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Abstract. Many sensor network applications are data-centric, and data analysis 
plays an important role in these applications.  However, it is a challenging task 
to find out what specific problems and requirements sensory data analysis will 
face, because these applications are tightly embedded in the physical world and 
the sensory data reflect the physical phenomena being monitored.  In this paper, 
we propose to use field studies as an alternative for identifying these problems 
and requirements.  Specifically, we deployed an experimental sensor network 
for monitoring the frog pond in our university and analyzed the collected sen-
sory data.  We present our methodology of sensory data collection and analysis.  
We also discuss preliminary analytical results from the collected sensory data, 
together with our generalization for similar sensor network applications.  We 
find that this case study helped us identify and understand several problems, ei-
ther general or specific, in real-world sensor network application deployment 
and sensory data analysis.   

1 Introduction 

Sensor network applications pose a number of novel problems for networking 
([4][9][10]) and data management ([7][15]).  Nevertheless, many more problems and 
requirements in real-world sensor network applications are to be identified and under-
stood, especially for sensory data analysis.  Due to the tight integration of these appli-
cations with the physical world, field studies are effective, sometimes necessary, for 
identifying problems and requirements.  In this paper, we present a case study of 
sensory data analysis for a small-scale real-world sensor network application.  Our 
goal is to identify and understand problems and requirements specifically for sensory 
data analysis.   

From our case study, we observe that most of the problems in our sensory data 
analysis rose because the sensor network application was deeply embedded in the 
physical environment and the sensory data reflected the physical phenomena under 
study.  For instance, we find that even though there were inherent trends in the read-
ings of individual sensors as well as strong correlations between readings of multiple 
sensors, outliers were common and the causes of some outliers were hard to deter-
mine.    
H. Jin et al. (Eds.): NPC 2004, LNCS 3222, pp. 551-558, 2004. 
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The remainder of the paper is organized as follows.  Section 2 introduces the de-
ployment of the case study.  Section 3 presents our preliminary analytical results of 
the collected sensory data and discusses the generalization of our experience.  Section 
4 compares related work and Section 5 concludes the paper. 

2 Deployment of the Case Study 

We started the case study around a frog pond on the HKUST campus in April 2004.  
The frog pond is located at the northeastern corner of the campus and is surrounded 
by two pagodas and various plants.  Throughout the late spring, the frogs in the pond 
croak loudly all day long.   

The smart sensor nodes we used in the case study were the Crossbow MICA2 
motes [3].  Each mote consists of an Atmel Atmega128L low-power micro-controller 
running TinyOS [13] with a 900MHz radio channel.  Mote 0 connects with a PC-
grade base station through a PC interface card, and other motes each consists of a 
MICA2-compatible sensor board.  The scale of the case study was small due to our 
resource limit.   

We deployed a total of nine MICA2 motes in two groups, with each group in a pa-
goda around the frog pond.  Fig. 1 shows the deployment of the two groups.  The 
base station (Mote 0) of each group was connected to the serial port of a notebook 
through a MIB510CA interface board and a serial cable.    

   
                             (a) Group 1          (b) Group 2 

Fig. 1. Deployment of two groups of Motes 

Group 1 was deployed in the pagoda that is surrounded by the frog pond.  Each of 
Motes 1-5 was attached with a MTS310CA sensor board, which includes a tempera-
ture sensor, a light sensor, a microphone, a 2-axis accelerometer and a 2-axis magne-
tometer.  We installed TinyDB [12] on the motes and used the TinyDB GUI to collect 
sensor readings and to log the readings to a text file.  

Group 2 was deployed in the pagoda that is near the frog pond and overlooks the 
sea.  Its Motes 1-2 used the MTS420CA weather sensor boards.  This type of sensor 
board consists of a humidity and temperature sensor, a barometric pressure and tem-
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perature sensor, an ambient light sensor, a 2-axis accelerometer and a GPS module.  
We configured the Xlisten program and the corresponding on-mote module XSen-
sorMTS400 downloaded from the TinyOS SourceForge CVS [14] for logging the 
sensory data from this type of sensors.     

It was cloudy with intermittent rain on the day of our data collection.  We collected 
one-day data in four two-hour periods of the day: 6:30 – 8:30 (morning), 12:30 –
14:30 (noon), 17:30 – 19:30 (dusk), and 22:00 – 24:00 (night).  We set the sample 
period to be 30 seconds.  At the end of the eight-hour data collection, we logged 
thousands of sensor readings per group. 

We used homegrown programs to pre-process the collected sensory data before 
conducting further analysis.  First, we converted the sensor readings from raw ADC 
counts generated by the sensor boards to more human-friendly engineering units (e.g., 
Celsius degrees for temperature) using conversion formulas provided by Crossbow.  
Next, we parsed and imported the sensor readings (both ADC counts and engineering 
units) into a Microsoft Access database.  Finally, we used SQL queries and Microsoft 
Excel Charts to perform preliminary data analysis. 

3 Sensory Data Analysis 

In this section, we analyze the sensory data we collected in the experiment.  From a 
database perspective, our focus of the analysis is on identifying and understanding the 
problems and requirements that are specific for sensory data.  Apparently, the analyti-
cal results we present here are preliminary.  However, the methodology and insights 
gained from these initial analytical results are valuable for more advanced analysis 
and are otherwise unavailable or less convincing without the case study. 

3.1 Trends in Readings of Individual Sensors 

We first give an analysis of individual sensor readings using some typical examples. 
Light.  Fig.2 shows the light readings of Mote 1 and Mote 5 in Group 1.  We pick 
these two motes because in our deployment they were the nearest (Mote 1) and far-
thest (Mote 5) motes from the Group 1 base station.  Each point in the figure corre-
sponds to one light reading.  In the morning, the light readings kept on increasing due 
to the sunrise.  At noon, the light readings were at the highest for the day and slightly 
decreased past noon.  At dusk, the light readings decreased sharply due to the sunset 
and then jumped up to a certain level because the lamps around the pagoda were lit.  
The light readings at night remained almost constant with the lamplight.   

The two motes in Fig. 2 had similar readings.  The other three motes of Group 1 
also had similar readings to these two.  This similarity was because the area of a pa-
goda is small and thus the motes in this group were located near to one another.  The 
proximity of motes also made readings of other sensors (e.g., humidity, temperature) 
of a group similar. 

However, for Group 2, the readings of the ambient light sensors remained a con-
stant value of 131.448624 Lux due to a bug in the XSensorMTS400 program that we 
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used.  As a result, a comparison of light readings between the two groups is not done.  
We are developing our own data logging programs for future usage.   
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             Fig. 2. Light readings of Group 1               Fig. 3. Temperature readings of two groups 

 
Temperature.  Fig. 3 shows the temperature readings of Group 1 Mote 1 and Group 
2 Mote 2.  We put the readings from different groups in one figure for comparison 
purpose.  Again, temperature readings from motes of the same group were similar due 
to their proximity.  

The temperature readings of Group 1 motes varied from 21 to 24°C, whereas those 
of Group 2 motes varied from 21 to 23°C.  The temperature measured by Group 2 
was often slightly higher than that measured by Group 1 (except around noontime), 
even though the two pagodas were within a distance of 20 meters from each other.  
We think there are two possible reasons: (1) the temperature sensors of the two 
groups are made by different companies and therefore differ in hardware characteris-
tics, (2) the microclimates in the two pagodas differ due to their different geographi-
cal locations. 
Humidity.  Humidity sensors were available only in Group 2.  The humidity readings 
of the two motes in Group 2 are illustrated in Fig. 4.  Most of the time, the readings 
remained at the level of around 90%.   

Note there were some abnormally high humidity readings (larger than 130%) of 
Mote 1 at the beginning of the morning period.  These abnormal readings were be-
cause some rain drops splashed onto the Mote by accident.  The water made the hu-
midity sensor malfunction and return abnormally high readings.  This kind of physi-
cal failure is not uncommon and is recoverable [11].  After being dried, the sensor 
returned to normal operation.    
Noise.  Microphone sensors were available only in Group 1.  Fig. 5 shows the noise 
readings of Mote 1 and Mote 5 in Group 1.  Unlike temperature, light, and humidity 
readings, which are more continuous, the noise readings are more discrete.  The scat-
tered data points in the noise readings in Fig. 5 usually suggest the actual, sudden 
changes (events) in the sound level in the environment.  In comparison, those outlier 
points in temperature, light, and humidity readings in the previous figures were often 
due to errors.  
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From Fig. 5 we see that the frogs croaked most actively in the early morning and 
were most quiet around noontime.  Also, some of the high data points in the figure 
were because people passing by were talking. 
Correlation.  Our analysis on correlation of sensor readings is limited and will be an 
important part of our future work.  So far we have found that the temperature and 
humidity readings were inversely correlated and that the temperature and light read-
ings were not correlated as found in other environments [5].   
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     Fig. 4. Humidity readings of Group 2                    Fig. 5. Noise readings of Group 1 

3.2 Discussion 

Having presented our initial results with a specific sensor network application, we 
discuss how to generalize our findings to similar sensor network applications. 

We start by summarizing the problems that we have encountered in the application 
deployment and data analysis.  First, both hardware problems and software bugs are 
common in sensor network applications.  The reasons include sensor networks being 
an emerging technology and the typical application environment being the physical 
world full of unpredictable events and changes.  Second, data pre-processing and 
post-processing constitutes a large amount of work in order to facilitate sensory data 
analysis.  This work mainly includes data cleaning and format conversion prior to 
analysis and visualization after analysis.  Third, sensory data exhibits regularities as 
well as abnormalities, and the causes of outliers are hard to determine.   

Based on this summary of experienced problems, we propose the following three 
requirements for a sensory data analyzer. 

(1) The analyzer should have data acquisition functions that are fault-tolerant and 
adaptive, since the sensory data collection process determines the quality of sensory 
data.  The fault-tolerance requirement is because hardware malfunctioning is common 
in field studies, as we have already experienced.  It is thus desirable that a data collec-
tor is able to recover, to migrate the work from a failed node to a normal node, and to 
resume the work.  The adaptivity requirement is to take advantage of the patterns and 
regularities captured in sensor readings.  For instance, continuous quantities such as 
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temperature can be measured with a sampling frequency adapted to the changes in the 
temperature readings in order to improve power efficiency while keeping the quality 
of sensory data unaffected.   

(2) The analyzer should have a set of basic functions for data pre-processing and 
post-processing operations.  Data pre-processing is to further ensure the quality of 
data for analysis.  Data post-processing is mainly for the presentation of analytical 
results.  For example, the function convert() converts sensor readings from raw ADC 
counts to human-friendly engineering units, the function calibrate() performs hard-
ware-specific calibration of the readings, and the function plot() plots data points and 
curves together with analytical summaries following user-defined criteria.     

(3) As the core of the analyzer, the sensory data analysis functions include pattern 
and outlier detection, and correlation of multiple sensory attributes or multiple sensor 
nodes.  We further discuss these two kinds of functions as follows. 

First, detecting patterns and outliers in single-node single-attribute sensory data is 
the basic analytical operation.  For instance, given the temperature readings of one 
sensor node, the basic analytical information about these readings must include a 
summary of the range, the trend, and the outliers of the data.  As a result of measuring 
natural phenomena, sensory data has inherent patterns as well as outliers.  Moreover, 
outliers sometimes are due to real events in the environments and sometimes due to 
system errors.  It is necessary to pay special attention to outlier analysis. 

Second, correlation analysis gives more insights into sensory data, especially be-
cause each sensor node has multiple sensory attributes and multiple sensor nodes 
work concurrently in a geographical region.  The inherent correlations between natu-
ral phenomena as well as the temporal and spatial correlations of sensor nodes will be 
useful for both sensor network applications and system deployment.  For example, 
when an application is detecting transient changes such as a sudden increase in the 
noise level, it can utilize the spatial correlation of a cluster of adjacent nodes to detect 
the noise with a high fidelity.  In other words, if one sensor node detects a sudden 
increase of noise level, it might be a real event as well as a system error.  But if mul-
tiple nearby nodes report the same event, the probability of a system error is much 
lower and that of a real event is much higher than reported by a single node.   

In summary, we find several problems in sensory data analysis, ranging from 
hardware or software problems in the deployed applications to difficulties in produc-
ing meaningful analytical results out of sensory data.  Correspondingly, we propose 
several requirements for sensory data analysis systems, including fault-tolerance and 
adaptivity of data collection, a set of data pre-processing and post-processing func-
tions, and basic data analysis functions such as pattern, outlier, and correlation detec-
tion.  Our ultimate goal is to build a general sensory data analysis system for various 
data-centric sensor network monitoring applications.  

4 Related Work 

A number of sensor network projects have real-world deployment, including ALERT 
[1], GDI ([8][11]), PODS [2], Surveillance and NIMS [6].   
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ALERT (Automated Local Evaluation in Real Time) is a well-known, practical 
sensor network application [1].  It provides real time rainfall and water level informa-
tion for forecast of flooding.  ALERT mainly focuses on special-purpose sensory data 
statistics and uses them for prediction.  

Both GDI ([8][11]) and PODS [2] deployed sensor networks in outdoor environ-
ments mainly for the purpose of system performance study.  Specifically, GDI de-
ployed a multi-tier sensor network for habit monitoring whereas PODS was deployed 
in Hawaii Volcanoes National Park.   

Surveillance and NIMS [6] are two demonstrations.  Surveillance built an energy-
efficient surveillance system using a wireless sensor network, and NIMS focused on 
new, mobile sensing devices on a suspended infrastructure.     

In comparison, our case study is at a smaller scale and a finer level, with a focus 
on identifying general problems and requirements for advanced sensory data analysis 
in real-world applications.   

5 Conclusions 

In this paper, we describe our case study of deploying a small-scale monitoring appli-
cation at the frog pond in our university and analyzing the collected sensory data.  
Our goal is to identify the problems and requirements for sensory data analysis in 
real-world sensor network applications.  We find that (1) data collection and logging 
functions need to be failure-aware and easy to resume, (2) data pre-processing such as 
format conversion and post-preprocessing such as visualization is necessary for sen-
sory data analysis, and (3) essential sensory data analysis functions include pattern 
and outlier detection for readings of individual sensors and correlation detection for 
readings of multiple sensors.  

Our future work includes designing and implementing advanced sensory data 
analysis tools and conducting larger-scale studies using these tools.   
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