
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 1

A Performance Debugging Framework for
Unnecessary Lock Contentions with

Record/Replay Techniques
Xiaofei Liao, Long Zheng, Bingsheng He, Song Wu, Hai Jin

Abstract—Locks have been widely used as an effective synchronization mechanism among processes and threads. However,
we observe that, a large number of false inter-thread dependencies (i.e., unnecessary lock contentions) exist during the program
execution on multicore processors, incurring significant performance overhead. This paper presents a performance debugging
framework, PERFPLAY, to facilitate the identification of unnecessary lock contentions and to guide programmers to improve the
program performance by eliminating the unnecessary lock contentions. Since the performance debugging of unnecessary lock
contentions is input-sensitive, we first identify the representative inputs for performance debugging. Next, PERFPLAY quantifies
the performance impact of unnecessary lock contention code regions for each candidate input. Taking into account conflicting
attribute of performance impact and input coverage in the real world, we finally make the tradeoff between performance impact
and input coverage to recommend the optimal unnecessary lock contention code regions. Our final results on five real-world
programs and PARSEC benchmarks demonstrate the significant performance overhead of unnecessary lock contentions, and
the effectiveness of PERFPLAY in troubleshooting the target unnecessary lock contention code regions with the consideration of
both performance impact and input coverage.

Index Terms—record/replay, unnecessary lock contention, performance impact, multiple input, program debugging

F

1 INTRODUCTION

In the era of multi-core processors, parallel program-
ming is prevalent. The efficiency of process/thread
communication is very important for the overall per-
formance of parallel executions. In multi-threaded
applications, locks are widely-used to ensure mutual
accesses to shared data within critical sections. A
thread will not acquire a lock until the lock releases
if this lock is held by another thread. However,
multiple critical sections protected by the same lock
do not necessarily conflict at runtime. Therefore, a
program may produce false inter-thread dependency
(i.e., unnecessary lock contention). Such unnecessary
lock contentions serialize the access, leading to the
severe performance loss of programs [1], [2]. In this
paper, we study whether and how we can help the
programmer identify the unnecessary lock contention
and further understand their performance impact.

Let us illustrate the problem of unnecessary lock
contentions with a real example from mysql−5.6.11 [3]
as shown in Figure 1. It illustrates how the un-
necessary lock contention occurs in the dynamic

• X. Liao, L. Zheng, S. Wu, and H. Jin are with Services Computing
Technology and System Lab, Cluster and Grid Computing Lab, School
of Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan, 430074, China. E-mail: {xfliao, longzh,
wusong, hjin}@hust.edu.cn.
B. He is with School of Computer Engineering, Nanyang Technological
University, 639798, Singapore. E-mail: BSHE@ntu.edu.sg.

Thread 1:
void fil_flush_file_spaces(...){
5609: mutex_enter(&fil_system->mutex);
5611: n_space_ids=UT_LIST_GET_LEN(

fil->system->unflushed_spaces);

5614: mutex_exit(&fil_system->mutex);
}

Thread 2: 4! Conflict
void fil_flush(...){
5473: mutex_enter(&fil_system->mutex);

/*search hash table by a given id*/
5475: space=fil_space_get_by_id(space_id);
5483: if (fil_buffering_disabled(space)){

/*checking some data and states*/
5501: mutex_exit(&fil_system->mutex);
5503: return;}

...
5573: UT_LIST_REMOVE(unflushed_spaces,

fil->system->unflushed_spaces,space);

5592: mutex_exit(&fil_system->mutex);
} storage/innobase/fil/fil0fil.cc

Figure 1. An example of the potential parallelism
serialized by the unnecessary lock contention from
mysql in the dynamic execution

execution. Both threads use the same shared lock
fil_system->mutex to coordinate the shared access
to fil->system->unflushed->spaces. However,
in the dynamic execution, the thread always does not
update it, if the buffer is disabled by the user. In this
case, two threads do not conflict, and the lock unnec-
essarily serializes the function UT_LIST_GET_LEN
and the function fil_space_get_by_id, thereby
leading to the performance degradation. In practice,
we identify and generalize Unnecessary Lock Contention
Pair (ULCP). A ULCP consists of two critical sections
which are protected by the same lock and access the

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 2

parallelizable code regions.
Due to the significant overhead of ULCPs at run-

time, a volume of runtime research [1], [4] attempts to
eliminate the performance impact of ULCPs by spec-
ulatively executing critical sections without actually
acquiring the lock. The lock is taken only when a data
conflict needs to be resolved. The major advantage
of those approaches is that they are transparent to
programmers. However, they incur many problems
in practice [5], [6] and there is still a long way before
their practical and wide adoptions. First, they are
prone to trigger false aborts due to the hardware
limitations [5]. Second, a few transaction aborts may
lead to a large number of rollbacks [6].

Instead of relying on complicated dynamic ap-
proaches, this paper argues that the programmer
should play a proactive role in eliminating the over-
head of ULCPs. If the programmer can fix the per-
formance problem caused by ULCPs, the side-effect
problems of existing ULCP tools [1], [4], [7], [8] can
be avoided. We perform five real-world programs and
PARSEC benchmarks to study the explicit character-
istics of ULCPs. Based on our observations, we get an
important finding: the root cause of many ULCPs lies
in the problematic synchronization implementation.
Thus, ULCPs can be fixed by programmers. It is
necessary to detect them and assist the programmers
to understand and correct them, rather than take
tolerant attitudes in the previous work. However, it
is a nontrivial task to identify the source of ULCPs as
well as figure out their performance impact. In fact,
in a multi-threaded program, there may be so many
ULCPs that it is difficult, or even impossible, to check
all ULCPs manually. Even worse, they are intertwined
with each other in the source code.

To help the programmer address the ULCP prob-
lems, this paper presents a performance debugging
framework (namely PERFPLAY) to identify the com-
mon performance critical ULCP code regions in the
lock-based programs. The core idea of PERFPLAY is
based on replay technique. To find common ULCP
code regions across inputs, we have to take the mul-
tiple inputs to test all possible paths of program.
To enable the high-coverage debugging, one intuitive
method is to test the program with all potential in-
puts, but this work is very laborious and impractical
for the real programs. Fortunately, our observations
in the ULCP study motivate us that such massive
inputs, in fact, can be dramatically reduced into a
few representative inputs in practice. Consequently,
we are able to reduce the number of inputs in or-
der to resolve the programmer burden when facing
too many inputs. Taking the representative inputs,
we test the program with them one by one. To be
specific, PERFPLAY records the program execution
with a given candidate input into a trace. Through
analyzing this trace, PERFPLAY can identify all ULCPs
in the original execution. Then we propose a novel

technique of trace transformation formalized by four
rules to transform these ULCPs in the original trace
into the correct pattern as a new trace free from
ULCPs. We ensure that the new ULCP-free trace can
be executed with the correct program semantics. By
replaying both the original trace and ULCP-free one,
PERFPLAY gets the performance impact of each ULCP.
Next, we group the ULCPs generated by the same
code regions and summarize the overall performance
per code-site. Finally we get a list of ULCP code
regions for this input.

Afterwards, we test the program with another can-
didate input and repeat the same process. We there-
fore collect a full list of UCLP code regions of the
program. We also find that, the performance impact
and input coverage of ULCP code regions show
an interesting tradeoff in performance debugging of
ULCP. To troubleshoot the optimal ULCP code regions
with high performance impact and input coverage,
we formulate this issue into a mathematical isse, i.e.,
finding the pareto-optimal points that have the largest
possible number of performance improvements and
input coverage. As a result, we use the multi-objective
optimization [9] to identify the final tradeoffs.

The rest of this paper proceeds as follows. We
provide the introduction on ULCP, the motivation and
overview of our work in Section 2. Section 3 presents
input reduction. Section 4 elaborates how to transform
a recorded program execution trace into a new ULCP-
free trace. Section 5 describes how to recommend
the optimal ULCP code regions with the high perfor-
mance impact and coverage. Section 6 further presents
the implementation details. Section 7 presents the
experimental results. We review the related work in
Section 8 and Section 9 concludes the work.

2 ULCP: A MOTIVATION STUDY, ILLUS-
TRATIVE EXAMPLE, AND FINDINGS

We start with a motivation study on ULCPs. Then,
a concrete example is given to illustrate dynamic
behavior of ULCPs. Learning from our study, we next
summary several novel findings regarding ULCPs.
Motivated by the study and implied by findings
above, we ultimately develop a debugging framework
to address the ULCP performance problem.

2.1 A Motivation Study

We have surveyed the number of each category of
ULCPs in five real-world programs (including openl-
dap [10], mysql [3], pbzip2 [11], transmissionBT [12] and
handBrake [13]) and PARSEC benchmarks [14]. The
detailed experimental setup and discussion can be
found in Section 7.1.

(1) Null-Lock refers to the synchronization pair
where there exists no shared-memory access in the

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 3

Table 1
Breakdown of ULCPs in real-world programs and

PARSEC benchmarks. Size indicates the total size of
all source files (e.g., *.h, *.c, *.cpp). #Locks means
the number of lock/unlock pairs during the dynamic

execution. NL. refers to the null-locks, RR. the
read-read pattern, DW. the pattern of disjoint-write.

Applications LOC Size # Locks # ULCPs # TLCPsNL. RR. DW. Benign
openldap 392K 6M 1,851 75 1,414 473 15 411

mysql 1,132K 22M 2,109 125 9,822 2,924 194 638
pbzip2 5K 1M 1,281 2 1047 838 51 2,06

transmissionBT 79K 4M 352 15 111 123 29 95
handbrake 1,070K 3M 18,316 10 1,536 1,143 189 2,311

blackscholes 812 204K 0 0 0 0 0 0
bodytrack 10K 9.0M 32,642 0 1,322 321 43 1,751
canneal 4K 628K 34 0 0 0 0 29
dedup 3.6K 156K 19,352 231 2,421 1,952 164 2,091

facesim 29K 4.8K 14,541 102 871 819 12 1,099
ferret 9.7K 316K 6,231 11 101 231 343 465

fluidanimate 1.4K 72K 82,142 2 10,501 6,694 197 2,591
streamcluster 1.3K 44K 191 0 0 0 0 36

swaptions 1.5K 152K 23 0 0 0 0 16
vips 3.2K 17M 33,586 142 4,512 1,142 26 1,279
x264 40.3K 2.4M 16,767 941 3,841 412 84 817

critical sections. ULCP problems of this type are usu-
ally relatively easy to understand and identify. Null-
locks usually come from if-branch of the program [15].

(2) Read-Read pattern indicates that only read op-
erations on shared data exist between two critical
sections protected by the same lock. The performance
problem of this type mainly stems from the serial
access to the shared data, especially for memory-
intensive applications. Figure 2 demonstrates such a
ULCP problem from OpenLDAP [10].

(3) Disjoint-Write pattern occurs in the scenario
where two critical sections protected by the same lock
update different shared addresses, and at least one of
them is the write operation. One common example
of disjoint-write is that program uses the uniform
reference (e.g., pointer alias) protected by the same
lock to update different shared objects.

(4) Benign pattern represents the benign feature of
some false conflicting ULCPs. Specifically, two critical
sections indeed access the same shared data concur-
rently but they do not constitute a conflicting pair,
such as redundant writes, disjoint bit operation, and
ad-hoc synchronization [16], [17].

The four classified categories of ULCPs facilitate
the achievement of two goals: 1) ULCP identifica-
tion: different patterns may involve different detection
techniques; and 2) ULCP transformation (i.e., trace-
level ULCP elimination): after ULCP identification,
we need to transform the trace into a ULCP-free
execution, but different patterns may require different
transformation strategies.

2.2 An Illustrative Example

Figure 2 depicts a source code snippet protected by
dbmp->mutex from OpenLDAP [10]. This code may
affect the CPU utilization of system when a large
number of threads call this code simultaneously. That

 for (deleted=0; ;) {
 THREAD_LOCK(…, dbmp->mutex);
 /* wait for other threads to release their

 references to dbmfp */

 if (dbmfp->ref == 1) {

 deleted = 1;
 }
 THREAD_UNLOCK(…, dbmp->mutex);
 if (deleted) break;

 }

rd:dbmfp->ref

rd:dbmfp->ref

rd:dbmfp->ref

CS1

CS2

CS3

dbmfp->ref=1

T1 T2 T3 Tn

denotes a critical section CS protected with the lock/unlock pair

Dynamic Execution SequencesA Code Snapshot

CSn

denotes the critical path of program

(a)

dbmfp->ref=1

deleted=1
deleted=1

deleted=1

(b)

Figure 2. A code snippet with problematic synchro-
nization implementation from OpenLDAP. (a) A great
deal of CPU time is wasted due to the spin-waits of
threads T0, · · · , Tn−1 for the release of dbmfp->ref if
the critical thread Tn runs slowly. (b) Little CPU time is
wasted if Tn is finished fast with different input.

is because it produces a large number of lock/unlock
pairs (i.e., critical sections, CSs) where no effective
execution statement exists if dbmfp->ref is always
FALSE. In fact, these shared reads can be operated
simultaneously unless dbmfp->ref is set to TRUE.
Figure 2(a) illustrates many ULCPs (i.e., a two-tuple
consisting of two critical sections 〈CS,CS〉), such as
〈CS1, CS2〉 and 〈CS2, CS3〉. Each ULCP introduces
subtle performance impact due to the lock protection
serializing two critical sections. We can further group
ULCPs based on their code-site, which introduces
a profitable accumulated performance gain. For in-
stance, 〈CS1, CS2〉 and 〈CS2, CS3〉 are both generated
by the pair of above-depicted source code, therefore
their performance benefits should be accumulated up
when we evaluate the ULCP performance impact per
code-site (Motivated from Implication (1)).

Lock Elision (LE) [1], [2], [4], [6] is a technique
that dynamically eliminates the inter-thread ULCP
dependencies. For the example in Figure 2, they re-
move the lock acquisition and release operations of
the critical sections (i.e., CS1, · · · , CSn−1) completely
before CSn is executed. As a result, CS1, · · · , CSn−1

are performed in parallel. However, LE cannot pre-
cisely track the impact of system resource wasting
caused by ULCPs. For instance, if the ULCPs incur on
the non-critical path of program, e.g., T1, T2, · · · , Tn−1,
the optimization of LE-based work just performs
more CSs as ineffective execution. It does not notice
this impact. As a debugging tool, both performance
degradation and system throughput loss should be
concerned as the ULCP performance impact. In fact,
the programmer is able to fix them. The root cause of
the problem in this example can be attributed to the
imperfect synchronization implementation (according
to our categorization in Section 2.1). Nevertheless, if
the program is scheduled as shown in Figure 2(b), this
ULCP performance problem will disappear.

2.3 Findings and Implications

From the studies on real-world and benchmark pro-
grams, we have obtained a number of interesting

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 4

Table 2
The number of ULCP code regions with the varying

number of threads (2/4/6/8)

Applications # ULCP code regions
2 4 6 8

openldap 18 18 19 21
mysql 57 59 60 60
pbzip2 4 4 4 4

transmissionBT 2 2 2 2
handbrake 29 30 30 32

blackscholes 0 0 0 0
bodytrack 5 5 5 5
facesim 11 12 12 12

fluidanimate 3 3 3 3
swaptions 0 0 0 0

findings, which have significant implications in the
design of our performance debugging framework.

Finding (1): ULCP is a diverse program behavior.
It is ubiquitous in the multi-threaded program and
scattered in the program execution.
Implication (1): It is time-consuming and tedious to
manually figure out which code-site incurs the highest
performance impact due to ULCPs.

Explanation: We count the quantitative distribution
of ULCPs of all applications with two threads in
Table 1. Meanwhile, different applications generally
show different characteristics of ULCPs. Moreover,
if we increase the number of threads in the appli-
cation, the number of ULCPs increases dramatically.
This phenomenon emerges due to the reason that the
ULCPs, in most cases, are interconnected rather than
isolated. The ULCP interconnections may be embod-
ied since they are produced by some common codes
that will be repeatedly executed in most threads.

Finding (2): We need to test massive inputs to cover
all statements of program in the real world.
Implication (2): It is more reasonable to identify the
relatively important or representative inputs..

Explanation: We make an attempt to find a set of
representative inputs to cover all program statements
in the real world as much as possible. More details are
discussed in Section 3 motivated from this finding.

Finding (3): The number of the ULCP code-sites is
usually orthogonal to the thread numbers in the real-
world. The majority of ULCPs can manifest them-
selves with two threads only.
Implication (3): We can use only two threads to
expose ULCP problems, thus significantly reducing
the complexity of debugging.

Explanation: We investigate the number of final ULCP
code regions in real applications and PARSEC bench-
marks with the varying number of threads as shown
in Table 2. We also find that the number of ULCP
code regions almost has not changed as the number

of threads increases. The main reason is: in those
applications all threads reuse the same code (e.g.,
functions) to perform the program execution. More
thread numbers may only change their performance
impact. On the other hand, the overhead of test and
analysis, in general, would be increased in an expo-
nential order to the number of threads. Therefore, we
can significantly reduce this overhead with only two
threads while ensuring that the final concerned results
are not missing.

Finding (4): In our tested programs, the program with
more ULCPs, in general, can be improved much more
from the ULCP performance influence.
Implication (4): The number of ULCPs in a trace can
be used as an important metric to indicate the value
of trace.

Explanation: We survey the performance impact of
ULCPs with the different number of ULCPs (more
results in our technical report [18]). Finding (4) implies
that we can use the number of ULCPs in the trace
to measure whether we can get the valuable ULCP
code regions from this trace before the prohibitive
replay execution. Following this implication, in prac-
tice, we can use it to distinguish a few traces from
a large number of execution traces with all inputs to
better represent the ULCP performance behavior of
program. Furthermore, the cost of trace analysis will
be further reduced if only a few traces need to be
analyzed.

Finding (5): The conflicting variation is shown be-
tween performance impact and input coverage of the
ULCP code regions in the real world.
Implication (5): We need to make a tradeoff between
performance impact and input coverage to point out
the common performance critical ULCP code regions.

Explanation: We observe the relationship between per-
formance impact and input coverage of all identified
ULCP code regions in the real world. Finding (5) tells
us that performance impact of a ULCP code region
does not have a variation of direct proportion with
input coverage. One common reason in our observa-
tion is that the majority of performance critical ULCP
code regions are exclusive in some functional units
which are triggered with some specific inputs. For
instance, downloading function for transmissionBT
application is only triggered by download-related
options of input, not by uploading option. Hence,
a high performance impact ULCP code region in
downloading function will not take place under the
uploading option of input.

2.4 Overview of Our Approach
From the aforementioned study and real-world ex-
ample, we develop a performance debugging frame-

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 5

Program
binary Replayer

Original
trace

selective
recording Original

results

ULCP
free results

?

Performance
Debugging

List: ULCP
optimization

benefits

Modified
trace

A
complete

set of
inputs

reduced
set of
inputs

+

In
p

u
t

R
ed

u
c
ti

o
n

ULCP
Transformation

Figure 3. Overview of PERFPLAY

work, namely PERFPLAY, to assist the programmer
in addressing the problem of ULCPs in their code.
In this work, we use the record/replay technique as
our core solution for two reasons. First, the replay
system, in general, records the program execution
into a trace, based on which we therefore can know
the explicit characteristic of each ULCP and further
group them according to their code-site. Second, the
replay system provides the possibility of reproducing
the program execution, so that we can assess the
performance impact of ULCPs for the performance
comparison before and after optimization to further
determine the beneficial ULCP to fix.

Figure 3 depicts the overview of PERFPLAY. PERF-
PLAY completely operates on application binaries, and
reports a list of the potential optimization benefits.
This list is used to assist programmers to understand
the ULCP performance problems. To be specific, we
first use an existing coverage tool [19] to generate
a complete set of inputs for the program. From Im-
plication (4), the complete set of inputs are further
reduced into a few representative inputs for the ef-
fective ULCP debugging (Section 3). PERFPLAY takes
the representative inputs as the input base and tests
them one by one. For each given input, PERFPLAY
records the intervals of a program execution trace.
After the generation of original recording trace, PERF-
PLAY then transforms the original trace with ULCPs
into a new trace without ULCPs, and replays the
original trace and the modified one. By comparing
these two replayed results, PERFPLAY evaluates the
potential performance impact of the aggregated UL-
CPs per code-site for this given input, but may be not
helpful for the ULCP debugging with other inputs.
Consequently, we perform the program traces with
all candidate inputs. After collecting all ULCP results
from all candidate inputs, we identify those pareto-
optimal ones via multi-objective optimization.

3 INPUT REDUCTION

In this work, we use the trace-driven model to tackle
the ULCP problems. One big problem of this model
is that it only analyzes the specific trace with a given
input. To enhance the input sensitivity of trace-driven
model and find common problems across inputs, an
intuitive way is to test the program with all poten-
tial inputs generated by the input generators (e.g.,
Microsoft PEX [19]). However, this is not realistic in

Table 3
The total number of functions, if branches and while

loops in the real programs
Applitions openldap mysql pbzip2 transmissionBT handbrake
#Functions 425 18898 92 683 26

#If 29922 70228 496 8086 8741
#While 916 5556 25 403 360

Algorithm 1: ULCP Identification
Input : 〈C1, C2〉, two critical sections in the sequential order;
Output: A type, indicating the ULCP type between C1 and C2

1 if C1.Srd = ∅ and C1.Swr = ∅ or C2.Srd = ∅ and C2.Swr = ∅
then

2 return NULL LOCK;
3 else if C1.Swr = ∅ and C2.Swr = ∅ then
4 return READ READ;
5 else if C1.Srd ∩ C2.Swr = ∅ and C1.Swr ∩ C2.Srd = ∅ and

C1.Swr ∩ C2.Swr = ∅ then
6 return DISJOINT WRITE;
7 else
8 return FALSE;

practice, since the number of generated inputs is too
large for programmers to perform performance de-
bugging. Table 3 shows the total number of functions,
if-branches and while-loops in five real programs.
handbrake has the smallest number (only 26) of func-
tions, but it still involves around 8741 if-branches and
360 while-loops (i.e., program paths). It is impractical
to cover all these paths, even for this “small” program.
More seriously, mysql even has more than 18898 func-
tions, 70228 if-branches and 5556 while-loops, which
makes the problem more complicated.

In order to select out the representative inputs, we
take the following series of cooperative approaches,
which are specifically designed for ULCPs.

ULCP Identification: After collecting the traces per-
formed with all potential inputs, we first identify the
four-classified ULCPs in the traces so as to evaluate
the value of trace related to ULCP performance prob-
lems. To be specific, we use shadow memory [20]
to store the state information about critical section.
Shadow memory state refers to the information about
each critical section C of the running program, which
mainly consists of two sets:
• C.Srd: a set of all shared reads in C.
• C.Swr: a set of all shared writes in C.
We identify ULCPs in different categories. As

shown in Algorithm 1, null-lock, read-read, and dis-
joint write can be easily identified by intersecting
the read-write sets of critical sections as line 1, 3, 5
indicate. The complexity of Algorithm 1 is up to the

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 6

distribution of lock-protected code regions. If these re-
gions are performed by the same thread, Algorithm 1
takes the best complexity with O(1). However, if they
are alternated between different threads, Algorithm 1
will perform the worst complexity with O(N -1). In
practice, both benign ULCPs and true lock contention
pairs (TLCPs) involve the conflicting access. In this
case, Algorithm 1 does not work. To further distin-
guish the false conflict of benign ULCPs from the
real conflict of TLCPs, we extend the reversed replay
execution [16] for the distinction of benign ULCPs and
TLCPs by additionally replaying the execution trace
with a reversed order of two critical section for a given
ULCP. If the two replays produce the same result, then
this ULCP can be classified as a benign pattern.

For each trace, Algorithm 1 is used to quickly
filter out the majority of simple ULCPs (i.e., Null-
Lock, read-read ULCPs, and disjoint-write pattern).
Afterwards, each pair remaining will be replayed once
by the reversed replay execution for the distinction of
benign ULCP and TLCP. This means that the scalabil-
ity of our ULCP analysis has the linear relationship to
the total number of benign ULCPs and TLCPs. Still,
in practice it does not affect our tool as an effective
tool to debug the ULCP performance problems due to
two reasons. First, as shown in Table 1, benign ULCPs
and TLCPs usually take a small fraction of all lock
pairs, even in the lock-intensive applications, such as
fluidanimate. Second, motivated by Finding (3), we test
the program with only two threads.

After the prior ULCP identification in the trace, next
we propose two input reduction techniques as follow:

Similarity reduction: In the actual test, a large
number of inputs, in fact, have the similar options. For
instance, for pbzip2, there are two potential variable
options of thread number and data set when we
test its compression and decompression functions.
Interestingly, more thread numbers and data sets
always go through the same set of functions, thus
the variation of these two options does not affect the
exposure of final ULCP code-site recommendations.
In the following, we refer to input similarity as those
inputs that will trigger the program executions with
the same or the similar function set.

After identifying ULCPs, we then locate the code
sites that produce the individual ULCPs in the trace.
We therefore can sort those inputs that trigger the
traces with the same or similar ULCP code site set.
Among these sorted inputs, we recommend the mini-
mum configuration of input as the potential candidate
input on behalf of the inputs that have the similarity,
e.g., two threads implied in Finding (3) instead of
using more than two threads.

Quantity reduction: Fortunately, we find that the
majority of functions are exclusive of the lock/unlock
operations and ULCPs. Motivated by this and Impli-
cation (4), the inputs thus can be greatly reduced by
only exploiting ULCP-intensive candidate inputs. For

ULCP
trace

traditional
lock

semantics ULCP
topology

ULCP
Identification

RULE 1/2

ULCP-free
topology

synchronization
reconstruction

mutex
refinement

RULE 3

RULE 4

ULCP
free
trace

Figure 4. The process of ULCP transformation

the example in Figure 2(b), when main function (i.e.,
Tn) encounters an error, the program will trap into
the error-handler function. In this case, the program
is finished fast as usual but few ULCPs take place.
The input incurring this case can be neglected.

We next follow Implication (4) to further reduce
the candidate inputs to be analyzed via the quantity
of ULCPs in the trace. We first count the number of
ULCPs in the trace. According to the counted ULCP
number, we finally can recommend those inputs that
trigger the traces with the high magnitude order of
ULCP number as the potential candidate inputs. For
example, suppose we have two inputs—Input#1 and
Input#2. Input#1 induces the ULCPs with the 105

magnitude order while Input#2 is with the 103 magni-
tude order. In this case, we finally will choose Input#1
as the candidate input.

In practice, similarity reduction and quantity reduc-
tion can co-work to dramatically reduce the program
inputs that are technically selected out and specially
designed for the ULCP performance problems. With
two input reduction techniques, we guarantee that
our candidate inputs will have the capacity of ex-
posing the performance critical ULCPs instead of the
untested inputs. That is, our tool does not miss any
critical ULCP code sites that may be triggered under
an untested input.

4 ULCP TRANSFORMATION

This section presents the detailed procedure of trans-
forming the original trace with ULCPs into a new
trace without ULCPs. To solve this problem, we
propose a novel technique of trace transformation.
We model the trace transformation problem into the
graph analysis by means of topological graph theory
[21]. Since topological graph theory has been studied
for decades, the ULCP problem can be solved easily
by analyzing the graph.

The basic idea is as follows. We first build a
topological graph which contains the original ULCP
problems. Through some technical graph analyses,
we then can easily identify the ULCPs and further
eliminate them based on this graph as a new topo-
logical graph exclusive of ULCPs. As the topological
graph can not be recognized to perform a program
execution by computers, it is necessary to re-construct
the ULCP-free program structure the new topological
graph represents so that the computer can perform the
new ULCP-free program execution. Figure 4 depicts
the detailed process of our trace transformation. It
is a rule-based approach. Based on the four rules

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 7

R1L

R2 L

w1 L

w1

R2L

L

T1 T2 T3

R1L

R2 L

w1 L

w1

R2L

L

T1 T2 T3

w1 w1

(a) (b)

R1

R2
w1

w1

R2

T1 T2 T3

w1

L

L

(c)

Figure 5. The causal dependencies for an example.
© represents the critical section, while L attached to
© means this critical section is protected by lock L. R1

indicates a read on shared data 1 and the dotted arrow
shows a ULCP.
proposed, the new ULCP-free trace is performed with
the correct program semantics in most cases. If not,
it would report the data races. Next, we present the
details of each step in the trace transformation. To
facilitate the description, we make the definitions:
• Causal-order topology: a topological graph of the

cause and effect of an execution trace.
• Node: a critical section in the topology.
• Causal-edge: the causality between two nodes.

4.1 Building ULCP-free Topology

Following the traditional lock dependencies, we first
build the causal-order topology of original execution
(abbr. original topology). The original topology in-
volves many causal-edges caused by ULCPs. Thus we
then transform original ULCP topology into a new
topology which does not contain causal-edges caused
by ULCPs (abbr. ULCP-free topology).

In the original topology, we know the timing re-
lationship with respect to all critical sections in the
original execution. For a certain critical section CS, to
search another CS′ in other threads, which comprises
the TLCP with CS, we define the operations:
• Sequential searching refers to searching such CS′

in a given thread in the order from the timing
index of CS to largest timing index of that thread.

• If we find such a CS′ in a given thread, it is called
matched.

Afterwards, we define the first rule to facilitate
the building of ULCP-free topology from an original
ULCP topology.

RULE 1. A causal edge is established only when the cur-
rent critical section and its first matched critical section in
every other thread constitute a TLCP during the sequential
searching.

Figure 5(a) depicts an example of the building
process of the ULCP free causal-order topology. To
begin with, we denote the critical section R1 in thread
T1 as the current critical section. Then it is matched
with R2 in T2. R1 and R2 consist of a Read-Read ULCP.
We use the dotted arrow to denote the non-causal

edge relation between them. R1 in T1 is successively
matched with W1 in T2, in which case there establishes
a causal edge between them due to the TLCP relation,
denoted as the solid arrow. When the first causal edge
with W1 in T2 for T2 is established, R1 in T1 starts
to do the similar traverse in T2, establishing another
causal edge with the first W1 in T3. After the first
round of causal edge building, R2 in T2, subsequent
to R1 in T1, becomes new current critical section, and
repeats the previous procedure.

Figure 5(b) illustrates the ULCP-free topology built
according to Rule 1. Following the program semantics
of ULCP-free topology in Figure 5(b), we may get the
program execution as shown in Figure 5(c) which af-
fects the performance fidelity for the multiple replays
(detailed discussion about this will be presented in
Section 6). In order to observe the stable performance
impact of ULCPs, we then put forward Rule 2.

RULE 2. All causal-edge nodes protected by the same lock
in the ULCP free topology are guaranteed with the same
partial order as the original topology.

In the original topology, the partial order of the
nodes R1 in T1, W1 in T2 and two W1 in T3 in Fig-
ure 5(a) is {R1(T1) ≺W 1st

1 (T3)≺ W1(T2) ≺W 2nd
1 (T3)}.

According to Rule 2, the nodes R1 in T1, W1 in T2

and two W1 in T3 of ULCP-free topology in Fig-
ure 5(b) should be restricted to the same partial order
with the original topology as {R1(T1) ≺W 1st

1 (T3)≺
W1(T2) ≺W 2nd

1 (T3)}.

4.2 Re-establishing the Program Structure of the
ULCP-free Topology

We eliminate the false inter-thread dependencies by
different ULCP categories. First, in absence of conflict
with any critical section, PERFPLAY removes lock/un-
lock events of all null-locks and all standalone nodes
in the topology, such as R2 in T1 and R2 in T2 as
shown in Figure 6(a). Second, to ensure true inter-
thread dependencies between two critical sections, we
use lockset [22] to protect the critical sections in the
topology. Lockset is a software component comprising
multiple locks, which is generally used as a fine-
grained lock synchronization. Consequently, PERF-
PLAY uses many distinct auxiliary synchronization
locks instead of the original locks to reconstruct the
ULCP-free causal dependencies. It should be noted
that all these auxiliary synchronization locks provided
by PERFPLAY are written with a prefix @L for the sake
of the discrimination from the original one.

Now, the question is how to assign these ad-hoc
locks onto each node in the ULCP-free topology while
ensuring the program correctness. We perform the re-
synchronization procedure as RULE 3 describes.

RULE 3. Each node with the outdegree in the topology
will be given a new auxiliary lock. While each node with

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 8

R1
@L11

R2

w1

w1

R2 @L21

T1 T2 T3

@L11
@L31

@
L 1
1

@
L 3
1

@
L 2
1

w1

Figure 6. The re-synchronization of the ULCP free
causal dependencies. @L indicates auxiliary locks.

the indegree should be synchronized by the given lock of
its source node.

Figure 6 shows the outcome of the example in
Figure 5 according to RULE 3. According to RULE 3,
the nodes with outdegrees, namely R1 in T1, W1 in
T2 and W1 in T3, are given with new auxiliary @L11,
@L21 and @L31, respectively. While the node with the
example of W1 in T3 has the indegree from the given
source node R1 in T1, thus it needs to be synchronized
with the additional lock of the source node R1 in T1,
i.e., @L11. Ultimately, W1 in thread T3 has the lock-set
LS={@L11,@L31}. Each critical section will maintain
a lock-set. We further refine the mutex relation for
the ULCP-free trace execution. Therefore a new mutex
relationship can be described as follow:

RULE 4. Two critical sections are mutually-exclusive if
the intersection of their lockset LS is empty-set.

Theorem 1 (Correctness). The ULCP free trace is per-
formed without introducing new deadlocks while ensuring
the program correctness or reporting the data races.

Proof. Deadlock Condition: The fine grained locks
in this paper are mainly introduced to construct the
ULCP free execution, the program semantics of which
is represented by the ULCP free topology in Section
4.1. Recall that, in the ULCP free topology, we just
remove the dotted directed edges arising from ULCPs
while still preserving the solid directed arrows caused
by TLCPs. This procedure implies that:

Cond-1 We do not add any new directed arrows
in the topological graph

Cond-2 We do not change the direction of any
directed arrows in the topological graph

According to the above properties of ULCP free
topological graph, we can conclude that:
• We do not introduce new deadlock conditions

as we do not introduce new arrows directly
(i.e., Cond-1) or indirectly (i.e., Cond-2). As a
consequence, our approach definitely does not
introduce new deadlocks.

• For a program that may already have some
deadlocks, our removal of dotted arrows may
destroy the conditions of the original deadlocks.
As a consequence, our approach may suppress
the deadlocks that already exist in the original

ULCP program.
Program Correctness: We reduce program correct-

ness into the trace correctness due to the trace-based
transformation. Consider such a typical model for
the execution trace: two threads have the execution
sequences {SG1, A, SG2} and {SG′1, B, SG′2, C, SG

′
3},

respectively. A, B and C are the critical sections
protected by the same lock, and SG denotes the
program segment. It is assumed that A precedes B in
one observation, with 〈A,B〉 consisting of an ULCP,
and 〈A,C〉 being non-ULCP. According to RULE 1, C
is the first non-ULCP for A, a causal edge pointing
between A and C should be established. Therefore
SG1 and SG′3 maintain the original semantics based
on RULE 2. Only difference of ULCP-free trace from
the original one lies in the parallelism between SG1

and SG′2 due to RULE 3.
• If the segments SG1 and SG′2 involve the conflict

free memory accesses, the ULCP free trace will
be performed with the same result as the original
one. Therefore, the correctness of the ULCP free
trace is guaranteed in the sense that it produces
the same program semantics as the original one.

• Otherwise, our transformation possibly produces
diverse results due to the problematic interleav-
ings of shared accesses, i.e., data races between
〈SG1, B〉, 〈SG1, SG

′
2〉, or 〈A,SG′2〉. This case may

present the correct program semantics of other
executions, but it produces the same value of data
races as ULCP performance problem. It further
enables PERFPLAY to help developers understand
the correctness of the original trace.

5 ULCP PERFORMANCE DEBUGGING

After the phase of ULCP transformation, we obtain a
set of ULCPs from each trace. However, we still face
two major problems. i) There may be many ULCPs,
and some of them are even from the same code-site.
ii) The ULCP debugging with a specific input may not
be helpful for the one with other inputs. An effective
debugging tool should point out the succinct code-
site for distinctive ULCPs, and also locate the common
performance critical ULCP code regions across inputs.
Thus, we propose ULCP fusion and performance ac-
cumulation based on their code regions (Section 5.1),
and recommend the ULCP code regions with high
performance impact and input coverage (Section 5.2).

5.1 ULCP Fusions

For a specific trace replay, we model the potential
runtime overhead of a ULCP. Figure 7 illustrates a
detailed diagrammatic representation of the perfor-
mance metrics, where A and B constitute a ULCP.
We label the start point of precursor segment of the
first critical section A using Time1; the end point of
successor segment of A using Time2; the end point

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 9

T1 T2 T1 T2

(a)

B

(b)

AA idleness B

Time1

Time2

T1 T2

(c)

A

Time3

Time1

Time2 Time3

Time2
Time3

B

Figure 7. Two different performance measurements

of successor segment of the second critical section
B using Time3. When the ULCP free trace is exe-
cuted, the replayed program may perform the traces
in two possible ways, as shown in Figure 7(b) and
Figure 7(c). We consider both cases: for case (b), the
improved performance of ULCP is ∆Time3−∆Time1;
for case (c), the result is ∆Time2−∆Time1. Thus, we
define the performance improvement of each ULCP:

∆TULCP = ∆MAX{Time2, T ime3} −∆Time1 (1)

where Timelabel indicates the current timestamp of
program when it is executed at the location of label,
and MAX is denoted as the maximum value. ∆
is denoted as an operation that calculates D-value
(difference value) before and after the optimization.

After the process of Algorithm 1, PERFPLAY
collects a large number of ULCPs, denoted as
{ULCP1, ULCP2, · · · , ULCPn}, each consisting of
two critical sections 〈C1, C2〉. To facilitate the descrip-
tion, we define the operator · to obtain the attribute or
component of a ULCP, such as ULCP1.C1. However,
some ULCPs are possibly caused by the same code
region (CR). Thus, we propose ULCP fusion to merge
two ULCPs into the unique ULCP per code region in
the source code level. Then, we can report the accu-
mulated performance impact of ULCPs at the CR level
to the programmers. Particularly, we accumulate up
the performance improvement of ULCPs generated
by the same code regions according to Algorithm 2.
In Algorithm 2, 〈CR1, CR2〉 is denoted as the code
regions incurring two critical sections 〈C1, C2〉 of a
ULCP. The binary operator t means whether two
CRs involve the shared region of the code; while
u indicates the conflated code region of two CRs.
Through Algorithm 2, the final state of ULCP group
is that any two ULCPs can not be fused further.
Algorithm 2 takes the sequential checking for any two
consecutive ULCPs in the given ULCP set. This means
Algorithm 2 has the complexity with O(N -1).

5.2 Pareto-optimal ULCP Recommendations
Through the trace replays with a reduced set of
candidate inputs {I1, I2, · · · , In}, and ULCP fusion
and performance accumulation by Algorithm 2, we
obtain a group of ULCP code-regions (UCRs) for each
input Ii (1 < i < n), and its corresponding perfor-
mance improvement ∆T . As a ULCP code region may

Algorithm 2: ULCP Fusion and Performance Ac-
cumulation

Input : 〈ULCP1, ULCP2〉, two standalone ULCPs;
Output: ULCPnew , a new synthetic ULCP;

NULL, two standalone ULCPs that can not be merged
/* Handle the same code regions or nested locks */

1 if ULCP1.CR1 u ULCP2.CR1 6= ∅ and
ULCP1.CR2 u ULCP2.CR2 6= ∅ then

2 ULCPnew.CR1 ← ULCP1.CR1 t ULCP2.CR1;
3 ULCPnew.CR2 ← ULCP1.CR2 t ULCP2.CR2;
4 ∆TULCPnew ← ∆TULCP1

+∆TULCP2
;

5 else if ULCP1.CR1 u ULCP2.CR2 6= ∅ and
ULCP1.CR2 u ULCP2.CR1 6= ∅ then

6 ULCPnew.CR1 ← ULCP1.CR1 t ULCP2.CR2;
7 ULCPnew.CR2 ← ULCP1.CR2 t ULCP2.CR1;
8 ∆TULCPnew ← ∆TULCP1

+∆TULCP2
;

9 else
10 ULCPnew ← NULL;

Algorithm 3: Unique UCR Fusion Across Inputs
Input : Ii = {ULC1, ULC2, · · · , ULCki

}, (1 ≤ i ≤ n)
Output: S = {S1, S2, · · · , Sm}
/* The initialization */

1 S← ∅;
2 m← 0;
3 for i← 1 to n do
4 for j ← 1 to |Ii| do
5 if Ii.ULCj ∈ S then

/* Assume Ii.ULCj = St (1 ≤ t ≤ |S|) */
6 St.x++;
7 St.∆T ← St.∆T + Ii.ULCj .∆T ;

8 else
9 m← m + 1;

10 Sm ← Ii.ULCj ;
11 Sm.x← 1;
12 Sm.y ← Ii.ULCj .∆T ;

take place under different inputs, we further propose
Algorithm 3 to merge these ULCP code-sites within
different inputs into a set of unique ULCP code-
regions, denoted as S = {S1, S2, · · · , Sm}. Each S in S
is consisted of two attributes x and y, i.e., (x, y) where
x refers to how many inputs this merged UCR spans,
and y indicates the total accumulated performance
improvement of this UCR. In Algorithm 3, each input
has the fixed number (i.e., ki) of ULCs reported by
our debugging tool. In the case of N inputs, as a
consequence, Algorithm 3 takes the complexity with
O(N). Finding (5) tells us that x and y may show the
conflicting variation in the real world. As a result,
to troubleshoot the optimal UCRs with the high per-
formance impact and input coverage, we transform
the problem into the following mathematical problem:
finding the pareto-optimal points in S with the largest
possible number of both x and y due to the tradeoff
between performance impact and input coverage.

We leverage multi-objective optimization [9] (also
known as pareto optimization) to solve this kind
of problem. In short, it takes an optimal decision
with the tradeoffs between two or more conflicting
objectives. Towards our problem, the two conflicting
objectives are x and y, respectively. We denote the
preferred relation between two ULCPs as the binary
operation ≺. If two ULCP code-sites (e.g., UCR and

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 10

B

Input coverage

P
er

fo
rm

a
n

ce
 im

p
ac

t

A

Figure 8. The Pareto frontier where nodes together
with the line are the pareto optimal points.

UCR′) satisfy the conditions of UCR.x ≥ UCR′.x and
UCR.y ≥ UCR′.y, we define that UCR is preferred to
(strictly dominating) UCR′, written as UCR′ ≺ UCR,
which means that UCR has the higher optimiza-
tion value of being recommended. The pareto-optimal
ULCP code-sites thus can be formalized as follows:
P (S) = {UCR ∈ S : {UCR′ ∈ S : UCR ≺ UCR′,

UCR 6= UCR′} = ∅}
(2)

Proof. Given the set S, a pareto optimal point has
the following property:

”If a certain UCR is pareto optimal, among a
given S there is no such element UCR′k, which
has greater x and y than UCRk.”

The sub-equation {UCR′ ∈ S : UCR ≺ UCR′, UCR 6=
UCR′} = ∅ exactly expresses the very meaning of
”among a given S there is no such element UCR′,
which has greater x and y than UCR” (i.e., UCR ≺
UCR′ in the paper). Consequently, the given UCR is
one of the pareto optimal results. With the purpose
of finding all pareto optimal points, Equation 2 is
provided to further traverse all elements in S.

Finally, we recommend the pareto-optimal set P (S)
as the final ULCP code regions across inputs to pro-
grammers for the performance debugging of ULCP.
With Equation 2, the final pareto-optimal results will
be manifested themselves as the line-crossed points
as shown in Figure 8. For instance, the point A has
the larger number of both x (input coverage) and y
(performance impact) than the point B, i.e., B ≺ A,
thus A is recommended whilst B is ignored.

6 IMPLEMENTATION ISSUES

We implement PERFPLAY for the parallel replay based
on Pin [23], an underlying framework that enables
programmers to perform the program analysis at run-
time without source codes. In the following, we briefly
discuss one implementation detail: how to perform
the faithful replay for each run upon the given trace
so that the performance impact of examined problems
can be evaluated precisely in the replay phase.

Performance Fidelity: There has been significant
amount of work on building record/replay sys-
tems [16], [24], [25], [26] for understanding the cor-
rectness of bugs in programs, but not much effort

has gone into leveraging them to study performance
issues. Based upon a given trace, the determined
information contains: the path branches each thread
performs, synchronization operations, and the instruc-
tions or events performed by each thread. Therefore,
suppose we perform the same trace twice, perfor-
mance fluctuation of the program largely depends on
the lock synchronization interleaving [27].

To enable performance analysis using replay tech-
nique (abbr. performance replay) for the parallel exe-
cution, we propose an enforced locking serialization
constraint (ELSC) which enforces the total order of
the dynamic lock synchronizations for the replayed
trace according to the schedule order of these locks at
runtime. That is, ELSC schedules the same lock order
as the scheduled order of these locks when the pro-
gram runs at runtime. ELSC ensures the performance
fidelity of replay execution for the multiple replays
based upon the same given trace.

Theorem 2 (Performance Fidelity). ELSC guarantees
the performance fidelity of the parallel replay for the same
given trace.

We provide the detailed proof regarding perfor-
mance fidelity in our technical report [18].

7 EVALUATION

7.1 Experimental Setup
System configuration: All experiments are performed
on a machine with two Intel quadcore Xeon E5310
1.60Ghz processors, 8GB memory, one 250GB SATA
hard disk, and 1Gbit Ethernet interface. The running
operating system is CentOS 5.6 (X86 64) with Linux
kernel 3.0.0-12.

Benchmark test configuration: We evaluate PERF-
PLAY with five real-world applications and PARSEC
benchmarks (used in Section 2.1). The detailed setup
of each individual applications is as follow.

1) openldap: a lightweight directory access protocol
server. In our test, we use the default thread pool
mode for openldap server, and use the professional tool
DirectoryMark by MindCraft to benchmark it with the
option of searching 2000 entries.

2) mysql: an open source database system which
is widely-used in the world. We use the test tool
mysqlslap released in mysql software package to test
mysql with 1000 queries, and 2 iterations.

3) pbzip2: a parallel implementation of the bzip2
compressor. We test the benchmark by compressing
a 256M file with the option of two processors.

4) transmissionBT: a BitTorrent client. We test it by
downloading a local 300M file.

5) handBrake: a video transcoder. We test the bench-
mark by conversing a 256M DVD format file into MP4
format with the options of H.264 codec and 30 FPS.

6) PARSEC Benchmarks: a benchmark suite with 12
multi-threaded programs.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 11

Table 4
Input selections and pareto-optimal URCs in the real
programs. #Input is the number of candidate inputs,
Magn. the magnitude order of ULCPs in the dynamic

executions. |P (S)| refers to the number of final
pareto-optimal URC recommendations, x the average
number of appearance times in the candidate inputs.

APP. #Total #Reduced Input Magn. |P (S)| x CoverageSimilarity Quantity
openldap 120 43 29 > 103 11 24 82.8%

mysql 3,080 898 100* > 106 26 87.5 87.5%
pbzip2 68 18 6 > 103 4 4.5 75.0%
transBT 180 37 14 > 102 2 13 92.9%

handbrake 340 76 18 > 104 8 14.5 80.6%
* Through the input reduction discussed in Section 3, mysql still
has 388 candidate inputs. In our test, we randomly sample them
into 100 reduced candidate inputs.

Methodology: To demonstrate the performance fi-
delity of PERFPLAY, we perform the replay execution
with the following four schemes:

1. Memory-based schedule (MEM-S) [25], which en-
forces a deterministic execution sequence of all shared
memory accesses.

2. Synchronization-based schedule (SYNC-S) [28],
which enforces the same total order of the lock syn-
chronizations for the same input.

3. ELSC-based schedule (ELSC-S), which enforces
the same total order of the lock synchronizations for
the same schedule.

4. Parallel replay for the original execution without
any enforcement strategy for the events (ORIG-S).

Input Configuration: Basically, we select the inputs
that will cover all functionalities of the program. For
openldap, mysql, and handbrake, they have the well-
designed test inputs written by their developers to
cover all possible core functionalities. For transmis-
sionBT and pbzip2, they do not have available test
inputs in public. We have designed their inputs based
on their provided options of input. For example, we
test the transmissionBT application by covering the
downloading, uploading, suspending, resuming and
troubleshooting etc. pbzip2 is driven with the main in-
put options of compression, decompression, compres-
sion integrity testing and error message suppressing
etc. To evaluate the quality of our generated inputs,
we use gcov [29] to help us improve the statement
coverage of all designed inputs.

7.2 Pareto-optimal ULCP Recommendations
According to our input configuration, we count the
number of all collected or designed inputs for each
program. We then perform the similarity and quantity
reduction scheme, respectively. Table 4 reports the
final results, and concludes the criteria of our selection
and pareto-optimal UCR recommendations.

For openldap, we collect 120 inputs in total. Through
similarity and quantity reduction, we reduce these
inputs into a few candidate inputs by 43 and 29,
respectively. Each execution trace has > 103 ULCP

1 2 3 4 5 60
2
4
6
8

Per
for

ma
nce

 Im
pac

t(s
)

I n p u t c o v e r a g e

P a r e t o

Figure 9. The pareto op-
timal points for pbzip2

i 1 i 2 i 3 i 4 i 5 i 60
2
4
6
8

Per
for

ma
nce

 fid
elit

y (s
)

C a n d i d a t e i n p u t s

 E L S C - S O R I G - S

Figure 10. Performance
fidelity across inputs

b l a c k s h o l e s

b o d y t r a c k
c a n n e a l

d e d u p
f a c e s i m

f e r r e t
f l u i d a n i m a t e

s t r e a m c l u s t e r

s w a p t i o n s

v i p s x 2 6 40
1
2
3
4
5

2 0
3 0
4 0

Per
for

ma
nce

 fid
elit

y (m
in) M E M - S S Y N C - S

 E L S C - S O R I G - S

6 ~ 1 3

Figure 11. Performance fidelity comparison between
different schemes for the replay execution

magnitude scale. Through analyzing 29 traces, PERF-
PLAY recommends 11 pareto-optimal (input insen-
sitive) ULCP code regions across inputs. Each rec-
ommended pareto-optimal ULCP code region covers
24 inputs on average, which takes 82.8% proportion
of the original inputs. The relevant results for other
applications are shown in Table 4. Among them,
mysql has the highest magnitude order of ULCPs,
but only 26 pareto-optimal UCRs are reported. For
the pbzip2 applications, only 6 representative inputs
are generated for the subsequent trace analyses. This
significantly reduces the overhead of test and analysis.
In summary, we test the program with a dramatically
reduced number (6 − 100) of candidate inputs and
recommend only a few (2− 26) pareto-optimal UCRs
in the real programs. Besides, the final pareto-optimal
UCRs cover a high proportion (75% − 92.9%) of the
given candidate inputs.

Figure 9 illustrates 4 pareto-optimal UCR recom-
mendations out of all UCRs in the pbzip2 application
with six candidate inputs in Table 4. We can see that
1) no UCR covers all (6) candidate inputs; 2) some
UCRs with high performance impact are with the
limited input coverage; 3) the performance impact of
the pareto-optimal UCR has the downward trend as
the input coverage increases. This observation further
verifies our Finding (5) in Section 2.1. The full list of
UCRs and more details about pareto-optimal UCRs in
pbzip2 can be found in the supplementary material.

7.3 Performance Fidelity of PERFPLAY

To evaluate performance fidelity, two aspects require
to be assessed, including performance stability and
performance precision. Stability represents whether

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 12

PERFPLAY shows the same performance across the
multiple replays with the same trace. The precision
means whether PERFPLAY strictly adheres to the orig-
inal execution. If our debugging framework has a high
precision, we can determine that the performance
improvement of ULCP-free replayed execution comes
entirely from the optimization of ULCPs.

We record all PARSEC benchmarks with simlarge
input, and we replay the trace of each application
ten times using different replay schemes (i.e., MEM-
S, SYNC-S, ELSC-S, and ORIG-S). Figure 11 illustrates
the final replayed execution time of PARSEC bench-
marks with the specific input (given in Section 7.1)
using these schemes. From the small error bars, we
can see that MEM-S, SYNC-S, and ELSC-S all enforce
the deterministic program execution for the multiple
times, thus providing the stable performance analy-
sis. Nevertheless, ORIG-S shows the indeterminate
(i.e., large error bars) program execution due to the
inter-thread lock interleaving. Except the nature of
enforcement scheme itself, both MEM-S and SYNC-S
manifest themselves with the additional performance
introduction compared with ORIG-S. While ELSC-S
eliminates the waiting time of SYNC-S for lock ac-
quisition by only enforcing the synchronization order
based on the scheduled synchronization order for the
same schedule. As a result, we can see that ELSC-S
almost produces the same program performance with
ORIG-S. This yields the conclusion that PERFPLAY
with ELSC scheme strictly schedules the replay ex-
ecution as the original scheduled execution without
introducing any additional performance overhead,
thus providing the precise performance analysis. From
the above-discussed results, it is revealed that only
ELSC-S provides both the performance stability and
performance precision, thus ensuring the performance
fidelity of replay execution.

Figure 10 depicts the performance fidelity of PERF-
PLAY across all candidate inputs of pbzip2 in Table 4.
Our detailed candidate inputs for pbzip2 include: com-
pression with/without verbose model, decompression
with/without verbose model, compression integrity
testing and error message suppressing, labeled as i1,
i2, i3, i4, i5, i6, respectively. The final results also
demonstrate the performance fidelity of PERFPLAY
under different inputs.

7.4 Case Study

To evaluate the effectiveness of PERFPLAY, we have
checked some pareto-optimal ULCP code regions re-
ported by PERFPLAY framework. More real examples
of this work regarding ULCP problem can be found
in our technical report [18].

mysql. With the InnoDB storage engine, the
block read rate of mysql server is severely limited
by the unnecessary lock contentions on the lock
fil_system->mutex. The problem is that for each

Thread 1:
bool fil_inc_pending_ops(){
mutex_enter(&fil_system->mutex);
space=fil_space_get_by_id(id);
...
space->n_pending_ops++;
mutex_exit(&fil_system->mutex);

}
Thread 2:
ulint fil_space_get_size(...){
mutex_enter(&fil_system->mutex);
space=fil_space_get_by_id(id);
size=space?space->size:0;
mutex_exit(&fil_system->mutex);

}

Figure 12. A ULCP code region problem from mysql
void *consumer(void *q){
2109: pthread_mutex_lock(&mu);
2122: if(fifo->empty&&syncGetProducerDone()==1)
2124: pthread_mutex_unlock(&mu);

}
int syncGetProducerDone(){
533: int ret;
534: pthread_mutex_lock(&muDone);
535: ret=producerDone;
536: pthread_mutex_unlock(&muDone);
537: return ret;
538: }

Figure 13. A ULCP code region problem from pbzip2

block read operation, the hash table lookup operation
fil_space_get_by_id will be invoked four times
at least by the functions fil_space_get_version,
fil_inc_pending_ops, fil_decr_pending_ops
and fil_space_get_size. All of them have the
code pattern as follow:

lock(file_system->mutex);
fil_space_get_by_id(id);
do some simple work;
unlock(file_system->mutex);

Among these four functions, actually, only
the inc and decr operations are conflicting
with each other. Figure 12 illustrates the code
snippets of both fil_inc_pending_ops and
fil_space_get_size from mysql version-5.6.11.
They can be executed in parallel. Suppose the
multiple threads perform a large number of read-
only transactions, this type of ULCP problem
serializes many lookups of the hash table with a
slowdown of 4X at least. A mitigation practice is to
do the hash table lookup once for each block read
with the reference count and pointer. After the first
lookup, we save the pointer to the table space. As
a result, we can use the pointer to operate the table
directly without the extra lookups by other callers,
and make the inc/decr callers increase/reduce the
reference count on the space instead of deleting it.
The proposed method would significantly reduce the
number of ULCPs in this case.

pbzip2. Figure 13 depicts the simplified code of
ULCP problem from the parallel compression utility
pbzip2. It employs the producer-consumer idiom for
the parallel compression: the producer produces the
blocks by reading file and the multiple consumers
consume (compress) these blocks in parallel. When
the last file block is dequeued (i.e., fifo->empty=1

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 13

and producerDone=1), the program starts the end
stage of thread join. In this case, the example above
will incur many read-read ULCPs as follows:

lock(mu);
load(fifo->empty);
lock(muDone); load(producerDone); unlock(muDone);
unlock(mu);

The joins of all threads are serialized and extra nested
lock overhead is added by this read-read ULCP, which
causes the performance loss. We can fix it via the
signal/wait model: we take the producer, rather than
the consumer, with the responsibility of checking the
state of fifo->empty and producerDone. If both
of them are TRUE, the producer will give a signal to
inform all consumers of their safe exit without any
check when their work is completed.

8 RELATED WORK

Multiple Input Testing. A complete set of input
testing makes the software testing costly [19], [30],
[31], [32]. Some more advanced techniques have been
proposed to reduce this cost, such as automated soft-
ware testing [33] and sampling test [34]. However,
they are still hard to be used for the ULCP test be-
cause 1) ULCP analysis persecutes the automation of
software testing on account of complex characteristics
of ULCPs (i.e., Finding (1)); 2) sampling technique
may miss some critical UCLPs. As a result, inspired by
Finding (3) and Finding (4) in our work, we propose
input reduction techniques specific to ULCPs.
Unnecessary Lock Contention. Lock Elision (LE) [1],
[4] removes the lock speculatively during the dynamic
execution. The lock is acquired only when a conflict
occurs. However, LE-based work is still challenging. A
few transaction aborts may cause excessive rollbacks,
which severely limits the exposed concurrency [6].
Also, it is prone to trigger false aborts due to the hard-
ware limitations [5]. We believe that the most effective
and efficient manner for ULCPs is that programmers
can fix the problem in their code, rather than relying
on dynamic tools which may lead to severe runtime
overhead [27]. This work is exactly such work to help
the programmers understand the ULCPs.
Performance Tools. The code snippet with a lock/un-
lock pair running simultaneously by multiple threads
may unroll into two execution cases as ULCPs and
TLCPs. Thus, it is hard for static tools [35] to obtain
the characteristics of ULCPs. As for the existing dy-
namic tools [36], they also bear some limitations in the
impact analysis of ULCPs. Still, the majority of them
are devoted to performance measurement, but they
are not applicable to the performance transformation
and further performance comparison before and after
optimization. As a result, they cannot be used directly
for performance debugging. PERFPLAY is the very
performance tool to solve this problem.

Record/Replay System. Plentiful replay systems are
proposed in the past several decades. For instance,
deterministic replay systems [25], [26] reproduce the
bug debugging by enforcing the order of the execution
events. Modified replay debugging [16], [24] distin-
guishes different categories of bugs by comparing the
results of the original trace with the modified one.
Overall, almost all of them are built for identifying
and understanding the correctness of bugs in pro-
grams. but not much effort has gone into the study
of performance issues. PERFPLAY first (to our best
knowledge) has put effort into studying the perfor-
mance bugs using replay technique.

9 CONCLUSION

In this paper, we develop a debugging tool to identify
the performance critical ULCP code regions across
inputs on multi-core processors. First, we extract out
a dramatically reduced set of inputs as the final can-
didate. Taking each candidate input, we then record
the multi-threaded program execution trace, based
on which we can identify all ULCPs. Then PERF-
PLAY transforms the original ULCP trace into the
new ULCP free one via novel transformation rules.
Finally, PERFPLAY replays two traces. Based on two
replayed results, we evaluate performance impact
of each ULCP and then group all ULCPs into the
unique UCRs per their code-site. After the collections
with all candidate inputs, we figure out the optimal
ULCP code regions using multi-objective optimiza-
tion. Our experimental results demonstrate the per-
formance fidelity of PERFPLAY. With case studies, we
also demonstrate its effectiveness in troubleshooting
the pareto-optimal UCRs across inputs.

REFERENCES
[1] R. Rajwar and J. R. Goodman, “Speculative lock elision: En-

abling highly concurrent multithreaded execution,” in Proc. of
the 34th ACM/IEEE International Symposium on Microarchitec-
ture, 2001, pp. 294–305.

[2] R. Rajwar and J. R. Goodman, “Transactional lock-free execu-
tion of lock-based programs,” in Proc. of the 10th International
Conference on Architectural Support for Programming Languages
and Operating Systems, 2002, pp. 5–17.

[3] MySQL. [Online]. Available: http://www.mysql.com
[4] A. Roy, S. Hand, and T. Harris, “A runtime system for software

lock elision,” in Proc. of the 4th ACM European Conference on
Computer Systems, 2009, pp. 261–274.

[5] T. N. Viktor Leis, Alfons Kemper, “Exploiting hardware trans-
actional memory in main-memory databases,” in Proc. of the
International Conference on Data Engineering, 2014, pp. 580–591.

[6] Y. Afek, A. Levy, and A. Morrison, “Software-improved hard-
ware lock elision,” in Proc. of the ACM Symposium on Principles
of Distributed Computing, 2014, pp. 212–221.

[7] Intel Corporation, “Intel architecture instruction set
extensions programming reference,” 2013. [Online]. Available:
http://software.intel.com/file/41417

[8] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams,
and H. Le, “Robust architectural support for transactional
memory in the power architecture,” in Proc. of the International
Symposium on Computer Architecture, 2013, pp. 225–236.

[9] K. Deb and D. Kalyanmoy, Multi-Objective Optimization Using
Evolutionary Algorithms. New York, NY, USA: John Wiley &
Sons, Inc., 2001.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2472412, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. NO. 14

[10] OpenLDAP. [Online]. Available: http://www.openldap.org
[11] pbzip2. [Online]. Available: http://compression.ca/pbzip2
[12] TransmissionBT. [Online]. Available: www.transmissionbt.com
[13] Handbrake. [Online]. Available: http://handbrake.fr
[14] PARSEC. [Online]. Available: http://parsec.cs.princeton.edu
[15] H. Qi, A. A. Muzahid, W. Ahn, and J. Torrellas, “Dynamically

detecting and tolerating if-condition data races,” in Proc. of
the 20th IEEE International Symposium on High Performance
Computer Architecture, 2014, pp. 120–131.

[16] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder, “Automatically classifying benign and harmful data
races using replay analysis,” in Proc. of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2007, pp. 22–31.

[17] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk,
“Effective data-race detection for the kernel,” in Proc. of the
9th USENIX Conference on Operating Systems Design and Imple-
mentation, 2010, pp. 1–16.

[18] L. Zheng, X. Liao, B. He, S. Wu, and H. Jin, “On
performance debugging of unnecessary lock contentions
on multicore processors: A replay-based approach,”
CoRR, vol. abs/1412.4480, 2014. [Online]. Available:
http://arxiv.org/abs/1412.4480

[19] N. Tillmann and J. Halleux, “Pex: White box test generation
for .net,” in Proc. of Tests and Proofs, 2008, pp. 134–153.

[20] N. Nethercote and J. Seward, “How to shadow every byte of
memory used by a program,” in Proc. of the 3rd International
Conference on Virtual Execution Environments, 2007, pp. 65–74.

[21] J. L. Gross and T. W. Tucker, Topological Graph Theory. New
York, NY, USA: Wiley-Interscience, 1987.

[22] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-
son, “Eraser: a dynamic data race detector for multithreaded
programs,” ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 391–
411, 1997.

[23] Pin Tool. [Online]. Available: http://www.pintool.org
[24] N. Viennot, S. Nair, and J. Nieh, “Transparent mutable replay

for multicore debugging and patch validation,” in Proc. of the
Conference on Architectural Support for Programming Languages
and Operating Systems, 2013, pp. 127–138.

[25] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “Pin-
play: a framework for deterministic replay and reproducible
analysis of parallel programs,” in Proc. of the Symposium on
Code Generation and Optimization, 2010, pp. 2–11.

[26] S. Narayanasamy, G. Pokam, and B. Calder, “Bugnet: Contin-
uously recording program execution for deterministic replay
debugging,” in Proc. of the 32nd International Symposium on
Computer Architecture, 2005, pp. 284–295.

[27] L. Zheng, X. Liao, B. He, S. Wu, and H. Jin, “on performance
debugging of unnecessary lock contentions on multicore pro-
cessors: A replay-based approach,” in Proc. of the Symposium
on Code Generation and Optimization, 2015, pp. 56–67.

[28] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: efficient
deterministic multithreading in software,” in Proc. of the Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 2009, pp. 97–108.

[29] Gcov. [Online]. Available:
gcc.gnu.org/onlinedocs/gcc/Gcov.html

[30] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input
generation with java pathfinder,” in Proc. of the Symposium on
Software Testing and Analysis, 2004, pp. 97–107.

[31] K. Pan, X. Wu, and T. Xie, “Generating program inputs for
database application testing,” in Proc. of the Conference on
Automated Software Engineering, 2011, pp. 73–82.

[32] T. Y. Chen, F. C. Kuo, D. Towey, and Z. Zhou, “A revisit
of three studies related to random testing,” Science China
Information Sciences, vol. 58, no. 5, pp. 1–9, 2015.

[33] K. Pan, X. Wu, and T. Xie, “Automatic test generation for
mutation testing on database applications,” in Proc. of the
Workshop on Automation of Software Test, 2013, pp. 111–117.

[34] M. R. Lyu, Handbook of software reliability engineering. Hight-
stown, NJ, USA: McGraw-Hill, Inc, 1996.

[35] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen,
N. Tillmann, and W. Visser, “Symbolic execution for software
testing in practice: Preliminary assessment,” in Proc. of the
Conference on Software Engineering, 2011, pp. 1066–1071.

[36] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance
debugging in the large via mining millions of stack traces,”
in Proc. of the International Conference on Software Engineering,
2012, pp. 145–155.

Xiaofei Liao received his Ph.D degree
in computer science and engineering from
Huazhong University of Science and Tech-
nology (HUST), China, in 2005. He is now a
professor in the school of Computer Science
and Technology at HUST. He has served as
a reviewer for many conferences and journal
papers. His research interests are in the ar-
eas of system software, P2P system, cluster
computing and streaming services. He is a
member of the IEEE and the IEEE Computer

Society.

Long Zheng is a Ph.D candidate in the
school of Computer Science and Technology
at Huazhong University of Science and Tech-
nology (HUST) in China. He received his B.S.
degree at HUST in 2010. His research inter-
ests focus on program analysis and software
reliability.

Bingsheng He received the bachelor de-
gree in computer science from Shanghai Jiao
Tong University (1999-2003), and the PhD
degree in computer science in Hong Kong
University of Science and Technology (2003-
2008). He is an assistant professor in Divi-
sion of Networks and Distributed Systems,
School of Computer Engineering of Nanyang
Technological University, Singapore. His re-
search interests are high performance com-
puting, cloud computing, and database sys-

tems. He has been awarded with the IBM Ph.D. fellowship (2007-
2008) and with NVIDIA Academic Partnership (2010-2011).

Song Wu is a professor of computer sci-
ence and engineering at Huazhong Univer-
sity of Science and Technology (HUST) in
China. He received his Ph.D. from HUST
in 2003. He is now the director of Parallel
and Distributed Computing Institute at HUST.
He is also served as the vice director of
Service Computing Technology and System
Lab (SCTS) and Cluster and Grid Computing
Lab (CGCL) of HUST. His current research
interests include grid/cloud computing and

virtualization technology.

Hai Jin is a Cheung Kung Scholars Chair
Professor of computer science and engineer-
ing at Huazhong University of Science and
Technology (HUST) in China. Jin received his
PhD in computer engineering from HUST in
1994. In 1996, he was awarded a German
Academic Exchange Service fellowship to
visit the Technical University of Chemnitz in
Germany. Jin worked at The University of
Hong Kong between 1998 and 2000, and as
a visiting scholar at the University of South-

ern California between 1999 and 2000. He was awarded Excellent
Youth Award from the National Science Foundation of China in 2001.
Jin is the chief scientist of ChinaGrid, the largest grid computing
project in China, and the chief scientists of National 973 Basic Re-
search Program Project of Virtualization Technology of Computing
System, and Cloud Security. Jin is a senior member of the IEEE and
a member of the ACM. He has co-authored 15 books and published
over 600 research papers. His research interests include computer
architecture, virtualization technology, cluster computing and cloud
computing, peer-to-peer computing, network storage, and network
security.

