
Optimization of Asynchronous Graph
Processing on GPU with Hybrid Coloring Model

Xuanhua Shi1, Junling Liang1, Sheng Di2, Bingsheng He3, Hai Jin1, Lu Lu1,
Zhixiang Wang1, Xuan Luo1, Jianlong Zhong3

1Services Computing Technology and System Lab/Cluster and Grid Computing Lab, School of
Computer Science and Technology, Huazhong University of Science and Technology, China

2Argonne National Laboratory, USA
3School of Computer Engineering, Nanyang Technological University, Singapore

1{xhshi, junlingliang, hjin, llu, wangzhx123, luoxuan}@hust.edu.cn, 2disheng222@gmail.com, 3{bshe, jlzhong}@ntu.edu.sg

Abstract
Modern GPUs have been widely used to accelerate the graph pro-
cessing for complicated computational problems regarding graph
theory. Many parallel graph algorithms adopt the asynchronous
computing model to accelerate the iterative convergence. Unfor-
tunately, the consistent asynchronous computing requires locking
or the atomic operations, leading to significant penalties/overheads
when implemented on GPUs. To this end, coloring algorithm is
adopted to separate the vertices with potential updating conflicts,
guaranteeing the consistency/correctness of the parallel process-
ing. We propose a light-weight asynchronous processing frame-
work called Frog with a hybrid coloring model. We find that ma-
jority of vertices (about 80%) are colored with only a few colors,
such that they can be read and updated in a very high degree of par-
allelism without violating the sequential consistency. Accordingly,
our solution will separate the processing of the vertices based on
the distribution of colors.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Design, Algorithms, Performance

Keywords Graph Processing, Asynchronous Computing, GPGPU

1. Introduction
Modern GPGPUs are often used to accelerate the graph processing
algorithms, not only because GPU has many more cores for parallel
computing, but also due to much higher memory bandwidth and
lower latency. Whereas, there are still some issues in the existing
solutions.

• Most existing GPU-accelerated graph frameworks (such as
Totem [1], Medusa [2], CuSha [3]) are designed based on the
synchronous processing model - Bulk Synchronous Parallel (B-
SP) model. Such a model, however, will introduce a huge cost
in synchronization especially as the graph size grows signifi-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Copyright is held by the owner/author(s).
PPoPP ’15, February 7–11, 2015, San Francisco, CA, USA.
ACM 978-1-4503-3205-7/15/02.
http://dx.doi.org/10.1145/

cantly, because any message processing must be finished in the
previous super-step before moving to the next one.

• In comparison to the synchronous model, there are some asyn-
chronous models that have been proved more efficient in pro-
cessing graphs, but they are not very suitable for parallel graph
processing on GPU. In order to ensure the correct/consistent
processing results in the parallel computations, many existing
solutions (such as GraphLab [4] and GraphChi [5]) adopt fine-
grained locking protocols or update most vertices sequentially
for simplicity. Locking policy, however, is unsuitable for GPU-
based parallel processing because of the huge cost of the lock-
ing operations on GPU.

In our work, we design a lock-free parallel graph processing
method named Frog1 with a graph coloring model. In this model,
each pair of adjacent vertices with potential update conflicts will be
colored differently. The vertices with the same colors are allowed
to be processed simultaneously in parallel, also guaranteeing the
sequential consistency of the parallel execution. We observe that
a large majority of vertices (roughly 80%) are colored with only
a small number of colors (about 20% or less). Based on such
a finding, our solution will process the vertices based on their
coloring distributions. In particular, we process the vertices with the
same colors in a high degree of parallelism on GPU, and process
the minority of the vertices that account for majority of colors in a
separate super-step.

2. Design Overview
Many graph algorithms have been shown to converge faster when
solved asynchronously. Synchronous computation incurs costly
performance penalties since all vertices have been updated all the
time and the runtime of each phase is determined by the slowest
GPU thread. While having a faster convergence, we should ensure
the serializability in our asynchronous approach: all parallel exe-
cutions have an equivalent sequential execution to make sure the
computation correctness.

A classic technique to achieve a serializable parallel execution
of vertices in a graph is to construct a vertex coloring that assigns
a color to each vertex such that no adjacent vertices share the same
color. For a data graph with billions of vertices, hundreds of colors
can be used to complete the graph coloring. We observe that a
large majority of vertices are colored with only a small number
of colors. Hence, we need a relaxed graph coloring algorithm to

1 The code can be found at https://github.com/AndrewStallman/Frog.git



1 2

3

4

57

6 8

1 2

3

4

57

6 8

1 2

3

4

57

6 8

Color-step 1 Color-step 2 Color-step 3

graph vertex being processed graph vertex to be processed GPU thread

Figure 1: Asynchronous execution based on the hybrid coloring

Table 1: Execution time on different algorithms, datasets and frameworks (in milliseconds)

Algorithm Dataset Amazon DBLP WikiTalk LiveJournal Improvement
Frog 4.968 3.380 3.532 7.482 –

BFS Totem 52.155 53.478 25.923 272.335 15.82X - 36.4X
CuSha 27.304 23.915 12.311 203.534 3.5X - 27.2X
Frog 11.762 10.748 12.986 213.720 –

CC Totem 50.156 52.371 26.275 294.390 1.4X - 4.8X
CuSha 27.779 24.574 14.120 224.653 1.05X - 2.4X

color the graph with only a samll number of colors. Based on
the relaxed coloring algorithm, we can develop our asynchronous
graph processing system Frog which ensures the serializability.

We partition the graph based on the colors assigned to vertices,
and process/update the vertices in parallel. Vertices with the same
color are partitioned into the same chunk (also called color-chunk
in the following text), which is to be processed in a separate color-
step. The asynchronous execution model aims to process the color-
chunks generated by our coloring algorithm one by one, and also
guarantee the sequential consistency for each chunk.

Figure 1 shows us the asynchronous execution based on the
hybrid coloring of a sample graph. In this example, we get three
colors/partitions and process vertices V1, V6 and V7 simultaneously
in color-step 1 (shown as the left sub-figure ), and V3 and V5 can be
processed simultaneously in color step 2 (shown as the middle sub-
figure ). As shown in the right sub-figure, vertices V2, V4 and V8

are assigned into the same partition. In this hybrid partition, V2 and
V8 are adjacent vertices. As such, the color-step 3 is not the edge
consistency model based step and we need to process this partition
using different methods than previous partitions.

Table 2: Properties of real-world graphs used in our experiments

Datasets Amazon DBLP WikiTalk LiveJournal
Nodes 735,322 986,286 2,394,385 4,847,571
Edges 5,158,012 6,707,236 5,021,410 68,475,391

While processing the graphs, an update function is able to use
the most recent values of vertices updated by the previous color-
step. Between two color-steps, we need some operations to guaran-
tee the data consistency. Accordingly, we combine several different
colors together into the last partition, and process them separately:
the vertices/edges are updated sequentially or updated using GPU
atomic operations. Hence, we group n color-steps into two cate-
gories: P-steps and S-step. The first n−1 color-steps will be pro-
cessed as the P steps, which means vertices and edges of color-step
can be updated in parallel without concerning the data conflicts and
consistency; for the nth hybrid partition, vertices and edges must

be processed sequentially or using GPU atomic operations as the
S step. The basic scheme is the simple kernel execution as per one
color-step.

3. Performance Evaluation
We evaluate two algorithms in our experiments, Breadth First
Search (BFS) and Connected Component (CC). We conduct our
experiments on a Kepler-based GPU, NVIDIA Telsa K20m with
6GB main memory and 2688 CUDA cores. Table 1 shows the per-
formance comparison between our asynchronous approach and two
other systems, Totem [1] and CuSha [3]. Table 2 shows the prop-
erties of four real-world graphs that we used. Our system has an
appreciable performance improvement as shown.

Acknowledgments
This work is supported by the NSFC under grants No.61133008
and No. 61370104, Chinese Universities Scientific Fund under
grant No. 2014TS008, the U.S. Department of Energy, Office
of Science, under Contract DE-AC02-06CH11357, and Tencent.
Bingsheng He and Jianlong Zhong are partly supported by a MoE
AcRF Tier 2 grant (MOE2012-T2-2-067) in Singapore.

References
[1] A. Gharaibeh, L. Beltrao Costa, E. Santos-Neto, and M. Ripeanu. A

yoke of oxen and a thousand chickens for heavy lifting graph processing.
In PACT, 2012.

[2] J. Zhong and B. He. Medusa: Simplied Graph Processing on GPUs. In
TPDS, 2013.

[3] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. CuSha: vertex-
centric graph processing on GPUs. In HPDC, 2014.

[4] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed GraphLab: a framework for machine learning
and data mining in the cloud. In VLDB, 2012.

[5] A. Kyrola, G. E. Blelloch, and C. Guestrin. Graphchi: Large-scale
graph computation on just a pc. In OSDI, 2012.


