
Energy-Efficient Query Processing on Embedded
CPU-GPU Architectures

Xuntao Cheng
LILY, Interdisciplinary

Graduate School
Nanyang Technological
University, Singapore

xcheng002@ntu.edu.sg

Bingsheng He
School of Computer

Engineering
Nanyang Technological
University, Singapore
bshe@ntu.edu.sg

Chiew Tong Lau
School of Computer

Engineering
Nanyang Technological
University, Singapore

asctlau@ntu.edu.sg

ABSTRACT
Energy efficiency is a major design and optimization factor
for query co-processing of databases in embedded devices.
Recently, GPUs of new-generation embedded devices have
evolved with the programmability and computational ca-
pability for general-purpose applications. Such CPU-GPU
architectures offer us opportunities to revisit GPU query co-
processing in embedded environments for energy efficiency.
In this paper, we experimentally evaluate and analyze the
performance and energy consumption of a GPU query co-
processor on such hybrid embedded architectures. Specif-
ically, we study four major database operators as micro-
benchmarks and evaluate TPC-H queries on CARMA, which
has a quad-core ARM Cortex-A9 CPU and a NVIDIA Quadro
1000M GPU. We observe that the CPU delivers both better
performance and lower energy consumption than the GPU
for simple operators such as selection and aggregation. How-
ever, the GPU outperforms the CPU for sort and hash join
in terms of both performance and energy consumption. We
further show that CPU-GPU query co-processing can be an
effective means of energy-efficient query co-processing in em-
bedded systems with proper tuning and optimizations.

1. INTRODUCTION
In the era of Internet of Things (IoT), embedded devices

are pervasive. In 2011, the number of embedded devices
overtakes the human population and it is expected to reach
24 billion by 2020 [6]. Databases are an integral component
on embedded devices. For example, embedded applications
usually use database systems such as SQLite and InnoDB
as their storage and query processing backend. Energy-
efficient query processing has been a major factor for the
design and optimization of database systems on embedded
devices, which are essential to many IoT applications due
to the battery limitation. Recently, because of the evolu-
tion of GPUs’ programmability and computational capabil-
ity driven by the need to offer high performance for more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DaMoN’15, June 1, 2015, Melbourne, VIC, Australia
Copyright 2015 ACM 978-1-4503-3638-3/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2771937.2771939.

general-purpose applications, GPUs have been incorporated
in new-generation embedded devices. The CARMA devel-
opment board coupling a quad-core ARM Cortex-A9 CPU
and a 96-core NVIDIA Quadro 1000M GPU is an embedded
device of this kind. Previously, GPUs have also been an ef-
fective means to improve the performance of main-memory
databases in servers and workstations. Such emerging CPU-
GPU architectures bring exciting research opportunities on
CPU-GPU query co-processing in embedded environments
for energy efficiency.

Energy efficiency of databases has been a recent hot re-
search topic [19, 17]. However, most studies focus on CPU-
based architectures. Unlike CPUs, there have been few stud-
ies on energy saving technologies for GPUs like Dynamic
Voltage and Frequency Scaling (DVFS). GPUs are consid-
ered to be very power hungry. The embedded GPU con-
sumes at least about 3 to 4 times more power than the em-
bedded CPU on the CARMA board. It is worthwhile to
revisit query co-processing on embedded CPU-GPU archi-
tectures for energy efficiency carefully.

In this paper, we experimentally evaluate and analyze the
performance and energy consumption of a GPU query co-
processor on such hybrid embedded architectures. Specifi-
cally, we select four such query operators: selection, aggre-
gation, sort and hash join as micro-benchmarks and evalu-
ate TPC-H queries on such a GPU query co-processor. We
adopt the state-of-the-art open-source implementations of
query operators on both CPUs and GPUs [7, 23, 2] with
modifications and improvements required to adapt to em-
bedded CPU-GPU architectures. We make the following
contributions:

• We have studied the impacts of GPUs in query co-
processors on embedded devices regarding of perfor-
mance and energy efficiency by studying four common
database operators: selection, aggregation, sort and
hash join as micro-benchmarks and TPC-H queries on
such an architecture.

• We have found that the CPU delivers both better per-
formance and lower energy consumption than the GPU
for simple operations such as selection and aggrega-
tion. The GPU outperforms the CPU in other cases.
The CPU-GPU query co-processing can be an effective
means for energy-efficient query co-processing on em-
bedded devices with proper tuning and optimizations.

• We have discussed a number of opportunities for query
co-processing on future embedded CPU-GPU architec-

tures including new memory transfer technologies and
potential optimizations.

The rest of the paper is organized as follows. In Section 2,
we introduce background and related work on energy savings
on embedded systems and GPU query co-processing. Next,
we present implementation details of the query co-processor
on embedded architectures in Section 3. Experimental re-
sults are presented in Section 4. We discuss future architec-
tures based on our findings in Section 5 and finally conclude
this paper in Section 6.

2. BACKGROUND AND RELATED WORK
In this section, we introduce the background of energy

savings on embedded devices and GPU query co-processing.

2.1 Energy Savings on Embedded Systems
Many embedded devices are often considered as wimpy

nodes since they have limited memory, low co-processing
power and low power consumptions. Recently, wimpy nodes
are used to build more energy-proportional and large-scale
systems. The FAWN cluster made from low power embed-
ded CPUs was proposed for key-value store [1]. It connects
a large number of low power embedded processors coupled
with flash memories to achieve high energy efficiency [20].
Schall et al. [18, 17] demonstrated a DBMS built on wimpy
nodes which can dynamically adjust the power of nodes
based on its current workload. Dumitrel et al. recently ob-
served that database query co-processing is energy-efficient
on an ARM based cluster at the cost of marginally slower
throughput [3]. The Pedraforca project [13] represented the
cases for embedded nodes of CPU-GPU architectures to-
wards energy-efficient clusters.

Another approach towards energy savings is to use beefy
nodes and wimpy nodes in a hybrid fashion, where the nor-
mal servers and workstations are considered as beefy nodes.
Mühlbauer et al. [14] demonstrated a DBMS applicable for
both ARM processors and x86-64 processors. Lang et al.
proposed the heterogeneous cluster as a new design point
[11] for the energy efficiency of data warehousing workloads.
The advantage of their design is that workloads which can
not fully utilize the beefy nodes can be offloaded to wimpy
nodes in order to improve the energy efficiency. Wong et al.
[21] proposed a hybrid approach by attaching a wimpy node
to a beefy node in order to shift the workload to the wimpy
node and put the beefy node into the “sleep” state when the
load is light.

Most existing studies of this kind are focusing on ap-
plications of wimpy CPU, predominantly ARM processors.
Less attention has been paid to energy savings on embedded
GPUs. Anuj et al. took advantage of the recently available
DVFS capabilities of some embedded GPUs to achieve a flex-
ible power-performance trade-off [15]. Kai et al. proposed
a two-tier design coordinating the CPU and the GPU to let
them finish at the same time achieving reasonable energy
savings [12].

2.2 GPU Query Co-Processing
GPUs are considered as an effective means for improving

query co-processing performance on main memory databases.
Database queries and relational operators on GPUs have
been extensively studied in previous work. He et al. de-
signed a set of highly optimized data-parallel primitives and

common relational query algorithms on GPUs [7]. Yuan et
al. debunked reasons why GPUs were not used for ware-
housing queries and showed that a hybrid CPU-GPU can
maximize the hardware combination efficiency with opti-
mized task scheduling [22]. Tim et al. [10] and He et al.
[8] revisited relational joins on GPUs taking advantage of
emerging new technologies and achieved significant perfor-
mance improvements. Peters et al. proposed a hybrid soring
algorithm resulting in a high performance comparison-based
sort for GPUs [16]. In the literature, most studies on GPUs
are focusing on performance improvements. In our work, we
address both the performance and energy efficiency of query
co-processing on embedded CPU-GPU architectures.

Table 1: Specifications of CARMA and a GPU workstation

CARMA GPU Workstation

CPU

NVIDIA Tegra 3
Quad-core ARM Cortex-A9

1.3 GHz
peak power ∼ 9W

Intel Xeon
6-core E5-2620

2 GHz
peak power ∼ 95W

GPU
NVIDIA Quadro 1000M

96-core
peak power ∼ 45W

NVIDIA Tesla K40C
2880-core

peak power ∼ 245W
Memory 2GB 16GB
Storage 4GB eMMC 256GB SSD

PCI 4x PCIe Gen 1 16x PCIe Gen 3
Idle power ∼ 10W ∼ 80W
Peak power ∼ 50W ∼ 400W

There are many emerging embedded CPU-GPU devices.
Most of them share a common architecture in which the
GPU is connected to the CPU through the PCIe interface.
We select the CARMA board in this study. We compare
specifications of CARMA and a GPU workstation in Ta-
ble 1. The embedded CPU and GPU on CARMA have
much lower power than those in this GPU workstation. The
CARMA board also features smaller memories, storage and
other components. As a result, the CARMA board has a
much lower idle and peak power than the workstation at
the machine level.

3. IMPLEMENTATIONS
In this section, we give an overview of our query engine

followed by considerations and details of the implementa-
tion.

3.1 Overview
Our query engine is based on the same layered design as

that in GDB, a GPU-based query co-processor [7]. Its de-
sign on primitives and query operators is for exploiting the
data parallelism of query co-processing. Figure 1 illustrates
the four layers in the query engine: storage, data-parallel
primitives, access methods and operators. At the storage
layer, we use the column-store layout for relations. A set of
commonly used primitives are defined and implemented in
a data-parallel way. The engine further supports table scan
and hash index based access. We adopt the same design
from GDB [7] for most primitives, access methods and oper-
ators. We have also improved some of the implementations
by porting the OpenCL implementation of OmniDB [23] and
adopted implementations of main-memory hash joins in pre-
vious studies with modifications [2, 9].

In the following, we briefly describe our implementations
of operators and the CPU-GPU query co-processing scheme

Operators

(selection, aggregation, sort, join)

Access methods

(scan, hash index)

Data-parallel primitives

(map, filter, split, gather/scatter)

Storage

(relations)

Figure 1: The layered design of the query engine (adopted
from GDB [7])

including details specific to embedded CPU-GPU architec-
tures.

3.2 Query Operators
We select four query operators as micro-benchmarks for

our study. On both the CPU and the GPU, the implementa-
tions are with multi-threading parallelism, in Pthreads and
CUDA, respectively.

Selection and aggregation. Both selection and aggre-
gation perform sequential scans on input relations when us-
ing scan as the memory access method by default. When
using the hash indexes for memory accesses, they perform
sequential scans inside each hash bucket. For a CPU thread,
this is implemented as a streaming access to the memory
using hardware and software prefetching. For all threads
within a GPU thread group, their accesses to GPU’s mem-
ory are coalesced to utilize GPU’s high memory bandwidth.

Sort. We select quick-sort as our sort algorithm as it only
requires O(logN) auxiliary space where N is the cardinality
of the input relation. This relatively small memory footprint
is important for embedded devices because of the limited
memory capacity on both the CPU and the GPU.

Hash Join. A hash join algorithm works on two input
relations, R and S, where R is the build relation and S is the
probe relation. We adopt the partitioned hash join because
it allows each partition to fit into either caches of CPUs or
shared memories of GPU thread groups avoiding random
memory access when joining each pair of partitions [10].

3.3 CPU-GPU Co-processing
We support a fine-grained query co-processing at the op-

erator level. However, this co-processing in our current work
is still simple and premature. More advanced query co-
processing techniques will be investigated in the future. For
each query operator, we partition input relations in a way
that a certain percentage of the workload is distributed to
the GPU and the rest is distributed to the CPU. This per-
centage is denoted as σ hereafter. Specifically, the query
engine offers three execution approaches for each query op-
erator:

• CPU-only (i.e., σ = 0): Only cores of the embedded
CPU are used and the GPU remains idle.

• GPU-only (i.e., σ = 100%): Only the GPU is used
while CPU cores remain idle (a single CPU core is
temporarily used to feed data to GPU and launch GPU
threads).

• CPU-GPU co-processing (i.e., 0 < σ < 100%): All
CPU and GPU cores are used. The workload distribu-
tion between the CPU and the GPU is decided by the
σ value.

For selection and sort, the final result is achieved by con-
catenating partial results from the GPU and the CPU. For
sort, a final N-way merge operation is executed on the CPU.
For hash join, partial results from each CPU thread or GPU
thread group can be directly linked together because of the
partition based algorithm.

In the experiments, we configure the σ value from 0 to 1
and find the specific σ values for each query operator achiev-
ing the best performance and lowest energy consumption.
The relative position of this best σ configuration in the range
[0, 1] shows the relative advantage of either the CPU or the
GPU in terms of performance and energy consumption for
each query operator. If the best σ configuration is closer
to 0, it means that the CPU outperforms the GPU for this
operator. The GPU outperforms the CPU otherwise.

3.4 Architecture Aware Implementations
Embedded CPU-GPU architectures have different features

compared with the CPU-GPU architectures in servers or
workstations. In this work, we port and tune the exist-
ing GPU codes [4, 7, 23] and CPU codes [2] to make them
compatible with the embedded environment and fully utilize
embedded processors.

In our previous study of main-memory hash joins on many-
core processors [9], we added materializations and architecture-
aware tuning into their implementations using architecture
specific SIMD intrinsics which are not compatible with ARM
CPUs. In this work, we modify the code to replace all ar-
chitecture specific parts with C++ implementations com-
patible with the embedded CPU. For example, SIMD-based
writes to memories are replaced with direct “memcpy” op-
erations and SIMD gather & scatter intrinsics are replaced
with batches of random memory accesses. For selection,
aggregation and sort, we base our implementations on the
Standard Template Library (STL) of C++ and each CPU
thread takes an equal share of the input. We discuss fu-
ture studies on optimizations for the embedded processors
in Section 5.3.

Embedded GPUs have relatively fewer co-processing cores
with smaller shared memories. To fully utilize this embed-
ded GPU, we tune the scale of thread groups to maximize
the utilization of GPU cores and the memory hierarchy.

We adopt the intermediate results management from our
previous work [9] and add materializations of final results
to our query engine. We use a late materialization strategy
because it eliminates many unnecessary memory operations.

4. EVALUATIONS
In this section, we present experimental results on a single

CARMA board. We discuss the extension to multiple boards
in Section 5.

4.1 Setup
Our experiments are performed on a CARMA node as in-

troduced in Table 1. Input relations are pre-loaded to the
main memory before the execution of query algorithms. Pro-
grams and required libraries are cross-compiled using the
CUDA toolkit 5.0 with the “-O3” optimization option in

a 64-bit virtual machine running Ubuntu 12.04 LTS with
kernel version 3.8.0-31. Managed by the Tegra “cpuidle”
driver, power states of unused CPU cores are adaptively ad-
justed (e.g., in the GPU-only approach, three CPU cores are
switched to the low-power“offline”state) and they are waken
up to become “online” when workloads are scheduled to ex-
ecute on them. The GPU remains idle when no GPU kernel
is called. We set the CPU scaling mode to “performance”
forcing all “online” CPU cores to run at their maximum fre-
quency.

Workloads. Each record in input relations contains two
8-byte integer attributes, namely the key and the record ID.
By default, key values are randomly generated. For all algo-
rithms except hash join, we fix the relation size to 50 million
records which is the maximum size for main-memory query
co-processing on CARMA. Two relations with the same size
of 5 million records are used as the input relation R and S for
hash join. These settings of relation sizes are large enough to
represent common data sets in embedded applications. The
selectivity is 100 percent for selection and the hash join. We
further select two queries (i.e., Q9 and Q14) from the TPC-H
benchmark with different complexities to evaluate our CPU-
GPU co-processing query engine. Q9 contains multiple com-
plex join operators and a sort. Q14 mainly requires a single
join. TPC-H query experiments are conducted based on
data generated from the TPC-H data generator. Because
of the limited memory capacity available on both the CPU
and the GPU on the CARMA board, we set the scale factor
to only 0.5, meaning that the total size of all the tables are
approximately 500MiB.

Measurements and Comparisons. We use a power
meter, “Watts up? Pro”, to measure the real-time power
readings of the entire machine during the execution and sum
them up to get the total energy consumption in joules. For
all operators, we compare the execution time and total en-
ergy consumption by varying the σ values as introduced in
Section 3.3. Specifically, we show the normalized execution
time and energy consumption by normalizing measurements
to that of the CPU-only approach.

4.2 Results on Operators
In this section we report and analyze the execution time

and the total energy consumption of each query operator.

4.2.1 Selection and Sum
Selection performs simple comparisons after relation scans.

Thus, it is a memory-intensive operation. In Figure 2a, both
the execution time and energy consumption are increasing
when the σ value rises. The CPU-only approach is the best
and it achieves 80% better performance with 82% less en-
ergy consumption than the GPU-only approach. This signif-
icant difference is caused by the memory transfer bottleneck
through the PCIe. Breaking down the execution time of the
GPU for all σ values, we find that 98% of the total execu-
tion is spent in the PCIe memory transfer and the rest 2%
accounts for the actual selection on the GPU.

In Figure 2b, as the σ value rises, both the execution
time and energy consumption of sum increases. The CPU-
only approach is also the best and it achieves 68% better
performance with 70% less energy consumption than the
GPU-only approach. For sum, the memory transfer on the
PCIe takes 99% of the total time in average and thus it
bounds the overall performance.

σ

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 ti
m

e
/

en
er

gy
 c

on
su

m
pt

io
n

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

Exec. time Energy consumption

(a) Selection

σ

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 ti
m

e
/

en
er

gy
 c

on
su

m
pt

io
n

0
0.5

1
1.5

2
2.5

3
3.5

4

Exec. time Energy consumption

(b) Sum

σ

0 0.2 0.4 0.6 0.8

N
or

m
al

iz
ed

 ti
m

e
/

en
er

gy
 c

on
su

m
pt

io
n

0

0.25

0.5

0.75

1

1.25

1.5

Exec. time Energy consumption

(c) Sort

σ

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 ti
m

e
/

en
er

gy
 c

on
su

m
pt

io
n

0

0.25

0.5

0.75

1

1.25

Exec. time Energy consumption

(d) Hash join

Figure 2: Normalized execution time and energy consump-
tion of four query operators (the σ value ends at 0.8 for sort
because of GPU’s limited memory capacity)

4.2.2 Sort
Because of the limited memory capacity on GPU, we end

the σ value at 0.8 instead of 1 for sort. Figure 2c shows that
the shortest execution time is achieved when σ = 0.5 and the
CPU-only approach achieves the lowest energy consumption.
Specifically, the CPU-only approach is 9% slower with 21%
less energy consumption than the GPU-only approach. Dif-
ferent from selection and sum, the memory intensive part of
sort (sort conducts more than one pass over input relations)
happens on the GPU only and does not require additional
PCIe transfers after the input relations are transfered to the
GPU. This is why the PCIe transfer overhead does not dom-
inate the performance of sort on the GPU. Another reason
for this stable execution time and energy consumption for
all σ values is that a final N-way merge accounts for about
20% of the total execution time and this significant part is
processed by the low power CPU alone which is more energy-
efficient for this memory intensive operation as observed in
above experiments.

4.2.3 Hash Join
In Figure 2d, the execution time and energy consumption

of hash join is reported. When the σ value increases, the
execution time keeps decreasing indicating that the GPU is
more efficient than the CPU until the σ value reaches 0.7.
When the σ value is larger than this break-even point, the
CPU takes insufficient workload required to mitigate the
PCIe data transfer overhead. The GPU-only approach is
about 2.1 times faster than the CPU-only approach with
about 29% less energy consumption. The best execution
time and the lowest energy consumption is achieved when
σ = 0.7.

We observe an interesting performance-energy consump-
tion trend that the energy consumption is more stable than
the execution time. The slowest execution is about 2.8 times
slower than the fastest one with only about 49% more energy
consumption. When the σ value increases, the GPU takes
over more workload from the CPU which reduces the overall

CPU-only GPU-only Co-proc.

N
or

m
al

iz
ed

 ti
m

e
/

en
er

gy
 c

on
su

m
pt

io
n

0

0.2

0.4

0.6

0.8

1

Exec. time Energy consumption

(a) Q9

CPU-only GPU-only Co-proc.

N
or

m
al

iz
ed

 ti
m

e
/

en
er

gy
 c

on
su

m
pt

io
n

0

0.2

0.4

0.6

0.8

1

Exec. time Energy consumption

(b) Q14

Figure 3: Normalized execution time and energy consump-
tion of TPC-H Q9 and Q14

Size of the output (million records)
5 10 20 50 80 120

N
or

m
al

iz
ed

 e
ne

rg
y

ef
fic

ie
nc

y

0

0.5

1

1.5
workstation CARMA

Figure 4: Normalized energy efficiency of hash join on the
workstation and the CARMA board

execution time greatly. However, this also makes the power
hungry GPU become busier resulting in limited reduction
on the overall energy consumption.

4.3 Evaluation of TPC-H Queries
In Figure 3, we present results achieved in executing TPC-

H Q9 and Q14 in three approaches by normalizing them to
that of the CPU-only approach. The GPU-only approach
reduces the overall execution time by about 50% for both
queries, with 27% and 19% reductions in energy consump-
tion than the CPU-only approach for Q9 and Q14, respec-
tively. Our tuned co-processing approach with the best σ
configuration further reduces the execution time by 9% and
14% with 7% and 15% less energy consumption for Q9 and
Q14, respectively. Thus, the CPU-GPU co-processing de-
livers the best performance for both these two join based
queries. These results are in line with our previous observa-
tions that the GPU is a better choice than the CPU for sort
and hash join.

5. DISCUSSION
In this section we discuss some interesting issues and fu-

ture directions.

5.1 Comparison with a Workstation
As a sanity check, we have compared the energy efficiency

of the CARMA board and the workstation listed in Table 1.
The energy efficiency refers to the number of result tuples
can be produced per joule. Thus, it is calculated as the
cardinality of the output divided by the total energy con-
sumption. To make this a fair comparison, we run the same
hash join code on both platforms deployed on all CPU and
GPU cores and vary the cardinality of relations R and S
from 5 million to 120 million. The selectivity is set to 100%,

and the size of outputs equals to the size of either relation
R or S. Due to the limited memory capacity, the CARMA
board cannot process hash joins in a single run when the
size of two input relations are larger than 5 million. Thus,
we partition the input relations first and execute multiple
runs of hash join on each pair of partitions to process large
inputs on the CARMA board.

For each input size on both the workstation and the CARMA
board, we tune the σ configuration experimentally and re-
port the highest energy efficiency achieved. Energy effi-
ciencies are normalized by that achieved on the CARMA
board when the output size is 5 million in Figure 4. We
can see that the CARMA board achieves 15% higher energy
efficiency than the workstation when the size is 5 million.
However, the workstation achieves higher energy efficiency
than the CARMA board for relations larger than 20 mil-
lion records. This confirms that embedded devices are more
energy-efficient than workstations when co-processing small
inputs and high-end workstations outperform for large in-
puts.

5.2 Extending to Cluster Settings
Although the embedded device is theoretically more energy-

efficient for a range of small input relations, more devices
are needed to process larger relations at the same level of
energy efficiency. This calls upon a cluster of multiple em-
bedded devices to work in a distributed manner. Dumitrel
et al. proposed a similar cluster based on ARM big.LITTLE
CPUs [3]. Although we do not have sufficient hardware re-
sources due to budget constraints and we leave this as our
future work, we discuss several necessary components for
an energy-efficient cluster of this kind and also for future
embedded architectures: network, PCIe and storage.

Network. Network is essential for any cluster and soft-
ware optimizations for the network interface in such embed-
ded devices is necessary. On the CARMA board, we evalu-
ate the potential of this optimization by cross-compiling and
testing the UDT high performance network transfer library
[5]. The network port available on CARMA is 1Gbps Ether-
net, with peak theoretical transfer rate of 128 MB/s. A sin-
gle UDT connection utilizing only 1 CPU core with default
settings can only maintain a speed of 29.8 MB/s on aver-
age. We then tune the network packet size in UDT transfer,
add one more CPU core to write network buffers into mem-
ory and enable the Ethernet Jumbo Frames. The speed of
a single connection rises to 41.2 MB/s and the aggregated
bandwidth rises to 83.4 MB/s on the two CPU cores. Fur-
ther increasing the number of CPU cores from two to three
leads to underutilization of these cores and does not increase
the network bandwidth.

Storages. In previous experiments, we exclude the access
to the storage to focus on the main-memory co-processing.
To study the impact of the storage on the overall perfor-
mance as well as the total energy consumption, we incorpo-
rate the storage access into sort using an eMMC and a SSD
on the CARMA board. Both the eMMC and the SSD in use
are based on flash memory which is low in power consump-
tions. Figure 5 shows the breakdown of the total energy
consumption of sort on CARMA. When using the eMMC,
storage access accounts for more than 50% of the total exe-
cution time and bounds the execution. After replacing the
eMMC with an SSD, this storage overhead is reduced to
about 20%. As a result, SSD enabled sort increases the

eMMC SSD

E
ne

rg
y

co
ns

um
pt

io
n

br
ea

kd
ow

n
(%

)

0

0.2

0.4

0.6

0.8

1

read mempcy sort write

Figure 5: Energy consumption breakdown of sort on
CARMA using eMMC and SSD

energy efficiency for the CPU-only approach and the GPU-
only approach of sort by 7% and 25%, respectively. This
demonstrates that SSDs can potentially help embedded sys-
tems to increase the overall energy efficiency especially when
frequent read and write I/O operations are involved.

5.3 Future Work
SIMD (Single Instruction Multiple Data) instruction set

has been widely used in multi-core CPUs. Many applications
such as video encoding/decoding and image rendering have
been taking advantage of SIMD to deliver high performance.
In our past work [9], we have evaluated the performance im-
pact of SIMD on main-memory hash joins and have obtained
significant speedup. ARM NEON is a SIMD technology de-
signed for some of the Cortex-A series CPUs. It supports
up to 128-bit SIMD intrinsics. It is our future work to study
the strategy for SIMD optimizations and its impact on em-
bedded platforms in terms of both performance and energy
consumption.

As observed in Section 4, memory transfer is a major
performance bottleneck for the GPU. New memory trans-
fer technologies have been proposed and are about to be
released such as the NVIDIA NVLink technology that can
link two GPUs or a CPU and a GPU directly with a higher
throughput and energy efficiency than conventional PCIe
buses.

The σ setting in this paper is only at the operator level.
In complex queries, a more fine-grained approach may be re-
quired to fully harness the power of CPU-GPU co-processing.

6. CONCLUSION
Energy-efficient query co-processing in databases on em-

bedded architectures requires novel hardware and software
co-design. We take the opportunity enabled by the evolu-
tion of general-purpose GPUs of new-generation embedded
devices to study the impact of CPU-GPU co-processing on
such architectures from both the performance and energy
consumption perspectives. By studying query operators as
micro-benchmarks, we find that the CPU is more energy-
efficient than the GPU when co-processing simple operators
such as selection and aggregation. However, the GPU out-
performs the CPU for sort and hash join. With proper tun-
ing and optimizations, the CPU-GPU query co-processing
scheme can be an effective means for energy-efficient query
co-processing in embedded systems. We have also discussed
a number of opportunities for query co-processing on future
embedded CPU-GPU architectures.

Acknowledgment
We would like to thank NVIDIA for the hardware dona-
tion. This work is supported by the National Research Foun-
dation, Prime Ministers Office, Singapore under its IDM
Futures Funding Initiative and administered by the Inter-
active and Digital Media Programme Office (Grant No.:
MDA/IDM/2012/8/8-2 VOL 01), Joint NTU-UBC Research
Centre of Excellence in Active Living for the Elderly (LILY),
Interdisciplinary Graduate School (IGS) of NTU and a MoE
AcRF Tier 2 grant (MOE2012-T2-2-067) in Singapore.

7. REFERENCES
[1] D. G. Andersen, J. Franklin, M. Kaminsky,

A. Phanishayee, L. Tan, and V. Vasudevan. Fawn: A
fast array of wimpy nodes. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating Systems
Principles, pages 1–14. ACM, 2009.

[2] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu.
Multi-core, main-memory joins: Sort vs. hash
revisited. Proceedings of the VLDB Endowment,
7(1):85–96, 2013.

[3] B. M. T. Dumitrel Loghin, H. Zhang, B. C. Ooi, and
Y. M. Teo. A performance study of big data on small
nodes. Proceedings of the VLDB Endowment, 8(7),
2015.

[4] R. Fang, B. He, M. Lu, K. Yang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Gpuqp: query co-processing
using graphics processors. In Proceedings of the 2007
ACM SIGMOD international conference on
Management of data, pages 1061–1063. ACM, 2007.

[5] Y. Gu and R. Grossman. Udtv4: Improvements in
performance and usability. In Networks for Grid
Applications, pages 9–23. Springer, 2009.

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami.
Internet of things (iot): A vision, architectural
elements, and future directions. Future Generation
Computer Systems, 29(7):1645–1660, 2013.

[7] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
coprocessing on graphics processors. ACM
Transactions on Database Systems (TODS), 34(4):21,
2009.

[8] J. He, M. Lu, and B. He. Revisiting co-processing for
hash joins on the coupled cpu-gpu architecture.
Proceedings of the VLDB Endowment, 6(10):889–900,
2013.

[9] S. Jha, B. He, M. Lu, X. Cheng, and P. H. Huynh.
Improving main memory hash joins on intel xeon phi
processors: An experimental approach. Proceedings of
the VLDB Endowment, 8(6), 2015.

[10] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk.
Gpu join processing revisited. In Proceedings of the
Eighth International Workshop on Data Management
on New Hardware, pages 55–62. ACM, 2012.

[11] W. Lang, S. Harizopoulos, J. M. Patel, M. A. Shah,
and D. Tsirogiannis. Towards energy-efficient database
cluster design. Proceedings of the VLDB Endowment,
5(11):1684–1695, 2012.

[12] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang.
Greengpu: A holistic approach to energy efficiency in
gpu-cpu heterogeneous architectures. In Parallel

Processing (ICPP), 2012 41st International
Conference on, pages 48–57. IEEE, 2012.

[13] F. Mantovani. High performance computing based on
embedded processors. In High Performance
Computing & Simulation (HPCS), 2014 International
Conference on, pages 1034–1034. IEEE, 2014.

[14] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser,
A. Kemper, and T. Neumann. One dbms for all: the
brawny few and the wimpy crowd. In Proceedings of
the 2014 ACM SIGMOD international conference on
Management of data, pages 697–700. ACM, 2014.

[15] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra.
Integrated cpu-gpu power management for 3d mobile
games. In Design Automation Conference (DAC),
2014 51st ACM/EDAC/IEEE, pages 1–6. IEEE, 2014.

[16] H. Peters, O. Schulz-Hildebrandt, and
N. Luttenberger. A novel sorting algorithm for
many-core architectures based on adaptive bitonic
sort. In Parallel & Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pages
227–237. IEEE, 2012.

[17] D. Schall and T. Härder. Energy-proportional query
execution using a cluster of wimpy nodes. In
Proceedings of the Ninth International Workshop on
Data Management on New Hardware, page 1. ACM,
2013.

[18] D. Schall and V. Hudlet. Wattdb: an
energy-proportional cluster of wimpy nodes. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 1229–1232.
ACM, 2011.

[19] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah.
Analyzing the energy efficiency of a database server.
In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data,
pages 231–242. ACM, 2010.

[20] V. Vasudevan, L. Tan, M. Kaminsky, M. A. Kozuch,
D. Andersen, and P. Pillai. Fawnsort: Energy-efficient
sorting of 10gb. Sort Benchmark final, 2010.

[21] D. Wong and M. Annavaram. Knightshift: scaling the
energy proportionality wall through server-level
heterogeneity. In Microarchitecture (MICRO), 2012
45th Annual IEEE/ACM International Symposium on,
pages 119–130. IEEE, 2012.

[22] Y. Yuan, R. Lee, and X. Zhang. The yin and yang of
processing data warehousing queries on gpu devices.
Proceedings of the VLDB Endowment, 6(10):817–828,
2013.

[23] S. Zhang, J. He, B. He, and M. Lu. Omnidb: Towards
portable and efficient query processing on parallel
cpu/gpu architectures. Proceedings of the VLDB
Endowment, 6(12):1374–1377, 2013.

