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ABSTRACT

The inherent asymmetry of read and write speeds of flash
memory poses great challenges for buffer management de-
sign. Most of existing flash-based buffer management poli-
cies adopt disk-oriented strategies by giving a specific prior-
ity to dirty pages, while not fully exploiting the characteris-
tics of the flash memory. In this paper, we propose a novel
buffer replacement algorithm named FOR, which stands
for Flash-based Operation-aware buffer Replacement. The
core idea of FFOR is based on novel operation-aware page
weight determination for buffer replacement. The weight
metric not only measures the locality of read/write opera-
tions on a page, but also takes the cost difference of read /write
operations into account. We further develop an efficient im-
plementation FOR" with the time complexity of O(1) for
each operation. Experiments on synthetic and benchmark
traces demonstrate the efficiency of the proposed strategy,
which yields better performance compared with some state-
of-the-art flash-based buffer management policies.

Categories and Subject Descriptors

H.2.4 DATABASE MANAGEMENT]: Systems— Query
processing

General Terms

Algorithms, Design, Performance

Keywords

Flash memory, SSD, Buffer management, Operation aware

1. INTRODUCTION

Flash memory has dominated the storage for portable de-
vices due to its advantages of light weight, power saving and
shock resistance. With the increasing capacity and dropping
price, flash-based solid state drive (SSD, or flash disks) has
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emerged as a popular storage for enterprise applications [7,
20]. Due to the characteristics of flash based storage, flash-
based data structures and search algorithms [4, 14, 16, 18,
29, 30] on database systems have become a fruitful research
field. Buffer manager is another core component in database
systems, and the buffer replacement strategies need to be re-
visited on the flash-based storage.

The effectiveness of buffer management policies can heav-
ily influence the performance of database systems. While
flash disks have much better 1/O performance than hard
disks, they are still over two orders of magnitude slower than
the main memory. An effective policy can reduce the num-
ber of costly disk accesses, and boost the overall performance
of the database system. Thus there have been considerable
interests in buffer management algorithms for database sys-
tems. Traditional disk-based policies [10, 8] mainly aim at
reducing the rate of buffer misses that cause disk accesses.
When a buffer page needs to be replaced, the victim is cho-
sen based on the recency and/or frequency of the accesses
on the page. However, minimizing the cache miss rate may
achieve a sub-optimal I/O performance on flash-based sys-
tems. This is because, compared with hard disks, flash disks
have an inherent feature, namely read-write asymmetry. The
read-write asymmetry is that, write operations can be an or-
der of magnitude slower than reads on the flash disk. Due
to this asymmetry, buffer manager must distinguish read
and write operations. For example, the benefit of keeping a
write-intensive page tends to be higher than that of keeping
a read-intensive one.

A number of buffer management policies [11, 12, 19, 21,
25] have been proposed to address the read-write asymme-
try on the flash disk. Most of them adopt the disk-oriented
buffer replacement strategies, such as LRU (Least Recently
Used) and LIRS [8], but give a higher priority to the dirty
pages to be kept in the buffer. The intuition is straightfor-
ward: replacement of a dirty page introduces a write on the
flash disk, which is much more expensive than evicting a
clean page. For example, CFLRU [25] maintains a window
at the least used end of the LRU queue. Within the win-
dow, clean pages are preferred as victims and dirty pages are
considered only when there is no clean page in the window.
A series of WSR [11, 12] (Write Sequential Reorder) meth-
ods give another chance to a dirty page upon its eviction.
While existing flash-based algorithms improve the perfor-
mance of database systems on the flash disk, they simply
improve the traditional disk-based buffer replacement poli-
cies with the consideration of current pages’ states, and the



temporal locality of the future operations is ignored. When
multiple write operations perform on a dirty page, they re-
sult in at most one write operation, if the page is kept in the
buffer. On the other hand, the dirty page that has no future
write operations or has been inactive for long time should
be evicted to free the precious buffer resource. Therefore,
both the page state and the future operations are important
for the buffer management.

In this paper, we argue for an integral combination be-
tween the future operations and the page state to define the
hotness of a page in the buffer. The combination also takes
the asymmetry of read and write speeds of the flash disk
into account. The output of the combination is to assign
a deliberate weight to each page in the buffer. The lower
weight indicates that it is more likely to be a victim page.
We start with quantifying the benefit of keeping a page in
the buffer by distinguishing the page state (clean or dirty)
and its next operation (read or write). For example, given a
dirty page with a next operation (read), we can save a page
read if we keep the page in the buffer. As for future opera-
tions, we introduce inter-operation distance (IOD) and the
operation recency (OR) for a page operation to quantify its
frequency and recency, respectively. Partial weights based
on the metrics are finally combined into one.

We further design the algorithms of FOR, a Flash-based
Operation-aware buffer Replacement policy. The core com-
ponent of FOR is the page weight calculation. A naive
policy is to maintain the weight of each page upon each op-
eration, and to choose the page with the lowest weight as
the victim. However, this naive policy requires O(n) time
to handle a page operation, where n is the number of dis-
tinct pages that have been accessed. This is not efficient in
real database systems. Therefore, we develop an approxi-
mated version of FOR, named FOR™. The approximation
adopts the metrics of the weight with binary representations
to approximate the combination of operation type and page
state. Additionally, FOR™ embraces novel data structures
to estimate the hotness of page operation and to select the
victim page for buffer replacement. The proposed FOR™
algorithm requires only O(1) for each operation access in
the buffer on average.

We evaluate the performance of the proposed buffer re-
placement approaches by comparing with the state-of-the-
art flash-based algorithms. The experiments are conducted
on both synthetic and real traces from public benchmarks
including TPC-C, TPC-B, and TATP (3], and our experi-
mental study shows that F'OR+ approach is superior to the
other buffer replacement methods.

The remainder of this paper is organized as follows. We
review the related work in Section 2. We present the op-
eration aware weight determination strategy in Section 3,
followed by the implementation of our buffer algorithms in
Section 4. Section 5 delivers the experimental results. Fi-
nally, we conclude the paper in Section 6.

2. PRELIMINARIES

In this section, we briefly introduce the background on
flash memory, and review the related work on disk- and
flash-based buffer management.

2.1 Flash Memory

Based on the characteristics of flash-based storage, we
identify two following challenges for existing disk-based I/O
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systems. We refer readers to some recent studies [5, 6] for
more details on flash memory.

e Asymmetry of I/0O: Random write operations are
much slower than reads, due to the costly erase oper-
ations. Note that, read latency and write latency of
SSDs vary significantly for different brands. System
components such as indexing and buffer management
should be aware of this asymmetry.

e Low access latency: Flash disks are over an order
of magnitude faster than hard disks. Such a low ac-
cess latency prohibits complicated data structures and
algorithms with high computational overhead. For ex-
ample, selecting a victim in the buffer management
should be simple to compensate the 1/O benefit.

Flash-based databases have become a hot topic for several
years. Detailed studies [5, 6] have been conducted to reveal
the internal I/O feature of flash disks. Lee et al. [16] pro-
posed an in-page logging strategy to reduce the number of
writes. They [17] further performed extensive experiments
on a commercial DBMS, which show that flash can improve
the overall performance of DBMS especially in logging. A
disk-flash mixed storage system [14] is proposed to adopt the
merits of both hard disks and flashes. Flash-optimized data
structures are developed to improve indexing performance
in databases [30, 4, 18].

2.2 Buffer Management

Buffer management is a critical issue in database systems.
There is a long stream of research on designing effective
buffer replacement strategies, and many approaches have
been proposed. LRU (Least Recently Used) and LFU (Least
Frequently Used) are two classic buffer replacement policies
for recency and frequency, respectively. Many approaches
were proposed to combine the advantages of recency and
frequency [22, 15, 28, 26]. Maximizing the buffer hit rate
is the main goal of these disk-oriented buffer management
strategies. This goal is no longer valid on the flash disk, due
to the asymmetry of read and write speeds. This asymmetry
calls for new buffer management policies on the flash disk.

A number of flash-based buffer management policies have
recently been developed to improve the efficiency of tradi-
tional disk-based policies on the flash disk. FAB [9] and
BPLRU [13] are two erase block-level buffer management
strategies. They are both designed for embedded flash de-
vices. Most existing buffer management policies on flash
disk adopt existing disk-based policies by delaying dirty page
eviction. CFLRU [25] defines a window in the least recently
used end of the LRU queue. All the clean pages in the win-
dow are evicted first; dirty pages are evicted only when there
is no clean page in the window. LIRS-WSR [12] and LRU-
WSR [11] are adopted from LIRS and LRU, respectively.
Both of them give higher priority to dirty pages, evicting a
dirty page when it is selected as victim at the second time.
CCF-LRU [19] improves LRU-WSR by dividing clean pages
into hot and cold ones according to the access frequency.
The eviction of a clean page is performed on the cold clean
pages first and then on the hot clean pages. CASA [23] or-
ganizes the buffer as clean page list and dirty page list. De-
pending on the read/write cost ratio, it dynamically adjusts
the size of the two lists. The decision of these flash-based



algorithms (except CCF-LRU) is solely based on the cur-
rent page state. However, the current page state itself is not
sufficient to determine whether the page is a victim or not.
Our approach remedies this by taking both the page state
and the operation temporal locality into account.

By design, CCFLRU is inferior to FOR. CCFLRU fails
to detect the hot clean page. When dirty pages fully occupy
the entire buffer, it is very difficult for clean ones to get
buffer back. This weakness is due to the design of CCFLRU.
CCFLRU contains two lists: Cold Clean LRU (CCL) List
and Mixed LRU (ML) List. Pages in the CCL list are evicted
first. As a result, the CCL list decreases as the system goes,
and the CCL list is likely to become empty. In this case, after
a newly read page is inserted into the CCL list, this page is
evicted immediately when a new page is required. Therefore,
unless a page is read twice continuously, a clean page never
has a chance to become hot. In comparison, FOR does not
have this problem, because the read operation information
is maintained even after the page is evicted. Therefore, a
clean page has the opportunity to become hot when it is
read again in FOR.

Write clustering has been considered as an effective tech-
nique in reducing the total cost [24, 27]. CFDC [24] en-
hances CFLRU by clustering dirty pages and evicting them
as a batch. Similar techniques are used in recently-evicted-
first algorithm [27]. Evicting dirty pages as a cluster is an
orthogonal solution for buffer management, and it can be
integrated into our policy easily to further improve the per-
formance.

3. OPERATION AWARE WEIGHT DETER-
MINATION

In this section, we present our operation aware strategy
to determine the weight of each page for buffer replacement.
The weight determination takes the asymmetry of read and
write speeds as well as operation-wise statistics such as fre-
quency and recency into account. Table 1 facilitates fast
checking on the notations used throughout this paper.

Table 1: Parameters Used in This Paper

Parameters Description
Wp Weight of page p
H. Hotness of a page operation e
10D,, IOD,, | Inter-operation distances of read and
write respectively
OR,, OR,, Operation recency of read and write
respectively
Shuffer Buffer size (pages)
Cr, Cy Time cost of reading and writing a
page respectively
Ciio Total 1/O cost of accessing flash de-
vice
Ctp Total buffer cost
Nas Total number of dirty pages flushed
(when the system terminates or per-
forms checkpoint)
Lupper, LLower | Length of Upper queue and Lower
queue in FOR™ respectively
Reold Ratio of cold pages in the buffer
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3.1 Effect of Page State

Read and write operations have similar costs in traditional
disk-based database system. Thus, the primary target of
buffer management for disk-based databases is to maximize
the hit rate of buffer, ignoring what kind of operation is
hit. Since the read/write characteristics of flash memory
are different from those of hard disk, existing flash-based
algorithms further consider cost difference of read/writes,
and try to keep more dirty pages in the buffer to reduce the
expensive cost of writes to the disk.

Most existing studies adopt total 1/O cost to evaluate the
performance of buffer replacement strategies. I/O cost may
come in two ways. 1) At the run time, a buffer miss will
incur a read from the disk device and may incur a write
if the evicted page is dirty. 2) At the end of running or
checkpointing, system will flush all the dirty pages in the
buffer, where the number of writes performed is according
to the number of dirty pages. Thus, by accumulating these
two parts, we get the following formula for total I/O cost,
where C, and C\, stand for the time cost of performing a
read and a write, respectively, and Ngs stands for number
of dirty pages which we need to flush at the end of running
or checkpointing.

Ciro = (Cr + evicted dirty?Cy, : 0)

(0

all buffer misses
+ NgrCw

The above formula is obtained by counting the I/O opera-
tions to the flash device. However, this is not convenient for
buffer performance analysis, as it needs to know whether the
evicted page is dirty and the number of dirty pages in the
cache. Hence, we transfer the formula from the perspective
of buffer operations. In the following analysis, we consider
the operations to buffer instead of operations to flash device.
We define buffer cost to be the cost of each operation to the
buffer. Clearly, the buffer cost is subject to whether this
operation is a hit or a miss as well as the operation type.
We obtain buffer cost for each case in Table 2. The clean or
dirty in the table refer to the page state before eviction if
the operation is a miss.

Table 2: Buffer Cost for Different Operation Types

Clean Dirty
Operation miss hit miss hit
read C, 0 Cy 0
write Cr+Cy | Cyw | Cr+Cy | O

It can be observed that a write operation causes a cost of
C,+C\, for a buffer miss while a read causes C,.. A write hit
on clean page also results in a cost of C,. This is because
the clean page turns dirty and needs to be written back in
the future. For a trace, we can get cost from this table for
each operation. Summing up these costs, we get the total
buffer cost, recorded as Cy. By comparing the number of
read and write operation to flash device respectively, we have
Ciw = Cy10, i.e., the total buffer cost is the same as the total
I/0O cost.

We further derive the I/O time reduced by keeping a page
in the buffer (defined as buffer benefit. By comparing miss
and hit costs in Table 2, we obtain the buffer benefit of reads
and writes in Table 3. Suppose a page is currently held by



Table 3: Buffer Benefit on One Page Operation

Future Operation | Clean | Dirty
Read C, Cy
Write Cr Cr+Cy

the buffer waiting for some future operations. There are
four cases in total according to the combination of future
operations and page states, and each case is analyzed as
follows.

1. Read on clean page: This means the current state
of the page is clean and the next operation on this page
is a read operation. If we keep the page in buffer, the
page can be used directly without accessing the flash
disk, i.e., no extra I/O time is needed. Otherwise, the
page has to be loaded into buffer first, a flash read
takes place. Thus, I/O time reduced is C, in this case.

2. Read on dirty page: Similar analysis can be done as
case 1. If the dirty page is kept in buffer, the operation
cost is zero as we can access the buffered page directly.
Otherwise, the cost is C.. The 1/O time of dirty page
write back is not calculated because this write back
will eventually happen afterwards.

3. Write on clean page: If the page is kept in the
buffer, it will turn dirty. Otherwise, the page should
be loaded into the buffer first which incurs read cost,
then the page also turns dirty. Hence, the benefit of
using buffer is C,.

4. Write on dirty page: As the page is dirty, the write
operation can be merged with the previous one if the
page is reserved in the buffer, and hence the write cost
is saved. On the contrary, a page write to the flash
memory will be introduced if the page is evicted, and
a page read is used to load it into the buffer. Conse-
quently, the buffer benefit is C,+C,.

Only the immediately succeeding operation is enough for
victim decision, because no matter whether a page is kept
in the buffer, after the following operation, the page will
certainly reside in buffer. Thus, the current victim decision
can only affect the cost of the immediately following read
and write operation. It can be observed from the table that
the costs reduced by buffering a dirty page are totally differ-
ent, which are affected by succeeding read/write operation
on the dirty page. Therefore, not only the page state but
also the future operation should be considered to determine
an appropriate victim for buffer replacement.

3.2 Effect of Operation Locality

How to make full use of the information provided by oper-
ation sequence to estimate the hotness of a page is a key issue
to solve in our operation-aware buffer management strategy.
We denote a page operation as a pair e=(p, m), where p de-
notes the page to be accessed, and m is the access mode
(m € {read, write}). Thus e;=e; means that e;.p=e;.p and
e;.m=ej.m. A reference sequence is a sequence of n page
operations, S = ei, e2, ..., €,, where e; is a page opera-
tion. The latest operation is recorded as ejqtest- We say
e; < ej,if i < j in the sequence, and e; < ¢;, if i < j. And
we define the previous same operation of e as ps(e) = e; if
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(ei =€) A—dej((e; =€) A (e; < ej < e)). Note that ps(e)
may be null.

Buffering the hot pages can generally increase the hit ratio
of buffer replacement methods, and there are various metrics
to evaluate the hotness of pages, among which frequency and
recency are the commonly used metrics to reflect the hot-
ness. In this study, we define two concepts Inter-Operation
Distance (IOD) and Operation Recency (OR) to reflect the
frequency and recency of a page operation, respectively.

DEFINITION 1. Suppose the inter-operation set of a page
operation e s
10S. = {ejlps(e) 2 e; S e} (2

Inter Operation Distance is defined as:

I0D. = |IOS.|,if ps(e) # null (3)

10D, is the number of distinct operations performed be-
tween two consecutive “identical operations” on one page in-
cluding the operation itself. 71OD. does not exist if ps(e) =
null. Taking the operation sequence in Figure 1 as an ex-
ample, the IOD of the last read on page B is 3, and the IOD
of the last write on page A is 5. The smaller the IOD, is,
the hotter operation e is. Note that, the average frequency
of an operation can be estimated by dividing the length of
operation sequence by the number of the occurrences of the
operation. However, such calculation is computationally ex-
pensive and infeasible in real applications. Therefore, we
use 10D to represent the frequency in our study.

—Operation order —»

QOGO
D Write operation O Read operation

Figure 1: Illustration of inter operation distance

DEFINITION 2. Operation Recency of a page operation e
is defined as:

OR. = [{ejle X €; = elatest}| (4)

The definition of OR. denotes the number of distinct op-
erations performed after e appeared. Note that recency is
the potential 7OD in the future. If only one e is in the oper-
ation sequence, the value of TOD. does not exist. When the
second e, i.e., the same operation on the same page, occurs,
OR. is equal to IOD.. That means, the future /0D should
be no less than the current operation recency.

The two metrics (IOD, and OR.) are complementary in
measuring the hotness of the corresponding page accessed by
e. The OR only reflects the freshness of the page operation,
while ignoring the long-term workload pattern. On the other
hand, only using IOD is problematic as the recency infor-
mation is not included. For example, if an operation with
low IOD never appears again in the operation sequence,
the value of IOD will never change. Therefore, we design
to integrate JOD and OR for page hotness determination.

DEFINITION 3. Hotness of an operation e is reflected by
weighted sum of 10D and OR.

H.=a*xI0D.+ (1 —a)*OR. (5)



Where « is a tuning parameter to determine the impor-
tance of the two factors, and the experimental tuning eval-
uation will be presented in our performance study. If JOD.
does not exist, we use the value of OR. as that of IOD. in
the above definition. H. indicates the popularity of a page
according to the operation statistics.

3.3 Operation-aware Page weight

In Sec 3.1 & 3.2, we have discussed the operation-wise
page information which affects the buffer replacement strat-
egy. According to our observation and analysis, we need
to consider page state and page operation statistical infor-
mation to determine the importance of a page for buffer
management. We give the page weight in the Definition 4.
In the formula, W, distinguishes the 1/O time reduced by
buffering the page p as shown in Table 3, as well as the
hotness of read/write operations on the page.

DEFINITION 4. Suppose r and w are the latest read and
write operations on page p, respectively. The weight of p

(W) is defined as:
W, — Cr/Hy + Cy/Hy, p is clean ()
P\ Cr/Hy + (Cr 4+ Cw)/Hw, p is dirty

Note that, if there is no previous read or write operation
on a certain page, the corresponding item in above Formula 6
should be zero. Given the definition of W),, we can calculate
its value and choose the victim for buffer replacement using
Wp. The page with the minimum weight is chosen as the
victim. The algorithm will be presented in the next section.

4. THE IMPLEMENTATION OF FoOR

In this section, we will introduce our algorithm for buffer
management based on the concept of operation-aware page
weight determination, named F'OR, which stands for Flash-
based Operation-aware buffer Replacement. Due to the
computational complexity of FOR, we also design an ap-
proximated version of FOR, named FOR™, which achieves
O(1) time complexity on handling a page operation.

4.1 The FoRr algorithm

Based on the concept of page weight W,,, we develop a
buffer replacement algorithm FOR, in which the page with
the minimum weight is chosen as the victim. We use an
LRU queue named operation list to facilitate computation
of IOD and OR. As shown in Figure 2, the operation list
stores the latest read and write operations for all the pages
that have been accessed. Note that, we only use page ID in
the list, and the pages may have already been evicted from
the buffer. These operations are adjusted in the LRU man-
ner. Thus the number of operations between the head and
operation e is OR.. When operation e comes again, OR. at
that time is IOD.. On every operation performed, we can
calculate its IOD. Thus, OR and IOD can be calculated
for every operation in the operation list. Besides the data
structure shown in Figure 2, all the control information in-
cluding pointers to the node in operation list, pointer to the
real data page, IOD and the state information of the page
are integrated as a structure named frame. To accelerate
page and information accesses, all the frames are indexed
by an in-memory hash table according to page ID.
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\
l:’ Write operation O Read operation

Figure 2: Data structure of FOR

The detailed algorithm of FOR is listed as Algorithm 1.
If the buffer is full and thus an eviction is needed, we first
calculate ORs and weights for all pages (Lines 2-5), and
find a page with the minimum weight as victim (Lines 7-
11). After the operation, we calculate IOD if the operation
has already existed in the operation list (Line 16).

Algorithm 1: The FOR algorithm
Input: an operation request e on page p

1 if p is non-resident and buffer is full then
2 foreach operation op in the operation list do
3 calculate ORop;
4 calculate the weight of the corresponding
page;
5 end
6 Wmctim:inf;
7 foreach page p; in the buffer do
8 if Wy, < Wyictim then
9 | update victim to ps;
10 end
11 end
12 evict victim;
13 end
14 perform the operation;
15 if e exists on operation list then
16 | adjust the operation list and calculate 1O De;
17 else
18 | add the operation to the head of operation list;
19 end

Upon each eviction, FOR calculates the weights for all ac-
cessed pages, and chooses the page with the lowest weight
as the victim. Suppose the working set of the database sys-
tem is n pages, and the buffer pool size is Syuger pages.
The loops in Lines 2-5 and 7-11 have the time complex-
ity of O(n) and O(Spuger), respectively. Since in practice,
Spugrer <K 1, the time complexity of handling a page oper-
ation in FOR is O(n). The efficiency is unacceptable in a
real database system. This motivates us to reduce the com-
putational complexity while taking the weight concept into
account.

4.2 An approximated version FOR*

The dominant computational cost of FOR algorithm is
the calculation of page weights in the buffer. To reduce the
time complexity, we have to design an efficient metric to
approximate the weight. In contrast to the numerical rep-
resentation of weight, we adopt categorical weight states to
approximate the weight of a page. That leads to an approx-
imated algorithm FOR™ with O(1) time complexity.

In Equation 6, there are two adding factors for each weight
state, including the page state and the operation hotness. So



there are 4 high weight states in total. We can use 4 marks
RCH (Read Clean page High), WCH (Write Clean page
High), RDH (Read Dirty page High) and WDH (Write
Dirty page High) to represent the high weights for C,/H,,
Cr/Hy, Cr/H, and (C, + Cy)/Hw, respectively. Among
these four marks, RCH and RDH are with same cost and
similar semantic, so they can be combined to RH (Read
page High). On the other hand, once a page is written, the
state of page changes to dirty. So, WC'H is volatile and we
only reserve the W D H mark for a dirty page. Consequently,
we utilize two weight status marks RH and WDH in our
proposed FOR™ approach.

For simplicity, FOR™T sets the marks according to the
value of 1OD as the IOD reflects the access frequency, and
cleans the marks according to the value of OR to discard the
operation without reference for a long time. For example,
for a read operation e, if C,./IOD, is relatively high among
all the operations, we set e’s RH.

Upper queue Lower queue

e [MOOE) HOCHOBE

I:l Write operation O Read operation
[:] Cold clean page D Cold dirty page

Figure 3: Data structure of FOR™

Cold page index

FOR™" extends the data structure shown in Figure 2 to
facilitate the weight status mark determination. The oper-
ation list is divided into two virtual queues, i.e., Upper and
Lower, as illustrated in Figure 3. Overall, these two queues
work in the LRU manner as a whole, that is, the operation
evicted from Upper queue is inserted into Lower queue as
the head of Lower queue, while the operation hit on Lower
queue or Upper queue is moved to the head of Upper queue.
The most recent operation is inserted as the head of Upper
queue. Thus, it can be observed easily that the number of
operations from the head of Upper queue to an operation e
is OR., and if an identical operation of e arrives, OR. at
that moment is /OD.. For example, in Figure 3 the OR
of operation write E is 5, and if a write E happens at this
moment, IOD of write E is 5.

In FORY, we try to ensure Lupper/Cr= Liower/Cw dur-
ing the buffer process, where Lypper and Liower stand for
length of Upper and Lower queues respectively. Thus, we
can derive: Cr/Lupper= (Cr+Cw)/(LLower+Lupper), which
is denoted as Mpound. We use the Mpoyna as the threshold
to allocate the marks. Take the read operation e on B, in
the Upper queue as an example, when another e comes, we
have IOD. < Lupper, that is, Cr/IODe > Mpouna. Thus,
B’s RH mark is set. Similarly, if a write hit on either Upper
or Lower queue means (Cr + Cw)/IODe > Mpound, we set
the W DH mark. Initially, we assume both marks of newly
arrived pages are cleared.

The entire buffer pool in FOR™ is virtually divided into
two sub-pools, one for hot pages and the other for cold pages.
A page is cold if it is a clean page without setting the RH
mark, or it is a dirty page without setting RH or WDH.
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Otherwise, the page is hot. In FOR™, only the cold pages
can be selected as the victim for buffer replacement. FOR™
ensures a certain ratio of cold pages (denoted as Rcoiq) in
the buffer, which is a tuning parameter in our algorithm. If
the corresponding marks of a page are set, the status of the
page will be upgraded to hot. Meanwhile, if the ratio of cold
pages in the buffer is lower than R..i4, we have to downgrade
a page to the cold page pool, and this process is named
as “Compensation”. The byproduct of the compensation
process is to maintain the ratio between Ly pper and Lrower,
and to shrink Upper queue or Lower queue to clear the marks
of less important pages.

The process of compensation is realized by shrinking Up-

per queue and Lower queue in turn. If Lupper/Cr > Liower /Cuw,

the Upper queue shrinks; otherwise, the Lower queue does.
To shrink an operation queue, the tail operation of the queue
is removed and the mark of that page is cleared. According
to the operation types in different queues, we have following
cases corresponding to the mark status: 1) If a read oper-
ation is removed from Upper queue, the RH mark of the
corresponding page is cleared; 2) If a write operation is re-
moved from Lower queue, the W DH mark is cleared. After
that, a cold test is performed on the mark-cleared page, i.e.,
whether clean page with RH cleared, or a dirty page with
RH and W DH cleared. If the page is changed to cold, the
compensation process ends. Otherwise, the process above
repeats until one hot page is changed to cold. The tail oper-
ation removed from lower queue will be deleted to save the
space used, and this operation will be treated as new if the
page is accessed again in the future.

Algorithm 2: The FORT Algorithm
Input: an operation request, e

1 if the frame does not exist in hash table then
2 | create a new frame;

3 end

4 get the frame from hash table;

5 if the frame is nonresident in buffer then
6 | Allocate free slot(Algorithm 3);

7 end

8 perform the operation;

9 if e is read and hit on Upper queue then
10 | set e’s RH mark;
11 end

[y
N

if e is write and (hit on Upper queue or on Lower

queue) then

13 | set e’s WDH mark;

14 end

15 adjust the Upper queue and Lower queue in LRU
manner as a whole;

16 if the page operated is in cold page indexr then

17 if the page operated is cold then

18 adjust the cold page index in the LRU
manner;

19 else

20 | remove the page from cold page index;

21 end

22 end

23 L.oiq= the number of cold pages in the buffer;

24
25
26

if Lcold < Rcold * Sbuﬁer then
| compensation (Algorithm 4);
end
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Figure 4: An example of FOR™

A cold page index is used to accelerate the eviction, as
illustrated in Figure 3. The cold page pool works in the
LRU manner. When a free slot is needed from the buffer,
the cold page which is not referenced for the longest time is
chosen as the victim. Page id instead of operation is stored
in cold page index. Cold page index is a queue acting in
the LRU manner. A new page is inserted at the head of
cold page index. Every access hit on the index will cause
the referenced page to be moved to the head, if the page
is not upgraded to hot. Hence, the tail page is selected as
the victim when a free slot is needed. With the help of cold
page index, the victim can be determined quickly when an
eviction takes place.

Algorithm 3: Allocate a free slot in FOR™T

if buffer is not full then
| return any free slot;

else
get the tail from the cold page index;
if the page is dirty then

| write back;

end
free and return the slot;
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The overall process of FOR™ algorithm is given in Algo-
rithm 2. We extend a frame in FOR with the two weight
status marks. The algorithm first gets the frame information
and performs the operation (Lines 1-8). When a free page is
requested, Algorithm 3 is called. After the operation is per-
formed, the marks (Lines 9-14) and data structures (Lines
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Algorithm 4: Compensation in FOR™T

1 repeat
2 if Lupper /Cr > Liower/Chw then /* Shrink
Upper queue */
3 remove the tail operation from Upper queue;
4 insert the operation into Lower queue;
5 if the operation is read then
6 | clear the RH mark;
7 end
8 else /* Shrink Lower queue */
9 remove the tail operation from Lower queue;
10 if the operation is write then
11 | clear the WDH mark;
12 end
13 end
14 change = whether the clear marked page is
changed from hot to cold,;
15 if change then
16 add the page to the head of the cold page
index;
17 end
18 until a cold page is added ;

15-22) are updated. The queue adjustment process (Line 15)
includes 1) inserting a new item into the head and 2) adjust-
ing the queue in the LRU manner if one item is hit on the
queue. The operation hit on Lower queue is also moved to
the head of Upper queue. If the buffer pool is full, one page
will be evicted from the buffer. Once a cold page is changed
to hot, compensation may be called to change a hot page to



a cold one (Lines 23-26) so that the number of cold page is
constant in the buffer. Algorithm 4 illustrates the process
of compensation. Compensation is done by shrinking Upper
queue and Lower queue in turn, during which some marks
are cleared, until a hot page is changed to cold.

An example is given in Figure 4 illustrating the process of
FORTY. Figure 4 (a) shows the initial state of the operation
list and the cold page index. Suppose a write on the page
C. According to FOR™, the buffer state is shown in Figure
4 (b). Operation write C' is moved to the head of Upper
queue. Since this operation is a hit on the operation list,
C’s WDH is set. Similarly, we can handle a read on page
B, and the buffer state is shown in Figure 4 (c). As reading
B is a hit on Upper queue, B’s RH is set, and B is removed
from cold page index. The compensation process is invoked,
because Lupper/Cr > Lrower/Cw. The operation at the
end of Lower queue, operation H, is removed and inserted
to the head of the cold page index. After that, reading F'
is performed, and a buffer miss occurs (Figure 4 (d)). To
free a page slot, the end of the cold page index, F, is evicted
from the buffer. As Leoia<Recota * Spugrer, one page will be
compensated. First, the write operation on D is removed
from Lower queue, and its W D H mark is cleared. However,
D is still not cold, so we continue the compensation process.
As Lupper/Cr < Lriower/Cw, the read operation on D is
moved from the tail of Upper queue to the head of Lower
queue and RH operation of D is cleared. Thus, page D has
no mark set, and it is inserted into the cold page index.

Since we simply record the page operation and page 1D
in the queue, our approach only introduces negligible space
overhead compared with the buffered data. Each operation
insertion and removal have the time complexity of O(1).
Note that, one operation is only removed once during the
compensation process.

S. PERFORMANCE STUDY

In this section, we conduct a trace-driven simulation in-
cluding benchmark and synthetic workloads to evaluate the
effectiveness of our approach, and the experimental results
are illustrated in comparison with some state-of-the-art flash-
based buffer replacement algorithms, including CFLRU [25],
LRUWSR [11], CCFLRU [19] and CASA [23]. The simula-
tion is developed in Visual Studio 2010 using C#. All ex-
periments are run on a Windows 7 PC with a 2.4 GHz Intel
Quad CPU and 2 GB of physical memory.

5.1 Experimental setup

We use both real and synthetic traces for performance
evaluation. Three benchmark traces on transactional pro-
cessing are deployed, namely TATP [3], TPC-B, and TPC-
C. To get the traces on buffer page accesses, we run the three
benchmarks on PostgreSQL 8.3.5 with default settings, e.g.,
the page size is 8KB. For each benchmark, we run a sufficient
period of time around 3 hours, including a 30-minute warm-
up period. For all benchmarks, the number of clients is 20.
Specification on the traces was given in Table 4. For the
synthetic trace, we generate a operation sequence conform-
ing to 80/20 distribution as those in the previous study [10],
and an operation is randomly assigned as a read or a write
such that the ratio of write operations ranges from 10% to
50%.

We consider two performance metrics: Buf fer Hit Ratio
which records the percentage of page hits in the buffer, and
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Table 4: Specification on the Traces

Page Number | Reference Num- [ Write Ratio
(thousands) ber (millions)
TATP 50.6 2.5 4.6%
TPC-B | 259 12.7 3.3%
TPC-C 95.7 16.8 16.3%
Synthetic | 300 10 10%-50%

1/0 cost per operation which is the result of total I/O time
divided by number of operations. In our experiment, I/O
cost per operation is used to evaluate the performance be-
sides the traditional hit rate metric. The reason is that the
read and write latency in flash-based systems are different,
which actually motivates our work. We employ two types of
settings for read and write asymmetry. One represents the
NAND flash, i.e., C; and Cy are 100us and 800us respec-
tively for the 8K page [1]. We select one popular Samsung
SSD [2] as the SSD representative, also used in [17, 18]. The
parameters used in our experiments are listed in Table 5.
Unless stated explicitly, the default parameter values, given
in bold, are used.

Table 5: Experimental Parameters

Parameter Value
Svugrer (Pages) 32, 64, 128, ..., 16384
Cr, Cw(us) 100, 800 (for flash chip)

245, 9663 (for Samsung SSD)
a 0,01,02, .,1
Reola 001, 0-1, 02, ceny 0.5

5.2 Parameter tuning of FOR approaches

We first evaluate the effect of the tuning parameter « in
FOR and R.oq in FORT on the buffer performance. «
shown in Definition 3 is a tuning parameter for the im-
portance of IOD and OR in page weight determination,
and Rco1q is the percentage of cold pages which can be se-
lected as a victim for buffer replacement FOR". We use
the synthetic trace in the default setting. As FOR is time
consuming, we generate a trace with 1000 page operations.

As shown in Figure 5 (a), the performance curve is con-
cave, meaning that there is an optimal « that should be used.
When « is zero, only the recency information is considered;
when « = 1, the frequency is the only used information. The
best performance is obtained when « is around 0.4 - 0.6, in-
dicating that we should take both frequency and recency
into account for optimal performance. Thus, IOD and OR
are integrated to measure the hotness of the corresponding
page in FOR. Figure 5 (b) shows the performance of FOR™
by varying Reoid. If Reora is too small, a recently used page
may be evicted, because the page becomes hot only when
it has been accessed more than twice. On the other hand,
a larger R.o1q decreases the buffer space used to store the
frequently used pages. In our experiment, the optimal value
for Reo1q is 0.1.

Comparing the I/O cost per operation of FOR and FOR™
in Figure 5, we found FOR™ performs only slightly worse
than FOR. This shows that the approximation in FOR™
can effectively model the page hotness. However, it takes
FOR over 120 times longer than FOR™ to run this trace,
due to the high time complexity of operation process in
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Figure 6: Buffer replacement performance on synthetic workload

FOR. Therefore, FOR"' is a more promising choice for
buffer replacement in real flash-based systems, and we only
use FOR™ in the following experiments.

5.3 Comparison with other techniques

We first demonstrate the results on synthetic workloads,
followed by more experimental results on TATP, TPC-B and
TPC-C.

5.3.1 Results on Synthetic Workloads

The experimental results on synthetic traces are shown in
Figure 6. The write ratio is fixed to be 20%. The window
size of CFLRU is set to 0.5, and the parameter of LIRS is set
to 0.01. The buffer size ranges from 32 to 16384 pages. As
the buffer size increases, the average operation cost of all the
algorithms decreases rapidly. Overall, FOR™ exceeds CASA
by 5%-10%, has similar performance to CCFLRU, and sig-
nificantly outperforms other algorithms by up to 100% on
flash chip. As CCFLRU always allocates a rather high pri-
ority on dirty page, it can prevent the write operations as
much as possible at the cost of more read operations. We can
also see CCFLRU is more sensitive to traces in our later ex-
periments on public benchmarks. LRUWSR, CFLRU and
LRU have similar performance trends, as both LRUWSR
and CFLRU are based on LRU. LIRS always outperforms
LRU, but the difference becomes smaller as the buffer size
increases. This is because LIRS keeps some historical infor-
mation, which is more useful for a small buffer. The differ-
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ence between FOR™ and other algorithms is more significant
on SSD, since the I/O asymmetry is larger on SSD.

Figure 7 shows the performance by varying the write ratio
and with the buffer size fixed to 4096. The I/O costs per
operation of all the algorithms increase, as the write ratio
increases. The CCFLRU and FOR™ perform similarly and
better than others (e.g., up to 30% lower I/O cost than
CFLRU), since both of them gives higher priority to dirty
pages than other algorithms.
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Figure 7: Performance effected by write ratio

5.3.2 Results on Benchmark Workloads

We first focus on comparing FOR™ with other flash-based
algorithms. Figures 8 (a), (b), (d) and (e) show I/O costs per
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Table 6: Read and write counts to SSD on TATP for different algorithms

CFLRU LRUWSR CCFLRU CASA FORT

Buffer Size(pages) read write read write read write read write read write
32 1766205 | 105547 | 1685335 | 107528 | 1861041 [ 102910 | 1705125 | 106094 | 1664170 | 94693

64 1591511 | 101583 | 1512794 | 104724 | 1633644 | 97465 | 1526095 | 102114 | 1455070 | 86751

128 1406144 | 95445 1325756 | 100226 | 1469433 | 90757 | 1338712 | 95374 | 1291214 [ 83650

256 1214153 | 88971 | 1130193 | 93707 | 1325149 [ 85819 | 1149824 | 88693 | 1131086 | 82368

512 1017177 | 84863 914505 87668 1156174 | 83295 940055 84687 951406 | 81901

1024 770001 82629 669042 84077 975519 81596 693858 82548 736001 | 81410

operation of different approaches by varying the buffer size.
FOR™ is about 5-20% better than other algorithms aver-
agely. The four competitors are based on LRU, which only
takes recency and state of the page into consideration. How-
ever, The proposed FOR™ algorithm exploits the read/write
asymmetry and operation statistics for buffer replacement,
thus it is more adaptive to system characteristics. The
clean pages are much easier to be evicted in CFLRU than
LRUWSR, because the cold clean page is evicted first, only if
there is no cold clean page, victim will be selected on other
pages as LRUWSR. Even though the buffer size is large,
too many clean pages are evicted by CCFLRU which in-
creases the number of read operation. This is why CCFLRU
is worse than CFLRU and LRUWSR for large buffer size.
CASA has very similar performance with LRUWSR. CASA
only employs the access information of pages in the buffer
which losses most of the historical information compared
with FOR™.

The I/0O cost of each algorithm on SSD is illustrated in
Figures 8 (b) & (e). FOR' yields more performance ad-
vantage over the competitors. Since the Cy,/C: of SSD is
much larger than flash chip, the performance difference is
more significant on SSD. CCFLRU performs relatively bet-

22

ter on SSD compared with the case on flash chip, because
the increment of C.,/C, makes it more worthwhile to hold
dirty pages in the buffer.

Figures 8 (c) and (f) show buffer hit ratios for SSD set-
tings. The number of I/O read/write operations for TATP
are also listed in Table 6. From the figures, we observe that
the hit ratio of every algorithm increases with the enlarge-
ment of buffer size. All the flash-based algorithms aim to
reduce some write operations at the expense of more read
operations. The hit rate gain of our approach FOR™ is not
significant as that on I/O cost. From Table 6, we can see
that the number of /O write operations of FOR™ is smaller
than thoseof other algorithms, which means FOR™ pro-
vides a better hit ratio of write operations. CFLRU always
holds dirty pages in its window, while LRUWSR gives dirty
pages only one more chance to be kept in the buffer. Con-
sequently, the number of I/O write operations of CFLRU is
smaller than that of LRUWSR. CFLRU decreases the effec-
tive buffer space for clean pages. The hit ratio of CFLRU is
clearly lower than LRUWSR.

FOR™ outperforms CCFLRU, because CCFLRU fails to
detect hot clean pages. As Table 6 shows, CCFLRU often
has a much larger number of read operations than FOR™.
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Figure 9: More results on buffer replacement performance

Among these competitors, CCFLRU introduces most read
operations in all cases.

More experimental comparisons are included in Figure 9.
Besides the flash-based methods, we also include two tra-
ditional disk-based algorithms, i.e., LRU and LIRS [8]. We
show the experimental results with larger range of buffer size
from 32 to 16382 pages. The proposed FOR™T is the best
algorithm in most cases. The comparison on the hit ratio is
similar to those in Figure 8, and we omit the results.

The performance gain decreases when the buffer size in-
creases. This phenomena is reasonable and consistent with
the findings in previous buffer management studies [11, 19].
As the buffer size increases, all the algorithms can hold more
pages in the buffer. The hit ratio increases and the room for
performance improvement becomes small.

Cost Per Operation
©
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24
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Figure 10: Performance effected by C. /C-
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FOR™ is able to adjust its policy according to flash char-
acteristics in order to achieve better performance. The per-
formance with varying C.,,/C, is given in Figure 10. We
normalize C) to be one, and range C,, from 2 to 128, so
that the C\/C, cover the situations of most SSDs. The
experiments are performed on TPC-B with buffer size 128
pages. As the ratio increases, the performance advantage of
FORT over other algorithm becomes larger. Our proposed
approach well exploits the locality of read/write operation
as well as the read/write asymmetry of the flash memory.

We further investigate the impact of different database
sizes. Table 7 shows the I/O cost per operation for the TPC-
C traces on 0.5GB to 4GB databases. We fix the buffer to
10% of total database size. FOR™’s consistently outper-
forms other algorithms for different database sizes.

Table 7: Performance on TPC-C(us) with 10%

buffer/data ratio

Database Size(GB) | 0.5 1 2 4

LRU 50.8 | 46.1 | 41.0 | 51.8
CFLRU 476 | 128 | 37.6 | 45.8
LRUWSR 487 | 43.9 | 3877 | 48.0
LIRS 479 [ 427 [ 374 | 46.3
CCFLRU 495 | 44.4 [ 39.1 | 44.8
CASA 494 | 454 [ 404 | 487
FOR™ 45.0 | 39.8 [ 35.0 | 42.7

Finally, we examine the average processing time for each
operation as the computational overhead of buffer manage-
ment. Table 8 shows the average processing time per op-
eration when the buffer size is 128 pages. The results are
similar for other buffer sizes. Since FOR™ records more in-
formation and adopts additional lists compared with other



Table 8: Execution time(us) for per operation

TATP | TPC-B | TPC-C
LRU 3.9 3.9 4.3
CFLRU 4.1 4.0 4.4
LRUWSR | 4.0 3.9 4.5
LIRS 4.5 4.1 4.7
CCFLRU 4.2 4.0 4.4
CASA 4.1 4.2 4.3
FORT 4.8 4.4 5.2

strategies, it has the largest average processing time per
operation. Nevertheless, the time difference is less than 1
s, which has negligible impact on the overall performance
(compared with the I/O costs, shown in Figure 8).

6. CONCLUSION AND FUTURE WORK

The inherent features of flash memory pose great chal-
lenges for buffer management in flash-based systems. In
this paper, we have presented a novel buffer replacement
method named FOR to deal with the read/write asymme-
try of flash memory. The proposed FOR algorithm ex-
ploits the read/write characteristics of flash memory and
the operation-wise statistical information to determine the
weight of buffered pages. Due to the computational com-
plexity of FOR algorithm, we have developed an approxi-
mated version FOR" with novel data structure to reduce
the computational complexity while preserving the key con-
cepts in the weight determination of FOR. The experimen-
tal study on benchmark and synthetic traces demonstrates
up to 20% improvements over some state-of-the-art flash-
based buffer replacement strategies. As for future work, we
plan to study write clustering on FOR™, and to integrate
the FOR™ into a DBMS.

7. ACKNOWLEDGMENTS

This research was supported by the grants of Natural Sci-
ence Foundation of China (No. 60873063) and MIIT grant
2010ZX01042-001-001-04.

8. REFERENCES

[1] http://samsung.com/global/business/semiconductor.

[2] http://uflip.inria.fr/ uFLIP.

[3] Telecom Application Transaction Processing Benchmark.
http://tatpbenchmark.sourceforge.net/index.html.

[4] D. Agrawal, D. Ganesan, R. K. Sitaraman, Y. Diao, and
S. Singh. Lazy-Adaptive Tree: An optimized index
structure for flash devices. PVLDB, 2(1):361-372, 2009.

[5] L. Bouganim, B. T. Jénsson, and P. Bonnet. uFLIP:
Understanding flash io patterns. In CIDR, 2009.

[6] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of flash
memory based solid state drives. In
SIGMETRICS/Performance, pages 181-192, 2009.

[7] J. Gray and B. Fitzgerald. Flash disk opportunity for
server applications. Queue, 6(4), 2008.

[8] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache
performance. In SIGMETRICS, pages 31-42, 2002.

[9] H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee. FAB:
Flash-aware buffer management policy for portable media
players. IEEE Transactions on Consumer Electronics,
52(2):485-493, 7 2006.

[10] T. Johnson and D. Shasha. 2Q: A low overhead high
performance buffer management replacement algorithm. In
VLDB, pages 439-450, 1994.

[11] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha.
LRU-WSR: Integration of Iru and writes sequence
reordering for flash memory. IEEE Transactions on
Consumer Electronics, 54(3):1215-1223, 10 2008.

[12] H. Jung, K. Yoon, H. Shim, S. Park, S. Kang, and J. Cha.
LIRS-WSR: Integration of lirs and writes sequence
reordering for flash memory. In ICCSA (1), pages 224-237,
2007.

[13] H. Kim and S. Ahn. BPLRU: A buffer management scheme
for improving random writes in flash storage. In M. Baker
and E. Riedel, editors, FAST, pages 239-252. USENIX,
2008.

[14] I. Koltsidas and S. Viglas. Flashing up the storage layer.
PVLDB, 1(1):514-525, 2008.

[15] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C.-S. Kim. LRFU: A spectrum of policies that
subsumes the least recently used and least frequently used
policies. IEEE Trans. Computers, 50(12):1352-1361, 2001.

[16] S.-W. Lee and B. Moon. Design of flash-based DBMS: an
in-page logging approach. In SIGMOD Conference, pages
55—66, 2007.

[17] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim.
A case for flash memory ssd in enterprise database
applications. In SIGMOD Conference, pages 1075-1086,
2008.

[18] Y. Li, B. He, Q. Luo, and K. Yi. Tree indexing on flash
disks. In ICDE, pages 1303-1306, 2009.

[19] Z. Li, P. Jin, X. Su, K. Cui, and L. Yue. CCF-LRU: A new
buffer replacement algorithm for flash memory. IEEE
Transactions on Consumer Electronics, 55(3):1351-13509.

[20] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and
A. Rowstron. Migrating server storage to SSDs: analysis of
tradeoffs. In ACM European conference on Computer
systems, 2009.

[21] S. T. On, Y. Li, B. He, M. Wu, Q. Luo, and J. Xu.
FD-Buffer: A buffer manager for databases on flash disks.
In CIKM (short paper), 2010.

[22] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K
page replacement algorithm for database disk buffering. In
SIGMOD Conference, pages 297-306, 1993.

[23] Y. Ou and T. Hérder. Clean first or dirty first?: a
cost-aware self-adaptive buffer replacement policy. In
IDEAS, pages 7-14, 2010.

[24] Y. Ou, T. Hérder, and P. Jin. CFDC: a flash-aware
replacement policy for database buffer management. In
DaMoN, pages 15-20, 2009.

[25] S.-Y. Park, D. Jung, J.-U. Kang, J. Kim, and J. Lee.
CFLRU: a replacement algorithm for flash memory. In
CASES, pages 234-241, 2006.

[26] J. T. Robinson and M. V. Devarakonda. Data cache
management using frequency-based replacement. In
SIGMETRICS, pages 134-142; 1990.

[27] D. Seo and D. Shin. Recently-evicted-first buffer
replacement policy for flash storage devices. IEEE
Transactions on Consumer Electronics, 54(3):1228-1235,
10 2008.

[28] L. B. Sokolinsky. LFU-K: An effective buffer management
replacement algorithm. In DASFAA, pages 670-681, 2004.

[29] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener,
and G. Graefe. Query processing techniques for solid state
drives. In SIGMOD conference, 2009.

[30] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos,
and W. A. Najjar. MicroHash: An efficient index structure
for flash-based sensor devices. In FAST, 2005.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




