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Abstract—This paper examines the performance of collective communication operations in message passing interfaces (MPI) in the

cloud computing environment. The awareness of network topology has been a key factor in performance optimizations for existing MPI

implementations. However, virtualization in the cloud environment not only hides the network topology information from the users, but

also causes traffic interference and dynamics to network performance. Existing topology-aware optimizations are no longer feasible in

the cloud environment. Therefore, we develop novel network performance aware algorithms for a series of collective communication

operations including broadcast, reduce, gather and scatter. We further implement two common applications, N-body and conjugate

gradient (CG). We have conducted our experiments with two complementary methods (on Amazon EC2 and simulations). Our

experimental results show that the network performance awareness results in 25.4 and 28.3 percent performance improvement over

MPICH2 on Amazon EC2 and on simulations, respectively. Evaluations on N-body and CG show 41.6 and 14.3 percent respectively on

application performance improvement.

Index Terms—Cloud computing, MPI, collective operations, network performance optimizations
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1 INTRODUCTION

C LOUD computing has emerged as a popular computing
paradigm for many distributed and parallel applica-

tions. message passing interface (MPI) is a common and key
software component in distributed and parallel applica-
tions, and its performance is the key factor for the network
communication efficiency. This paper investigates whether
and how we can improve the performance of MPI in the
cloud computing environment.

Since collective communications are the most impor-
tant MPI operations for the system performance [13], [14],
[17], this paper focuses on the efficiency of MPI collective
communication operations. Network topology aware algo-
rithms have been applied to optimize the performance of
collective communication operations [13], [14], [17], [26],
[28]. Most of the studies adopt tree-based algorithms,
since the network topology is often tree-structured. The
essential idea of those algorithms is to obtain the topology
information with hardware or software mechanisms, and
then to map the MPI processes to machines according to
the underlying topology.

While topology aware algorithms work well in tradi-
tional clusters, they are no longer feasible in the cloud
environment. Due to the virtualization and system man-
agement issues, the topology information is not available
or not effective to use for optimization. First, virtualiza-
tion hides the network topology from users. Virtualization
offers a uniform interface to users, without exposing the

real configurations of the underlying hardware. Second,
cloud environments do not offer administrator privileges
on accessing hardware and software under the virtualiza-
tion layer. Such privileges are usually required when get-
ting the network topology information [13], [28]. Due to
the first and second issues, some reverse engineering
techniques in topology discovery [9], [19] are not applica-
ble in the cloud environment. Third, due to the cloud sys-
tem dynamics such as virtual machine consolidation [27]
and dynamic network flow scheduling [1], the static
topology information is not sufficient for representing the
network performance. Note, most topology inference
methods [2], [15], [25] are used to identify the static net-
work topology.

We have studied the network performance of Amazon
EC2. Our studies show significant network performance
unevenness (i.e., the performance varies significantly for
different virtual machine pairs). Moreover, we have made a
significant observation that the network performance of two
virtual machines in Amazon is not symmetric. This result is
consistent with the previous study on Internet network [22].

All those factors make existing topology aware algo-
rithms unfeasible in the virtualized cloud environment,
and new algorithms should be invented for network per-
formance aware optimizations. The network performance
unevenness indicates that we should schedule the com-
munication for machine pairs with low network perfor-
mance in an optimal manner in order to minimize the
overall cost. On the other hand, the asymmetry of the net-
work performance requires an advanced way of modeling
and utilizing network performance characteristics. Specifi-
cally, we have identified two major problems in the MPI
collective operation design. First, we need a model to cap-
ture the network performance among different machine
pairs in the cloud environment. The model should facili-
tate network performance aware algorithms for collective
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operations with different message sizes. The second prob-
lem is how to take advantage of the network performance
model to develop collective communication algorithms to
address asymmetry.

We develop the latency and bandwidth matrices to cap-
ture the network performance of all virtual machine pairs
in a set of virtual machines. The network performance matrix
for a particular message size is calculated based on the
latency and bandwidth matrices. Based on the network
performance matrices, we propose a network performance
hierarchy to capture the network performance among a set
of virtual machines in the cloud. In particular, we calcu-
late the closeness of any two virtual machines, and group
them according to the network performance to indicate
their closeness. The grouping is performed with a hierar-
chical approach in order to gracefully adapt to the net-
work performance unevenness.

Based on the network performance hierarchy, we
develop our network performance aware collective com-
munication operations. We specifically consider two cate-
gories of operations: a) broadcast and reduce: the
message size is constant for the entire operation; b) gather
and scatter: the message size increases as the communica-
tions are close to the root process. Given the network per-
formance hierarchy, we develop novel algorithms for
those operations according to the message-changing pat-
tern. The links are carefully chosen for optimizing the
data transfer time, and the communications with similar
network performance are scheduled for maximized over-
lapping. We compare our collective operations and appli-
cations (N-body and CG) with their counterparts with the
widely used MPI implementation MPICH2. We also use
simulation to evaluate collective operations on a large
scale of machines.

On Amazon EC2, our optimized collective operations
are 13.5-38.2 percent faster than their counterparts in
MPICH2; on simulation, our optimized collective opera-
tions are 25.4-31.2 percent faster than their counterparts in
MPICH2 when the number of process increases from 32 to
2,048. In our experiments on Amazon EC2, our network
performance aware algorithm improves N-body and CG
by 41.6 and 14.3 percent, respectively. The runtime over-
head of network performance hierarchy construction is
amortized with iterative MPI communications in the
applications.

The rest of the paper is organized as follows. We intro-
duce the preliminary and review the related work on
cloud computing and MPI in Section 2. In Section 3, we
present our empirical study of network performance in
Amazon EC2. We present network performance model
and algorithm design in Section 4, followed by the experi-
mental results in Section 5. Finally, we conclude this paper
in Section 6.

2 PRELIMINARY AND RELATED WORK

In this section, we briefly introduce the preliminary and the
related work that are closely related to our study.

2.1 Cloud Computing

The cloud environment has different hardware and soft-
ware designs, in contrast with traditional clusters. Due to

the significant scale, the network environment in the cloud
differs to traditional clusters. The current cloud practice is
to use the commodity switch-based tree structure to inter-
connect the servers [12], as illustrated on Fig. 1. Machines
are first grouped into racks, and then racks are connected
with higher-level switches. The key problem of the tree
topology is the network bandwidth of any machine pairs is
not uniform, depending on how the switch connecting the
two machines. For example, the intra-rack bandwidth is
much higher than the cross-rack bandwidth.

Virtualization is the enabling technology for resource
sharing and consolidation in the cloud. Example virtualiza-
tion systems include VMWare, Xen and Hyper-V. Virtuali-
zation hides the details on the underlying hardware. As we
mentioned in Section 1, virtualization prohibits the network
topology aware optimizations for MPI.

The hardware and software issues make the cloud envi-
ronment different from traditional clusters. Researchers
need to carefully examine the existing system optimizations
and may invent new techniques to exploit the unique fea-
tures of the cloud environment.

Network topology inference techniques have been
investigated in the traditional environments [15], [25] and
cloud environment [2]. We refer readers to a survey [4]
for more details on classic techniques for network topol-
ogy discovery and inference. The information given by
basic diagnostic tools like traceroute is incomplete in the
virtualized cloud like Amazon EC2. Many topology infer-
ence methods [2], [15], [25] are based on end-to-end meas-
urements. Our notion of network performance matrix is
also based on end-to-end measurements. Closely related
to our study, Orchestra [8] applies flow control mecha-
nisms to minimize two common operations (shuffle and
broadcast). Different from Orchestra, our network perfor-
mance optimizations are in the application layer, and are
specifically designed for MPI collective operations.

2.2 MPI

MPI is a de facto standard for distributed and parallel pro-
grams running on computer clusters or supercomputers.
Since MPI was first implemented in 1992, it has been imple-
mented and optimized on different computing environ-
ments, e.g., multi-core processors [5], [11], [18], [20], wide
area network [17], and Infiniband networks [13], [28]. Our
idea of grouping is partially inspired by the grouping algo-
rithms in those previous studies.

Before reviewing the related work on MPI, we first
introduce several terminologies. Communicator is an MPI

Fig. 1. Topology-aware gather in a tree-topology network.
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object which connects a group of processes in an MPI ses-
sion. The size of the communicator is the number of pro-
cesses in it, and each process is given an identifier (rank)
0; 1; . . . ; N � 1, where N is the size of the communicator.

A number of network topology aware collective com-
munication algorithms have been developed [13], [14],
[16], [17], [26], [28]. They are targeted at different kinds of
network architectures. Instead of relying on network per-
formance knowledge, Burger and Kielmann [3] optimized
multicast by adapting to the current achievable band-
width ratios, without any knowledge of the variable net-
work performance. We refer readers to a survey [6] for
more details on collective communication algorithms.
Fig. 1 illustrates the latest algorithm implemented for
gather on InfiniBand networks. In the algorithm, there are
two major steps, namely intra-rack gather and inter-rack
gather. First, a process is selected as the rack leader, and
the leader processes independently perform intra-switch
gather operations. Second, once the rack leaders have
completed the first phase, the data is gathered at the root
through an inter-rack gather operation performed over
the rack leader processes. Experiments show that the
topology awareness significantly improves the perfor-
mance [13], [28]. However, those algorithms do not take
the message size change during the scatter and gather
operations into consideration. The message size increases
as the communication is close to the root process, while
their algorithms use low-bandwidth inter-rack links for
those communications. Moreover, they require the net-
work topology information which is not available in the
cloud environment. Thus, we need network performance
aware algorithms for MPI collective operations in the
cloud. A preliminary version of this work has been pub-
lished in a poster paper [10].

3 A STUDY IN AMAZON EC2

To understand the network performance in the cloud
environment, we start with the investigation on Amazon
EC2. We conduct our study with point-to-point communi-
cations among all machine pairs for a set of virtual
machines, with the following issues in mind. First, how
does the network performance of the point-to-point com-
munication among two virtual machines evolve as time
goes by? Second, network performance statistics for a set
of virtual machines are important considerations for col-
lective communication operation design. We first apply
the standard statistics analysis such as variance, max/
min and cumulative percentages for point-to-point com-
munications, and then study the Symmetry of the network
performance. This property is rooted at the network
topology of traditional cluster environments, and require
careful revisits on the virtualized network environment.

Since the raw performance is in a continuous numeri-
cal domain, it is not intuitive to directly analyze the sym-
metry. We perform discretization on the raw performance
prior to analysis. Discretization can also reduce the mem-
ory consumption of network performance matrix
(described in Section 4), usually representing a discretized
number with a smaller number of bytes. We use the mini-
mum value in the pair-wise average network performance

as the base. The base reflects the smallest latency or the
highest bandwidth. We use latency as an example. Sup-
pose the minimum value is min. Our discretization is to
translate a measurement value into a level value. We
define the discretization as follows: a measurement x is at
level l, if and only if l � x

k�min < ðlþ 1Þ, where k is an
adjusting factor for discretization.

After discretization, we have a more elegant definition on
symmetry. Denote the level for the network performance
(latency or bandwidth) from machine A to machine B to be
LðA;BÞ. The network performance between two machines
A and B is symmetric if and only if LðA;BÞ ¼ LðB;AÞ.

3.1 Experimental Setup

Amazon provides virtual machines (or instance in Ama-
zon’s terminology, or simply machines) with different
amount of storage and RAM as well as different CPU
capabilities in different prices. We use three kinds of stan-
dard on-demand instances: small, medium and cluster
(Cluster Compute Quadruple Extra Large Instance). All
the instances are acquired from US East (N. Virginia) data
center of Amazon.

We use the point-to-point communication (MPI_Send)
in MPICH2 v1.4 [21], which is a high-performance and
widely portable implementation for MPI. We measure the
latency and the bandwidth as two key network perfor-
mance metrics. The latency is the elapsed time of sending
a one-byte message and the bandwidth is calculated from
the elapsed time of sending 8 MB data. The elapsed time
for sending a message is measured from an existing MPI
benchmark tool named SKaMPI [23]. Specifically, we use
the function Pingpong_Send_Recv, which calls MPI_Send
followed by MPI_Receive.

For N virtual machines, we need N iterations of cali-
brations in order to get all pair-to-pair performance. In
each iteration, N

2 pairs are measured with MPI_Send in
both directions. When the number of instances is 128,
the total calibration overhead is usually smaller than
100 seconds. While this calibration approach is simple
and effective, it will introduce network interference by
itself. Fortunately, the impact of self-induced competing
traffic should be ignorable. On the one hand, the data
center is usually large enough in the scale of tens of thou-
sands of servers, and the interference of the virtual cluster
for the MPI application (in the scale of hundreds of vir-
tual machines in our studies) should be small. On the
other hand, the calibration result can effectively guide the
optimization on MPI collective operations, as shown in
the experiments. As a sanity check, we perform the band-
width calibration by conducting the send/receive opera-
tions one by one, and have got similar results.

3.2 Results

Due to the space limitation, we briefly present the major
findings, and the detailed results can be found in Appen-
dix A of the supplementary file, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2013.96. Overall,
we have observed the unique features of network
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performance: unevenness and asymmetry of pair-wise
network performance.

First, the short-term performance for a machine pair
seems ad hoc, and the long-term network performance
tends to be relatively stable for the same machine pair
(forming a band on latency and bandwidth). However, we
clearly observe the difference in the network performance
among different virtual machine pairs. Figs. 2a and 2b show
the distribution for the latency and the bandwidth on 200
medium instances on Amazon EC2. This result is consistent
with the previous studies [7], [24].

Second, pair-wise network performance is asymmetric.
After the discretization, we found neither the pair-wise
latency nor the pair-wise bandwidth is symmetric. When
the number of medium instances is 128, there are 58.2 and
18.2 percent of asymmetric virtual machine pairs in terms of
latency and bandwidth, respectively. One possible cause of
this asymmetry is due to the different routes taken by pair-
wise communications in the virtualized network.

4 ALGORITHM DESIGN

Due to unevenness and asymmetry of pair-wise network
performance in the cloud, there is no short-cut in obtain-
ing the network performance statistics, and we need to
consider all the pair-wise network performance for a set
of virtual machines. Moreover, some machine pairs have
very low performance compared with others, which
should be carefully scheduled in the algorithm design.
Therefore, we develop the network performance matrices to
estimate the pair-wise network performance, and the net-
work performance hierarchy to quantify the closeness of dif-
ferent virtual machines in terms of network performance.
Based on the network performance hierarchy, we develop
our collective communication algorithms for optimizing
their completion time.

4.1 Network Performance Matrices

Our empirical study on Amazon reveals that we need to
capture all the pair-wise network performance for a set of
virtual machines. In particular, we use two matrices,
namely latency matrix and bandwidth matrix, to model the
pair-wise network performance. These two matrices are
obtained through experimental calibration, as the method

described in Section 3. Based on the latency matrix and the
bandwidth matrix, we derive the network performance
matrix for an arbitrary message size.

Definition. Given a set of virtual machines (the set cardinality is
N), we define the three matrices as follows.

� Latency matrix, L½0; 1; . . . ;N� 1�½0; 1; . . . ;N� 1�.
Li;j represents the average latency from machine i to
machine j. Li;i is initialized with zero.

� Bandwidth matrix, B½0; 1; . . . ;N� 1�½0; 1; . . . ;N�
1�:Bi;j represents the average bandwidth from
machine i to machine j. Bi;i is initialized with 1.

� For a given message size, m, we define the network per-
formance matrix M½0; 1; . . . ;N� 1�½0; 1; . . . ;N� 1�,
where Mi;j is estimated to be Li;j þ m

Bi;j
(Mi;i is initial-

ized with zero). This estimation is commonly used in
estimating the network performance of point-to-point
communication. More details about this estimation
model can be found in the previous study [29].

We perform discretization on those matrices. In the
remainder of this paper, we refer M to be the ones after dis-
cretization. This study focuses on handling fix-sized mes-
sages, and it is straightforward to extend our models and
algorithms to variable-sized messages. In the remainder of
this paper, we use the message size m for calculating M.

4.2 Network Performance Hierarchy

Due to the asymmetric network performance matrix, we
design a data structure to guide our optimizations of care-
fully scheduling the slow links and maximizing the data
transfer overlapping. Since network topology has been
demonstrated to be effective in optimizing MPI collective
operations, we should quantify the closeness of the virtual
machines for similar functionality of the network topol-
ogy awareness. In particular, we define the closeness of
two virtual machines in terms of network performance,
and further leverage the network performance matrix to
define the network performance hierarchy.

Our definition on the network performance hierarchy is
inspired by the tree-like topology in data centers. The
intra-rack network performance is good and almost the
same for any machine pair within the rack. The inter-rack
network performance gradually decreases as the level of
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Fig. 2. The distribution of pair-wise latency/bandwidth in 200 medium instances.
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the lowest common switch for the machine pair becomes
higher. Similarly, we can perform grouping on the virtual
machines according to the network performance matrices,
which allows us to quickly differentiate the fast and the
slow links. Additionally, this grouping should form a hier-
archy, gradually adapting to the network performance dif-
ference between virtual machine pairs.

Closeness definition. We use a boundary value to quantify
how “close” on the network performance between a
machine and a group of machines is. For a group of
machines, + , and a boundary value, b, we define a machine
p is b-close to +, if and only if 8p0 2 +, maxðMp0;p;Mp;p0 Þ � b.
If a process p is b-close to +, we can add p to + and form a
new group, subject to the boundary value b. The definition
considers all the machines in the group. In this definition,
we use the maximum of the links in two directions to cap-
ture the asymmetry in the worst case.

Grouping. Our goal of grouping is to construct a hierar-
chy to minimize the worst communication time from the
top down. However, calculating the optimal hierarchy is
an NP-hard problem (similar to the bin-packing problem).
Due to the exponential complexity, it is commonly infea-
sible to calculate the optimal solution, especially when
the number of virtual machines is large. Therefore, we
choose a greedy method to construct the hierarchy. The
grouping process generates a network performance hier-
archy, as illustrated in Algorithm 1.

The basic idea is to form a number of non-overlapping
groups with similar network performance to each other.
As we gradually relax the closeness boundary, small
groups are combined into larger ones. In large scale proc-
essing, there may be many groups, and we need multiple
levels of grouping. The parent-child relationship among
groups forms a tree hierarchy. As the closeness boundary
is gradually increased, the hierarchical grouping in our
algorithm gracefully adapts to the unevenness in the
pair-wise network performance. In order to create a more
balanced tree structure, we also need to adjust the num-
ber of machines in each group. This is captured by a
parameter on a set of groups called span, which is defined
to be the difference in the number of machines between
the largest group and the smallest group. If the span is
zero, the tree is balanced. Taking a set of groups as input,
the grouping method at each level works in Algorithm 2.

If we look at the grouping from the perspective of the
network performance matrix, we essentially perform row
exchanges on the network performance matrix such that
the sub-matrix along the diagonal satisfies the b-close

requirement. For example, when b ¼ 0, grouping will
result in the sub-matrices along the diagonal with zeros.

To limit the number of levels in the hierarchy, we
make sure that the number of groups generated in a level
is no more than one half of the number of groups in the
previous level. Thus, the maximum number of levels in
the network performance hierarchy is no longer than
log2N , where N is the number of virtual machines
involved in the collective communication. Note, this esti-
mation has excluded the intra-machine communication,
since the intra-machine bandwidth is often over orders of
magnitude higher than the network bandwidth. Algo-
rithm 1 starts with GG0, where each group consists of one
single machine.

Let us present more details on the grouping algorithm
(Algorithm 2). There are two important variables for
grouping (b for grouping and Tspan for span). For b, a
small boundary value generates the groups with high
closeness. However, this may generate too many groups.
For example, if there are too few zeros in the network
performance matrix, setting b ¼ 0 could result in most of
the groups containing only one machine. Thus, we gradu-
ally increase the boundary value by 1 (Line 9) and gener-
ate the groups until the number of generated groups is no
larger than one half of the number of groups in the input.
Thus, we can calculate the grouping complexity, which isPlog2N

i¼0 ðN2iÞ
2 � OðN2Þ. Also, the storage consumption is

OðN2Þ. For Tspan, we try to balance the tree structure while
maintaining the grouping closeness. If the span of the
group is larger than Tspan, we adjust the grouping by
moving one machine from the largest group to the small-
est group until the span is no larger than Tspan.

There is one thing worth noting in the grouping pro-
cess. The network performance matrix is not symmetric
and a machine may be feasible to be added to multiple
groups. That is the major difference with the network
topology awareness, where machines are statically
assigned to the racks. On the other hand, since a machine
can be added to multiple groups, there is an opportunity
in making group sizes more balanced. In the grouping
process, we seek all the qualified group candidates for
the machine. Next, we always add the machine to the
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group candidate which has the smallest number of pro-
cesses. Thus, each new machine is more likely to be
added to the smaller group. In practice, this simple
approach can result in much more balanced group sizes
(i.e., a smaller span for the groups).

The network performance hierarchy shows the closeness
of the network performance between any two machines.
The network performance of two processes is measured by
the network performance of their corresponding virtual
machines. Thus, the network performance of any two
machines can be represented by the level of the lowest com-
mon ancestor in the network performance hierarchy. We
define this level to be the distance between the two
machines. We also use the distance to measure the distance
of two processes (i.e., the distance of the two machines that
the two processes are in). The lower level means a smaller
distance and thus a higher network performance. For exam-
ple, the processes which belong to the same group at the
bottom level of the network performance hierarchy are the
ones within the same virtual machine, and they have a dis-
tance of zero.

Finally, we note that the network performance hierarchy
can also be applicable to traditional cluster environments.
When all the pair-wise network performances are the same,
the grouping procedure generates one group. For the cluster
with tree topology, network performance hierarchy natu-
rally matches the network topology.

4.3 Network Performance Aware Operations

We exploit the network performance hierarchy to develop
the network performance aware collective operations.

Broadcast and reduce. Since broadcast and reduce are two
symmetric operations, they have similar network perfor-
mance aware algorithms, and we focus on the description
of the reduce operation. The algorithm for our network
performance aware reduce algorithm is illustrated in
Algorithm 3.

The basic idea is to exploit the non-overlapping
groups with similar network performance to each other
in the network performance hierarchy, and to create a

sub-communicator for each group to perform partial
reduction. The sub-communicator allows taking advan-
tage of an existing optimized MPI implementation.
Within each group, we consider the processes are close
to each other. Thus, an existing MPI implementation
without network performance awareness is already suffi-
cient. In our experiment, we simply call MPI_Reduce in
MPICH2 to perform reduce in each sub-communicator.
We choose a group leader process from each group, and
all the leaders form an upper level for the reduce opera-
tion. Fig. 3 illustrates a two-level reduce operation, where
multiple sub-communicators are created according to the
network performance hierarchy.

Our algorithm carefully schedules the links for
communications. Particularly, it exploits the links with
relatively high network performance and avoids the
slow links across different groups. We select the group
leader such that it can have better network performance
with other group leaders. However, this can be a com-
plex and time-consuming process, since we have many
candidates to choose from. Thus, we adopt a greedy
approach to select the group leader. Given a group +, we
select p (p 2 +) as the leader such that

P
p02+Mp0;p is mini-

mized. That means, the group leader minimizes its total
worst case pair-wise network performance. The leader
process is the root in the sub-communicator and only in-
bound links are considered.

The root process of the reduce operation needs special
care, since the message is finally sent to the root process. To
avoid this extra cost, we assign the root process as the group
leader at all levels of the hierarchy. In our implementation,
we can change the order of the processes in the group such
that the root process has the rank of zero.

Gather and scatter. Since gather and scatter are two sym-
metric operations, we have designed a similar network per-
formance aware algorithm for scatter, and we focus on the
description of gather.

In gather, the message size increases as the message
approaches the root process. This message size change
prohibits us to use the same design as the broadcast and
reduce operations. Instead, we need to carefully schedule
the links with low network performance in order to adapt
to the message size change in the gather operation.

Algorithm 4 illustrates our network performance aware
algorithm for gather. The basic idea behind the algorithm
is to exploit the distance property of the network perfor-
mance hierarchy. We arrange the communication links

Fig. 3. Network performance aware reduce operation.
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according to the increasing order of their distance to the
root process, as illustrated in Fig. 4a. This scheduling
mechanism well adapts to the message size change and
the network performance variation among machine pairs
in the gather operation. In particular, it has two distinct
features. First, the links with a smaller distance to the root
are arranged to be close to the root process, and those links
have higher network performance according to the net-
work performance hierarchy. This is good for larger mes-
sages near the root process. Second, the links with the
same distance are executed in parallel, and their data
transfers can be well overlapped. The impact of overlap-
ping is significant, especially for those links with low per-
formance. Additionally, our approach distributes the
message into multiple links associated with different sub-
trees, to avoid the large message sent by a single leader
process per rack in the previous studies [13], [28].

Let us describe more details on link scheduling. We start
with the root process as the root for the communication
tree. The recursion essentially builds the tree level by level.
The detailed flow is given by the Procedure Construct in
Algorithm 4. At level dist, we attach all the subtrees in
DOWN to all the processes in UP . In the network perfor-
mance hierarchy, we denote UP to be the set of processes
whose distance to the root process is dist, and DOWN to be
the set of subtrees whose root has a distance to root distþ 1.
Since UP and DOWN may have different sizes, we adjust
DOWN until these two sets have the same cardinality (i.e.,
jUP j ¼ jDOWN j). The adjustment repeats the following
operations. 1) Splitting when jUP j > jDOWN j. We pick the
subtree with the largest number of nodes in DOWN
(denoted as oldSubTree), and split it into two subtrees
(removing the root of the subtree and combining the forests
if necessary). Thus, we substitute oldSubTree with the two
new subtrees in DOWN , and thus jDOWNj is increased by
one. 2) Combining when jUP j < jDOWN j. We combine the
two smallest subtrees in DOWN into one. Through splitting
and combining, we make sure jUP j ¼ jDOWNj and each
subtree in DOWN is attached to a single process in UP .

Fig. 4b illustrates an example of the gather operation on
16 virtual machines. The example shows the scenario of
MPI process i running on virtual machine i. The network
performance hierarchy has four levels. Process 0 is the root
process for the gather operation. The processes in the result
communication tree is arranged according to the distance to
the root node. Note, we have split the subtree consisting of
Processes 14 and 15 during the attaching process in Level 4.

5 EVALUATIONS

In this section, we present our experimental results on our
network performance aware collective communication
algorithms.

5.1 Experimental Setup

We use two complementary approaches to evaluate the
efficiency of our algorithms (denoted as CMPI). One
approach is to evaluate our algorithms on Amazon EC2
with a reasonable scale of virtual machines, and the other
is to perform simulation such that the evaluation can be
performed on a much larger scale. The experimental setup
of Amazon is the same as those in Section 3.

On both real cloud environments and simulation, we
compare our network performance aware algorithms
with MPICH2 [21]. MPICH2 in most cases chooses the
binomial tree algorithm. Note, it may also choose differ-
ent algorithms according to the message size. For exam-
ple, when the message size is larger than 1 MB, MPICH2
chooses the ring algorithm for broadcast. The major met-
ric in our study is the completion time of the collective
operation. We use an existing MPI benchmark called
SKaMPI [23] to measure the completion time.

For space interests, we present the simulation setup
and results in Appendix B of the supplementary file,
available online. On simulations, our optimized collective
operations are 25.4-31.2 percent faster than their counter-
parts in MPICH2 when the number of process increases
from 32 to 2,048.

(a) (b)
Fig. 4. The construction of the communication tree in gather: (a) con-
struction by distance; (b) network performance hierarchy (top) and the
result communication tree (bottom).

GONG ET AL.: NETWORK PERFORMANCE AWARE MPI COLLECTIVE COMMUNICATION OPERATIONS IN THE CLOUD 3085



For each kind of operation, we evaluate the impact of
message sizes, the number of virtual machines and the
number of processes per virtual machine. The default set-
ting is: 64 medium instances and 200 processes. The mes-
sage size is 1 MB per process. The root process is randomly
chosen. We present the results under the default setting,
specified otherwise. We set k ¼ 4 and Tspan ¼ 1 for the dis-
cretization and grouping algorithm on Amazon EC2. We
study the impact of k and Tspan and other parameters in
Appendix B of the supplementary file, available online.

On the same virtual cluster, we obtain the network per-
formance matrix when the experiment starts, and use it
afterwards unless the network performance significantly
changes. We re-calibrate the matrix and re-build the tree if
we find that the performance differs significantly from our
estimation. In our experiments, we set the difference to be
20 percent by default.

Since broadcast and reduce are dual operations for
gather and scatter, respectively, we observe similar
results on those dual operations. We focus on the results
for broadcast and scatter in this section. More results for
gather and reduce, evaluations on cluster instances and
sensitivity studies can be found in Appendix B of the
supplementary file, available online.

5.2 Results on Collective Operations

Network performance hierarchy. Fig. 5 shows a snapshot of the
network performance hierarchy for the 64 medium instan-
ces under the default setting. The number of levels in the
hierarchy is four. The number in the node represents the
number of virtual machines in the group. The group sizes
are rather balanced. Note, the network performance hierar-
chy usually varies for different sets of virtual machines; its
structure is rather stable if the set of virtual machines is
fixed.

Overall comparison. We focus on comparing the perfor-
mance of the collective operation themselves since they
are usually used as components in applications. We leave
the study on the impact of the construction overhead in
the application evaluation. Figs. 6 shows the performance
comparison of the four operations with different message
sizes. On the four collective operations, our network per-
formance aware algorithms significantly outperform their
counterparts in MPICH2. It indicates the importance of
the network performance awareness in the cloud environ-
ment. The improvement is relatively larger for larger
message sizes. The average improvement is 38.2, 13.5,
22.7 and 27.3 percent on broadcast, reduce, scatter and
gather, respectively. Note that there is a huge gap in Bcast
when the message size is 105 and 106 bytes. That is

because the MPICH2 Bcast chooses the ring algorithm,
instead of the binomial tree algorithm. The ring algorithm
turns out to be even slower than our algorithm.

Fig. 7 shows the cumulative distribution function (CDF)
of elapsed time of individual processes for scatter. CMPI
algorithms have much more balanced distribution on the
process execution time than MPICH2. The balanced process
time distribution indicates the effectiveness of our algo-
rithm on scheduling the links with similar performance and
maximizing the impact of overlapping.

We further study the impact of different virtual machines
in the virtual cluster. For each measurement, we restart a
virtual cluster of 64 medium instances, measure the execu-
tion time for CMPI and MPICH2 and then terminate all the
virtual machines. Fig. 8 shows CDF for 100 measurements
for broadcast and scatter. On different virtual clusters,
CMPI outperforms MPICH2 and the execution time of
CMPI is more stable.

Finally, we study the effectiveness of our heuristics
based optimization, in comparison with other classic opti-
mization methods. The experiments are conducted in sim-
ulations. Given the network performance matrix under
the default setting, we implement Monte Carlo simula-
tions to randomly generate the communication tree struc-
ture for collective operations. With a large number of
simulations, we get the distribution of Monte Carlo simu-
lations and investigate how far our optimization is from
the best one in Monte Carlo simulations. With 107 times
of simulations, we obtain the probability density distribu-
tion, as shown in Fig. 9. We also show the performance of
the proposed approach and MPICH2. Our approach is
close to the best of Monte Carlo simulations.

Fig. 6. Performance improvement for 64 medium instances.

Fig. 7. CDF of individual process elapsed time for scatter.

Fig. 5. The network performance hierarchy for 64 medium instances.
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5.3 Results on Long-Term Behavior

Due to the network performance dynamics in the cloud,
we study the long-term performance behavior of our
proposed approach. We conduct back-to-back experi-
ments for our implementation and MPICH2: we first run
CMPI, then MPICH2, and then repeat the experiments
immediately.

Fig. 10 shows the long-term performance comparison
between MPICH2 and our approaches for over two days.
We find that our optimizations work very well along the
time. The performance improvement for the two days is
rather stable (30.1 and 17.3 percent for broadcast and
scatter, respectively). The mean and the variance values
are (0.27, 4.0e-4) and (0.91, 2.2e-3) for broadcast and

scatter, respectively. The variation is usually smaller than
10 percent of the mean. We conjecture two possible
implications on Amazon EC2. First, the network traffic
involving those instances is rather stable during the
period. Second, there are few or even no occurrences of
virtual machine migrations among those instances during
the period.

In another set of experiments, we tried re-calibrating
the network performance matrix and re-constructing the
communication tree for our approach every hour. How-
ever, the performance improvement of the maintenance
is very small (less than 2 percent on average). The over-
head of maintenance further offsets the performance
improvement.
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Fig. 8. The distribution of broadcast and scatter performance with different virtual clusters.
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5.4 Results on Applications

To further evaluate the impact of our network performance
aware algorithms, we have implemented two applications
namely N-body and conjugate gradient (CG). N-Body is an
astronomy model, aiming at simulating the movement,
position and other attributes of bodies with gravitational
forces exerted on one another. The parameters of N-Body
include the number of steps for the simulation (#Step) and
the number of bodies. CG is an iterative method, with the
core operation of sparse matrix vector multiplication
(SpMV). CG converges as more iterations are conducted,
and we set the convergence condition: krk � 10�5 � g0 (r is
the residual norm and g0 is the initial gradient). In both
applications, we implement the all gather communication
with a gather followed by a broadcast, which is also used
in MPICH2 [21]. This simple implementation is sufficient
for us to investigate the impact of collective operations
in distributed applications. More advanced all-to-all
algorithms (such as other algorithms in MPICH2 [21]) are
considered as our future work (more future work is dis-
cussed in Section 6). During the execution period of both
applications, we observe few changes in the network perfor-
mance matrix, and the network performance hierarchy and
the communication tree are constructed once in one execu-
tion of the application.

We study the breakdown of the execution time in the
application. In particular, we divide the entire application
execution time into two parts: computation and communi-
cation. For our proposed algorithms, we also present the ini-
tialization cost including network performance hierarchy
construction and communication tree construction (denoted
as ”Other Overheads”).

Fig. 11a shows the comparison studies for CG. In this
experiment, we vary the vector size from 100 to 51,200. We
make two observations. First, the CG performance is net-
work-bounded, with communication time contributing over
90 percent to the total execution time in MPICH2. Second,
when the vector size is small, our algorithm is slower than
MPICH2-based CG, due to the tree and hierarchy construc-
tion overheads. As the vector size increases, more iterations
are required for convergence. Network communication
time becomes more significant and the network perfor-
mance aware optimization reduces the network communi-
cation time. The performance gain compensates the
overhead, with 41.6 percent performance improvement
over MPICH2.

Figs. 11b and 11c show the performance comparison for
N-body. We first fix the message size as 1M bytes and vary

#Step from 1 to 128. Then we fix #Step to be 128 and vary
the message size from 2K to 1M bytes. As the message size
and #Step increase, the computation and communication
play a more important role and the overhead becomes insig-
nificant. CMPI algorithms reduce the network communica-
tion time by 33.2 percent, and the total execution time by
14.3 percent.

6 CONCLUSION AND FUTURE WORK

In this paper, we investigate the performance of MPI collec-
tive communication operations, and our empirical studies
in Amazon EC2 reveal the unique features of network per-
formance: unevenness, asymmetry and intransitivity of
pair-wise network performance. Those findings motivate us
to develop the network performance hierarchy for captur-
ing the closeness of any two virtual machines in terms of
network performance. Based on the network performance
hierarchy, we develop novel algorithms for collective com-
munication operations including broadcast, reduce, gather
and scatter. Our experimental results show that the network
performance awareness results in 25.4 and 28.3 percent per-
formance improvement over MPICH2 on Amazon EC2 and
on simulations, respectively. Evaluations on N-body and
CG show 41.6 and 14.3 percent respectively on application
performance improvement. Our future work is to explore
monetary cost optimizations for MPI [30].
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