this work, to build a
dataset and study the field data correlation provides us a new method to gain prior
knowledge when an intrusive way of learning such knowledge is not preferred. We
do not need to run the time-consuming computational simulations online, but conduct
just enough simulations to cover most cases and capture the statistical features of the
target phenomena. In many applications in which it is impractical to predeploy enough
sensors due to various constraints, the computational simulation procedure can provide
coarse yet sufficient knowledge to statistically capture the spatial correlations that we
need.

Wind measurements are often conducted in order to study some other environmental
phenomena. We consider the water-quality modeling during sensor placement since the
winds of different locations impose variant impact on water quality of the whole lake
due to diverse morphometries and patterns. By considering the sensitivity of water
quality during the calculation of entropy for each location, we deploy sensors to provide
direct measurements at locations that have high impact on water quality.

6. DISCUSSION

In this section, we discuss the applications and limitations of the proposed solution.
Is the proposed solution able to scale to a much larger lake? Yes. According to the

experiment results in Section 4.3, the computation complexity of the proposed solution
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is low. The computation time of spatial prediction for both wind direction and wind
speed over a reservoir composed of 30,846 grids is 14.18s by the computation in Matlab.
If the area of the reservoir is increased 4 times, the number of grids is increased 4 times
as well and the computation time is 56.72s, which is still acceptable.

How will the proposed solution work in other parts of the world? We believe the pro-
posed solution best exploits the underlying nature of wind measurement in our study
and achieves optimal accuracy with a limited number of sensors. Such a procedure
can be generalized to measure wind in other regions or handle other applications in
observing phenomena of a similar nature. The experiences we gained from time-series
segmentation and water-quality sensitivity can be used in other studies.

Will the proposed solution be able to cope with frequent extreme weather (such as places
with frequent hurricanes)? No. Our solution is mainly designed for wind measurement
using normal wind sensors in the regions where the wind follows Gaussian distribution
or can be decomposed to multiple Gaussian distributions. Because it is impossible
to measure the wind speed and direction in hurricanes using current normal wind
sensors, it is out of the scope of the proposed solution to measure hurricanes. Moreover,
wind modeling is challenging for frequent extreme weather, such as hurricanes. It is
very hard to obtain prior knowledge of the wind distribution over a large area during
extreme weather.

7. RELATED WORKS

WSN for environmental monitoring. In the last decade, a large number of WSN deploy-
ments [Liu et al. 2013; Li and Liu 2009; Hu et al. 2009; Talzi et al. 2007; Barrenetxea
et al. 2008; Ingelrest et al. 2010; Le Dinh et al. 2007] have been reported for environ-
mental monitoring. They have also been used for pipeline monitoring [Lai et al. 2012]
and mapping [Lai et al. 2013]. Some diagnostic approaches have also been designed for
these applications [Liu et al. 2008; Dereszynski and Dietterich 2011]. Many large-scale
systems with hundreds of nodes [Dutta et al. 2006; He et al. 2006; Liang et al. 2009; Liu
et al. 2013] have been developed as well, such as military surveillance, temperature
measurement in data centers, and forest monitoring. In this article, we focus on the
optimal sensor placement problem for wind distribution measurements in large areas.

Sensor placement. The optimal sensor placement problem has been addressed in
many previous works [Dhillon and Chakrabarty 2003; Lin and Chiu 2005; Joshi and
Boyd 2009]. Among them, GP-based approaches [Das and Kempe 2008; Guestrin et al.
2005; Osborne et al. 2008] have been used in many applications monitoring spatial
phenomena such as temperature [Krause et al. 2006] and soil moisture [Wu et al. 2012].
Communication efficiency is also be taken into account during the design of sensor
placement [Krause et al. 2011]. The best location for base station is studied by Shi and
Hou [2009] to maximize the network lifetime within an error bound. The nonuniform
prediction accuracy problem is considered by Krause et al. [2008]. The reduction in the
predicted variance over the unobserved locations is weighted according to their demand
of accuracy. However, they cannot be directly applied to wind distribution measurement
due to the temporal and spatial variations of wind. They also require the historical data
of wind distribution over the whole area. In our case, they need to deploy more than
5,000 wind sensors above the Marina Reservoir with a grid of 20m*20m for more than
1 year. Even if they approximate the required Gaussian process model by some existing
kernel functions, they also need the historical data from many wind sensors to validate
their hypothesis. Due to the highly dynamic variation of wind in space over such an
urban reservoir, the required number of wind sensors must be very large to achieve
a high accuracy. It is impossible to deploy a large number of wind sensors in such an
area beforehand.

Coverage. The coverage problem of sensor networks has been extensively studied
[Kumar et al. 2004; Ganesan et al. 2006; Yan et al. 2008; Chen et al. 2013]. The
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sensor placement problem for moving targets is considered by Wettergren and Costa
[2012, 2009]. Data fusion is considered by Xing et al. [2004, 2009]. The coverage and
connectivity in a duty-cycled sensor network are analyzed by Wang et al. [2003], Gu
et al. [2013], and Yan et al. [2003]. Nevertheless, most of the existing theoretical works
are based on the deterministic disc model or do not consider the unique features of
target physical phenomena.

CFD modeling. It is a widely used tool to capture the fluid patterns in many appli-
cations, such as environmental engineering and aircraft design [Anderson et al. 1995].
Lim et al. [2012] have successfully applied CFD for geospatial risk assessment of wind
channels in urban area with high accuracy. CFD modeling has also been used in sensor
placement problems [Wang et al. 2011] and temperature forecasting [Chen et al. 2012]
in data center environments. CFD models are built to capture extra hot-spot scenarios.
A thermal forecasting model is proposed by Li et al. [2011] to model and predict tem-
peratures around servers in data centers based on principles from thermodynamics
and fluid mechanics.

Time series segmentation. Time series segmentation algorithms [Bernaola-Galván
et al. 1996; Guralnik and Srivastava 1999] search for critical change points by itera-
tively dividing data into small segments with the same statistical model (e.g., Gaussian
distribution). However, they cannot be applied for our mixture model of different statis-
tic models, that is, Gaussian and uniform. Expectation maximum algorithms [Dempster
et al. 1977] are utilized widely to divide a Gaussian mixture into individual Gaussian
distributions. However, they cannot be used in the application of wind measurement
either. First, the spatial correlation cannot be calculated since the samples of all loca-
tions at a given time point are not clustered in the same cluster. Second, the samples in
the same cluster are not continuous in time. As a consequence, it is difficult to assign
the online sensor readings to a proper cluster and apply the relative spatial prediction.

8. CONCLUSIONS

In this article, we propose a novel sensor placement and spatial prediction approach
for wind distribution measurements. It leverages the monsoon characteristics of wind
to study its statistic properties. A dataset is built using CFD modeling that captures
the impact of surrounding buildings on wind distribution. Optimal sensor locations
are selected through segmented wind statistical models and adjusted according to the
sensitivity of water quality to wind at different locations. We deployed 10 wind sensors
around or on the water surface of an urban reservoir. The observations of unobserved
locations are predicted by the readings of deployed sensors clustered through an online
algorithm. The in-field measurement results show that the proposed approach can
significantly improve the accuracy of wind measurements.
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