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3D-NoC emerges as a potential multi-core architecture delivering high performance, high
energy efficiency and great scalability. However, 3D-NoC suffers from severe thermal

problems due to its high power density. To solve this problem, thermal-aware scheduling
is an effective solution. However, the high complexity of the thermal model of 3D-NoC

becomes a major hurdle for developing efficient thermal-aware scheduling algorithms
for 3D-NoC. In this paper, we propose a novel thermal aware task scheduling scheme
named as the Bottom-to-Top (B2T) approach to address this challenge. This heuristic-

based method performs task allocation on processing units to efficiently minimize the

peak temperature and improve the execution time of the tasks with low complexity.
The algorithm is first designed for 2-layer 3D-NoC and then extended to 3D-NoC with
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an arbitrary number of layers. When compared to traditional thermal-aware scheduling
algorithms designed for 2D-NoC, our B2T algorithm can achieve significant peak tem-

perature reduction (up to 11.9 ◦C) and performance improvement (up to 4%) on 2-layer

3D-NoC. The improvement becomes more significant as the number of layers in 3D-NoC
increases. For 4-layer 3D-NoC, the improvement is up to 13.23◦C peak temperature

reduction.

Keywords: 3D integration; Network-on-Chip; Thermal-aware scheduling

1. Introduction

The development in 3D integration technology of semiconductor devices has brought

a new horizon for traditional Network-on-Chips (NoC) systems. When compared

to its 2D counterpart, 3D-NoC has the benefits of lower chip area, lower power

consumption and lower signal propagation delay.1 However, the significant increase

in power density of 3D-NoC has posed severe challenges to thermal management of

the system. As shown in previous studies,2 the run-time peak temperature of 3D-

NoC could be over 20◦C higher than a 2D-NoC with the same power consumption.

Since high temperature could severely damage the performance and the reliability

of semiconductor devices, efficient thermal management techniques are crucial for

3D-NoC. In this paper, we investigate thermal-aware task scheduling algorithms

that are designed to reduce the peak temperature of 3D-NoC.

Among various thermal management methods for multiprocessor, thermal-aware

task scheduling is a light-weight and highly efficient technique. In many studies on

thermal-aware scheduling,3,4,5 the tasks running in the systems are assumed to be

independent with each other. The thermal-aware scheduling algorithms proposed

by these studies are usually based on the methodology of migrating high-power

tasks from hot processors to cool processors in the NoC systems. However, more

generally, many applications with high performance requirements are modeled as

task graphs.6 As a result, thermal-aware scheduling algorithms for task graphs have

attracted a lot of attention in previous studies.7,8,9,10

The task graph scheduling problem is proved to be NP-complete.11 Some of

the thermal-aware task graph scheduling algorithms formulated the problem as a

formal optimization problem and used methods like exhaustive search and integer

linear programming algorithms to find the optimal solution.7,8 The high compu-

tation complexity of these approaches prohibits their use in run-time cases. Thus,

light-weighted approaches are preferred. For example, Hung et al. and Stavrou et

al. proposed heuristic-based solutions which are suitable for on-line scheduling.9,10

However, all the studies mentioned above are designed for 2D multiprocessors.

Due to the architectural differences between 3D-NoC and 2D-NoC, existing

algorithms designed for 2D-NoC are ineffective or infeasible for 3D-NoC. Firstly,

the thermal features of 3D-NoC differ significantly from 2D-NoC. The heuristics

designed for 2D-NoC usually take the assumption that the temperature of each

core in the system is only decided by the power consumption of that core. This is

because the heat flow between different cores on a 2D-NoC is negligible compared to
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the power consumption in each core. However, such an assumption no longer holds

on 3D-NoC, where the inter-layer heat flows significantly affect the temperature

of each core. Secondly, as the thermal features of 3D-NoC are more complicated

than 2D-NoC, the complexity of thermal-aware scheduling algorithms also grows.

Some thermal-aware scheduling algorithms estimate the temperature of each core

in a 2D-NoC through thermal simulation.12 Such approaches do not scale as the

increase in the complexity of thermal model. It means that using run-time thermal

estimation for each core in 3D-NoC is infeasible due to the prohibitive complexity.

To address these issues, it is essential to re-design the heuristics for 3D-NoC for

an efficient thermal-aware scheduling algorithm with low complexity. Zhou et al.

pointed out that the temperature of 3D-NoC is closely related to the power dis-

tribution in vertically stacked processors.13 By placing high-power tasks on layers

which are closer to the heat sink, the temperature of 3D-NoC systems could be

effectively reduced. In this study, Zhou et al. proposed an heuristic-based thermal-

aware scheduling algorithm based on their observation. Wang et al.14 proposed

a similar scheduling algorithm for 3D-NoC and they combined the scheduling al-

gorithm together with DVFS-based thermal management technologies to achieve

better temperature control. However, these algorithms are designed for indepen-

dent tasks. Cox et al. proposed a thermal-aware mapping algorithm for streaming

algorithms on 3D multi-processor systems.15 This algorithm requires the off-line

profiling of the thermal characteristics of the 3D multi-processor chips, which makes

the algorithm infeasible for run-time uses.

In this study, we propose an efficient thermal-aware task scheduling algorithm

for 3D-NoC which is called as the Bottom-to-Top (B2T) algorithm. The algorithm

is designed for run-time scheduling of task graphs. The B2T algorithm works in the

following manner. First, it schedules all the tasks to the bottom layer of a 3D-NoC

to uniformly distribute power consumption among each stack of processors. Second,

the algorithm moves low-power tasks to the top layer to reduce the execution time

of the applications by exploiting parallelism of the tasks while maintaining low tem-

perature of the cores. Our B2T scheme also takes inter-processor communication of

3D-NoC into consideration to further reduce execution time and power consump-

tion of the system. In this study, we first propose the B2T scheme specifically for

2-layer 3D-NoC, and then extend the generality of the B2T scheme, such that the

algorithm could be applied to 3D-NoC with an arbitrary number of layers.

In the experiments, we have compared our B2T scheme with the state-of-the-

art thermal-aware scheduling algorithms designed for 2D-NoC,9,10 since there is no

existing work on scheduling task graphs on 3D-NoC. The results show that our B2T

algorithm achieves significantly lower peak temperature with better or comparable

performance. In 2-layer 3D-NoC, our B2T algorithm shows up to 11.9◦C peak

temperature reduction with comparable execution time when compared thermal-

aware scheduling algorithms designed for 2D-NoC. In 3D-NoC with more layers, the

advantages of our B2T algorithms become more significant. For 4-layer 3D-NoC,

the peak temperature reduction is up to 13.23◦C.
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The rest of this paper is organized as follows: Section 2 introduces the thermal

model of 3D-NoC and explains the rationale of the B2T scheme. Section 3 presents

a formal definition of the problem. Section 4 describes the B2T thermal-aware

scheduling scheme for 2-layer 3D-NoC. Section 5 extends the B2T algorithm to 3D-

NoC with an arbitrary number of layers. Section 6 shows the experimental results.

In the end, Section 7 concludes the paper.

2. Thermal Features of 3D-NoC

Router

Processor

Stack

Fig. 1. 2-layer 3D NoC architecture with 3D-mesh topology.

Without loss of generality, we assume all the 3D-NoC systems mentioned in this

studied have the 3D-mesh topology. The 3D-mesh technology is directly extended

from the mesh topology in 2D-NoC.16 Fig. 1 uses a minimal example to show

the architecture of 3D-NoC. In 3D-NoC, multiple layers of processors with their

interconnection networks are stacked together. For ease of discussion, we make the

following definitions. In a 3D-NoC, the layer of devices that locates next to the

heat sink is called the bottom layer; the layer on the opposite side of the chip is

called the top layer; the other layers are called intermediate layers. In addition, in a

3D-NoC, a column of cores that are vertically overlapped with each other is called

as a stack. The notation of stack is also shown in Fig. 1.

Fig. 2 shows a commonly adopted thermal model for general IC chips.17 In the

thermal model, the thermodynamic characteristics of the chip are illustrated by

an equivalent electrical circuit. In the circuit, voltages represent temperatures in

the chip. Electrical currents represent heat flows. Current sources represent power

consumption. Resistors and capacitors represent the thermal resistance and capac-

itance of the materials in the heat dissipation routes. During the run-time, the

power consumed by an IC chip turns into heat. Some of the heat is absorbed by

the material which causes the temperature of the chip to rise. The rest of the heat

dissipates into the air through the heat sink. The speed of heat dissipation is de-

fined by Eq. 1. In Eq. 1, Q is the amount of heat dissipated in unit time. ∆T is

the temperature difference between the chip and the ambient environment. R is the

thermal resistance of the materials in the chip.

Q =
∆T

R
(1)
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Fig. 2. General thermal mode for IC chips.

Rt

Rb

ρt

Ct

Cb

ρb

Top layer

Bottom layer

Intermediate layers

Heatsink

Ambient environment

Fig. 3. Simplified thermal model for 3D-IC

Fig. 3 shows a simplified thermal model for 3D-IC which only illustrates the

main heat dissipation route. The figure shows that the heat generated at the top

layer is much more difficult to dissipate into the environment than the heat gen-

erated at the bottom layer. This is because the heat dissipation route of the top

layer is longer and therefore the thermal resistance on the route is higher. As a

result, we can get the following conclusion. In a 3D-NoC, we assume that the to-
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tal power consumption is a fixed amount. As the share of the power consumed by

the top layer increases, the resulting peak temperature of the chip also rises. This

conclusion is also supported by experimental results.18,19 This observation is the

fundamental principle for our thermal-aware scheduling algorithm in this study.

In order to reduce the peak temperature of 3D-NoC, the algorithm must keep the

power consumption on the top layer lower than the bottom layer.

3. Problem Formulation

In order to give the formal formulation of the thermal-aware scheduling problem

for 3D-NoC, we first have to make a few assumptions and definitions.

Firstly, we assume that the 3D-NoC systems mentioned in this paper all have

3D-mesh topology, wormhole flow control and x-y-z routing scheme.20,21 This is a

commonly adopted setting in previous studies. We note that our B2T scheme can be

applied to 3D-NoC systems with different kinds of topologies, routing algorithms,

and flow control technologies. In addition, we assume that all the cores in the 3D-

NoC are homogeneous. The set of cores in one 3D-NoC is denoted by P = {p}. The

subset Pi ⊂ P denotes the cores located on the ith layer of the 3D-NoC. Specifically,

Pb denotes the cores at the bottom layer and Pt denotes the cores on the top layer.

The temperature of each core is denoted as τ(p).

Secondly, we assume that the applications executed by the 3D-NoC are modeled

as task graphs. A task graph is denoted as G(V,E), where V is the set of vertices

representing the tasks and E is the set of edges representing the precedence rela-

tionship and communication between tasks. Each task v in the application has two

attributes. Firstly, the the execution time of task v is denoted by l(v). Secondly,

the total energy consumed by task v is denoted by ε(v). With l(v) and ε(v), we can

compute the average power consumption of task v by Eq. (2), where ρ(v) is the

average power consumption.

ρ(v) =
ε(v)

l(v)
(2)

To define the schedule of an application, we should determine the following two

functions. Firstly, the mapping function, denoted by M : V 7→P , assigns the indi-

vidual tasks to the cores for execution. Secondly, the scheduling function, denoted

by S : V 7→R+
0 , defines the time when each task starts execution.

With the above assumptions and definitions, we formulate the thermal-aware

scheduling problem as follows:

Given G(V,E), P,

minimize
M,S

max
v∈V
{S(v) + l(v)} + α ·max

p∈P
{τ(p)}.

In the problem formulation, where maxv∈V {S(v)+l(v)} denotes the total execu-

tion time of the application, maxp∈P {τ(p)} is the peak temperature of the cores in
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the 3D-NoC, α is a weighting parameter. In this study, the thermal-aware schedul-

ing problem is a multi-objective optimization problem. The goal of the problem is

to minimize the peak temperature and the execution time of the applications at

the same time. The parameter α is used to changing the weight of the peak tem-

perature reduction in the optimization goal. When α is zero, the problem becomes

a performance optimization problem. We note that minimizing peak temperature

without considering the performance of the 3D-NoC is not meaningful. Because

we can reduce the peak temperature of the 3D-NoC by unlimitedly slowing down

the execution speed of the applications. As a result, the objective function of the

problem should always contain the execution time of the application.

The symbols used in this study are summarized in Table 1.

Table 1. Symbol definitions

Symbols Definition
l(v) The length of the task v, measured in clock cycles.

ε(v) The energy consumed by task v.
ρ(v) The power consumption of task v.

w(e) The size of the message on edge e.

Φ(v) The priority of task v.
τ(p) The temperature of processor p.

Pb Set of processors at the bottom layer of 3D-NoC.

Pt Set of processors on the top layer of 3D-NoC.

4. Thermal-Aware Task Scheduling for 2-layer 3D-NoC

In this section, we introduce our bottom-to-top thermal-aware scheduling algorithm

for the 2-layer 3D-NoC. In Section 5, we extend the algorithm such that it can be

applied to 3D-NoC with an arbitrary number of layers.

4.1. The Bottom-to-Top Scheduling Scheme

Based on the analysis on the thermal model of 3D-NoC in Section 2, we can conclude

that in order to keep the temperature low inside a 3D-NoC, the power consumption

on top layer should be lower than the bottom layer. However, this only provides

the principle for thermal management in the vertical direction. Horizontally, we

first need to balance the power consumption in among stacks in a 3D-NoC to avoid

thermal hotspots. If we view a stack of cores as one hyper-core, we could apply the

thermal-aware scheduling algorithms designed for 2D-NoC. As shown in Fig. 4, the

3D-NoC with 8 cores on two layers could be viewed as a 2D-NoC with 4 hyper-

cores, where each hyper-core contains the processors vertically stacked together. In

this way, we transform the 3D-NoC scheduling problem into a 2D-NoC scheduling

problem, which can be solved by thermal-aware scheduling algorithms designed

for 2D-NoC. After that, we can adjust the power consumption within each stack
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according to our previous conclusion. We note that assigning tasks to a hyper-core

is equivalent to assigning the tasks to the bottom-layer core in the stack. Therefore,

we name our algorithm as the bottom-to-top algorithm.

c2

c3

c6

c7

Top layer

Bottom layer

c1,c5 c2,c6

c3,c7 c4,c8 

Hyper cores

c1

c4

c5

c8

Fig. 4. The example of hyper-core.

Before we introduce the B2T algorithm in detail, we use an example to show the

workflow of the algorithm. The example is shown in Fig. 5. The problem is defined

by Fig. 5(a) and (b). Fig. 5(a) shows the application waiting for scheduling and the

length of each task. Fig. 5(b) shows the target 3D-NoC system which has two layers

and four cores. Fig. 5(c) shows results of the first step of the B2T algorithm, where

all the tasks are assigned to the cores at the bottom layer. Fig. 5(d) shows the final

scheduling result after the second step, where two of the tasks are moved to the top

layer. In the rest part of this section, the same example is used for several times to

help explaining the algorithm.

1

2 3 4 5

6 7 8

9
(a) Input task graph and the 

length of each task

P1 P2

P3 P4

(b) Target 3D NoC 

Top layer

Bottom layer

1 5

2 4 3

7 8

6 9

P1

P2

(c) Thermal-aware mapping on bottom layer

2

8

P3

P4

1 5P1

4 3 6 9P2

7

(d) In stack adjustment to top layer 

0 20 40 60 80
t

0 20 40 60
t

l(3) = 10

l(4) = 10

l(5) = 30

l(6) = 20

l(7) = 25

l(8) = 15

l(9) = 10

l(1) = 10

l(2) = 20

Fig. 5. A example of the two-step thermal-aware task graph scheduling algorithm.
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4.2. Thermal-Aware Task Scheduling at Bottom Layer

To solve the thermal-aware task scheduling at the bottom layer, we adopt a list-

based scheduling algorithm. The basic procedure of list scheduling is as follows. The

algorithm keeps a list of tasks that are ready to be executed. For each task in the

ready list, we assign a processor to execute the task. After the tasks in the ready

list are all scheduled, the algorithm updates the ready list and repeats the above

procedures until all the tasks are scheduled.

In a list scheduling algorithm, two factors have major influence on the scheduling

results. The first factor is the scheduling order of tasks in the ready list. The second

factor is the criteria to select the proper core for each task. To achieve the two

objectives of reducing execution time and peak temperature, we use two heuristics

in the algorithm. Firstly, for each task in the application, we define a priority which

reflects the criticality of the task regarding its influence on the execution time of the

whole application. The scheduling algorithm always first schedules the task with

a higher priority. Secondly, we define a cost function to evaluate each core in the

system regarding its potentials to affect the performance and the temperature of

the system. When assigning cores for each task, the scheduling algorithm always

picks the core with the lowest cost. The detailed definitions of priority and cost

function are introduced below.

For a given task G(V,E), Eq. (3) defines the priority of each task v ∈ V , which

is denoted as Φ(v). Eq. (3) is a recursive definition, where Vchd is the set of children

of task v, v′ is a child of v, e′ is the edge connecting v and v′, and B̄ is the commu-

nication bandwidth of the 3D-NoC. Actually, Φ(v) stands for the total execution

time along the longest path from task v to the end of application. This definition

has been used in previous studies about task graph scheduling algorithms.6

Φ(v) =

{
0 if Vchd(v) = ∅,
max{Φ(v′) + B̄ × w(e′)} if Vchd(v) 6= ∅.

(3)

The cost function for mapping a task to a processor is defined in Eq. (4). In

the equation, ts(v, p) is the earliest starting time of task v on processor p, which

is determined by the mapping of previous tasks, Q(v, p) is the accumulated heat

generated inside the processor, which evaluates the thermal impact of the previously

mapped tasks on processor p, and α is the weighting parameter which is used to

change the weight of the thermal related term in the cost function. Eq. (4) is a direct

reflection of the objective function of the problem defined in Section 3. We note that

the value of α should be non-negative. By tuning the value of α, we can change the

focus of our thermal-aware scheduling algorithm. In the case where execution time

is a more important concern, we can reduce the value of α. And when temperature

reduction is a more important concern, we can increase the value of α. The influence

of the weighting parameter α is shown in the experiments in Section 6.
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c(p, v) = ts(v, p) + α×Q(v, p) (4)

The definition of Q(v, p) is further expanded in Eq. (5), where v∗ represents

the task that has already been mapped to processor p, and qout is an estimation of

heat dissipated from the processor to the environment in a time unit. The first two

terms of Eq. (5) represent the total heat generated inside the processor while the

last term evaluates the total amount of heat dissipation of the processor before the

task finishes.

Q(v, p) =
∑
v∗

ε(v∗) + ε(v)− qout × (ts(v, p) + l(v)) (5)

4.3. In-Stack Adjustment to Top Layer

After the scheduling algorithm at the bottom layer finishes, the in-stack adjustment

algorithm is performed. The algorithm exploits the parallelism of the tasks and se-

lectively picks some of the tasks in each stack and moves them to the top-layer

processors in order to further reduce execution time while maintaining low temper-

ature. Algorithm 1 shows the pseudo code of the in-stack adjustment algorithm.

The algorithm first makes a list of tasks which have been assigned to the stack

by the previous step (Line 2), and then the algorithm sorts these tasks according

to the descending order of the priorities. These tasks are denoted by Vs. In order

to identify the tasks that can be executed in parallel as mentioned above, the

algorithm runs a function to divide the tasks into groups which contain tasks that

can be executed simultaneously (Line 3). Such groups are called parallel groups and

are denoted by Vpg. The union of all the parallel groups is denoted as Upg.

The formation of parallel groups is performed as follows. Firstly, we pick a

task with maximum priority from Vs as the head task of the parallel group, vhead.

Secondly, insert all tasks from Vs which fulfill the requirement in Eq. (6) into the

parallel group. Eq. (6) guarantees that all the tasks inside Vpg do not have direct

precedence relationship with each other. It means that the tasks in Vpg are able to

be executed in parallel. By repeating the two steps, we can divide Vs into multiple

parallel groups.

If Φ(vhead)− l(vhead) > Φ(v), then v ∈ Vpg. (v ∈ Vs) (6)

Because tasks of one parallel group can be executed in parallel, we can then

move some of the tasks inside the parallel group to the processor on the top layer

to reduce the execution time. This job is done by Line 7 to Line 17 in the algorithm.

We note that only the parallel groups which contain more than one task can be

adjusted (Lines 8 to 16). For those parallel groups with a single task, we merge

them into a special set of tasks, denoted by Vndef , for later consideration (Line 15).
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Algorithm 1 In-stack adjustment algorithm

Input: G(V,E), Mb, Pb, Pt, Φ

Output: M

1: for all pb ∈ Pb do

2: Vs=find tasks mapped in stack(p, Mb);

3: Vs=sort tasks by priority(Vs);

4: Upg=divide parallel groups(Vs);

5: pt=find top layer processor(p);

6: Vndef = ∅;
7: for all Vpg ∈ Upg do

8: if number of tasks(Vpg) > 1 then

9: Vt=adjust tasks to top layer(Vpg);

10: Vb = Vs ∩ V̄t;
11: for all v ∈ Vpg do

12: M(v) = (v ∈ Vb) ? pb : pt;

13: end for

14: else

15: Vndef= Vndef ∪ {v} ;

16: end if

17: end for

18: for all v ∈ Vndef do

19: ob=compute overhead(v, pb);

20: ot=compute overhead(v, pt);

21: M(v) = (ob − ot < oth) ? pb : pt;

22: end for

23: end for

Line 9 selects the tasks to be moved to the processor on the top layer, and the rest

tasks of Vs remain at the processor at the bottom layer (Line 10). The tasks of

Vt and Vb must fulfill two conditions. Firstly, for any vt ∈ Vt and vb ∈ Vb, there

is ρ(vt) < ρ(vb). This condition guarantees that the power consumption of tasks

mapped to the top layer are lower than tasks mapped to the bottom layer. It helps

maintain low temperature of the system, as discussed in Section 2. Secondly, the

total length of the tasks mapped to the top layer and should be shorter than the

tasks mapped to the bottom layer (
∑
l(vt) <

∑
l(vb)). It prevents temperature

increases caused by load imbalance between the processors in one stack.

Tasks from parallel groups with a single task are handled by Lines 18 to 22 of

Algorithm 1. The mapping of these tasks depends on the communication overhead

between tasks as defined in Eq. (7). The Eq. computes the total amount of messages

on the edges which connect task v to other tasks that are previously mapped to the

processor on the other layer. As shown in Line 21, only when the communication

overhead of mapping task v to the bottom layer is too high, v could be mapped to
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the top layer. Tasks in the single-task parallel groups cannot start execution until all

the previous tasks be finished. Therefore, in most cases, only communication delay

can affect the start time of these tasks. For the sake of temperature reduction,

we keep these tasks in bottom layer, except for the cases when the communication

overheads become overwhelming. The worst-case complexity of in-stack adjustment

algorithm is O(V ).

{
ob =

∑
vt
w(et), et = vt → v,or v → vt,

ot =
∑

vb
w(eb), eb = vb → v,or v → vb.

(7)

2 3 4

6

9

(a) Partial graph of the 

tasks mapped to P2

2 3 4

High power

task

Low power

task

Parallel group 1

6 9

Parallel group 2 Parallel group 3

(b) Division of parallel groups 

2P4

4 3P2

(c) Adjustment inside 

parallel group 

2 3

6

(d) Computing of 

communication overhead 

20 10

ob = 20

ot = 10

oth = 100

Φ=50 Φ=40 Φ=45

Φ=30

Φ=10

Fig. 6. In-stack adjustment algorithm example. (Inside the stack of processor P2 and P4 as shown

in Fig. 5(b))

Fig. 6 illustrates the details of in-stack adjustment algorithm for previous ex-

ample shown in Fig. 5. Fig. 6(a) shows the partial task graph containing the tasks

that have been assigned to core P2 in the previous example. In the partial task

graph, the high-power tasks are denoted by the grey nodes and the low-power tasks

are denoted by the white nodes. Fig. 6(b) shows how the tasks are divided into the

parallel groups according to Eq. (6). Fig. 6(c) shows the adjustment result of the

parallel group 1 in the example. In the result, low-power task 2 is adjusted to the

top layer. Fig. 6(d) shows the results of computing communication overhead for the

tasks in single task parallel groups. In the example, to decide the final location of

task 6, which is the only task in parallel group 2, the algorithm has to compute

the communication overhead ob and ot according to Eq. (7). Since the overhead of

mapping task 6 to bottom layer is not very overwhelming, we keep task 6 in the

bottom layer. The final result of the in-stack adjusting algorithm is already shown

in Fig. 5(d) in Section 4.1.

5. Extension to Multi-Layer 3D-NoC

When extending the B2T algorithm to 3D-NoC with an arbitrary number of layers,

we do not need to change the first step of the algorithm. Major extension needs
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to be applied to the in-stack adjustment algorithm to meet the requirements for

3D-NoC with more than two layers.

Based on Algorithm 1, the in-stack adjustment algorithm can be adjusted with

a recursive manner. Assume that a 3D-NoC has N layers. In the extended in-stack

adjustment algorithm, we first divide the N cores in each stack into two subsets,

each of which contains N/2 cores. We view the two subsets of cores as two hyper-

cores as mentioned in Section 4.2. Next, we can apply the Algorithm 1 to assign

the tasks to the two hyper-cores. Within each hyper-core, we can further divide the

cores into two hyper-cores and recursively repeat the procedure until there exists no

hyper-core containing more than one core. We note that sometimes the hyper-core

may contain odd numbers of cores. In such cases, when dividing the cores, we have

to make sure the hyper-core located closer to the bottom layer contains one less core

than the other. In this way, we can guarantee that the power consumption of the

cores closer to the heat sink always consume more power than cores located further

away from the heat sink. The pseudo code of the extended in-stack adjustment

algorithm is shown in Algorithm 2.

Algorithm 2 In-stack adjustment algorithm with multi-layer extension

Input: Mb, Ps = {pi, pi+1, ... , pj}
Output: M

1: M = ∅
2: if i == j then

3: M+ = Mb;

4: return;

5: else if i+ 1 = j then

6: (Mi,Mj) = in stack adjust 2layer(Mb, pi, pj); //Algorithm 1.

7: M = M +Mi +Mj ;

8: return;

9: else

10: k = (i+ j)/2;

11: Pb = pi, ... , pk−1;

12: Pt = pk, ... , pj ;

13: (Mb,Mt) = in stack adjust 2layer(Mb, Pb, Pt);

14: in stack adjust(Mb,Pb);

15: in stack adjust(Mt,Pt);

16: end if

Fig. 7 uses an example to show how the extended in-stack adjustment algorithm

works on a 4-layer 3D-NoC. In the example, the four cores in the stack are divided

into two hyper-cores and the tasks are adjusted into the two hyper-cores according

Algorithm 1. Next, within each hyper-core of processors, Algorithm 1 is invoked

again to assign tasks to each individual processor.
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Fig. 7. Apply Bottom-to-Top algorithm in a four-layer 3D-NoC

6. Evaluation

In this section, we evaluates the performance of our B2T algorithm on a 2-layer 3D-

NoC and a 4-layer 3D-NoC. The results are compared to state-of-the-art thermal-

aware scheduling algorithms designed for 2D-NoC.

6.1. Experimental Results for 2-layer 3D-NoC

Setup. The experiments are carried out on a target 3D-NoC system which has

eight processors equally placed on two layers. The 8-core processor provides enough

computing resources to show the effectiveness of the scheduling algorithms. HotSpot

5.1 was used as the thermal simulation tool.17 The thermal parameters of HotSpot

are shown in Table 2. The other parameters follow the default settings of HotSpot.

The similar floor plan setting could be found in previous studies.14.

Table 2. Experiments of real application based task graphs

Parameter Value

Die thickness 0.15mm

Inter-layer material thickness 0.02mm

Die capacitance 1.76 × 10−6 J/(m3 ·K)

Die resistance 0.01mK/W
Inter-layer material resistance 0.25mK/W

In the experiments, we use two kinds of benchmarks. The first group of bench-

marks are randomly generated task graphs and the second group of benchmarks

are real-application-based task graphs. The randomly generated task graphs are

selected from Standard Task Graph (STG).22 The STG task graph set is com-

monly adopted in previous studies to evaluate the performance of scheduling

algorithms.23,24 In the experiments, five sets of randomly generated task graphs

are used; each set contains 100 task graphs; the number of nodes inside each task

graph are 50, 100, 300, 500, 750 respectively. The real application based task graphs

is adopted from.25
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For comparison, we implement two efficient heuristic-based thermal-aware

scheduling algorithms designed for 2D-NoC in the experiments. The first algorithm

is the heuristic-based algorithm proposed by Hung et al.9 which aims at minimizing

the average power consumption in each core in a NoC (Min. Pow.). The other com-

parison algorithm is the heuristic proposed by Stavrou et al. 10 which maps the task

with the highest power consumption to the coolest core in the NoC (coolest). In

the experiments, the weighting parameter α of the cost function defined in Eq. (4)

is set to 1.

In the experiment, we first run the scheduling algorithms to produce the schedule

of tasks. Then the power trace of accumulated power consumption of all processors

during the task execution is generated according to the schedule. Finally, HotSpot

simulates the transient temperature of the 3D-NoC corresponding to the power

trace.

Results. In the experiments, since the peak temperature and execution time of

each application largely depends on the input task graph, it is infeasible to directly

compare the peak temperature and execution time of each application. Therefore,

we define two new metrics for the evaluation. The first metric is the average relative

peak temperature, denoted by ∆̄τ . ∆̄τ is defined by Eq. (8), where τi is the peak

temperature of the ith application in one benchmark set. The second metric is the

normalized average execution time, denoted by T̄ . Eq. (9) defines T̄ , where ti is

the execution time of the ith application in the benchmark set. Using ∆̄τ and T̄ as

the metrics in the experiments could effectively eliminates the influence caused by

different input task graphs.

∆̄τ = avg{τi −min
i

(τi)} (8)

T̄ = avg{ ti
mini(ti)

} (9)
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Fig. 8. Comparison of the relative peak temperature.
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Fig. 9. Comparison of average normalized execution time.

Fig. 8 compares the average relative peak temperature of the five benchmark

groups achieved by the three algorithms. From the figure we can see that our B2T

scheduling algorithm achieves significant peak temperature reduction compared to

the other two algorithms. The average reduction is 4.38◦C and the maximum re-

duction is 7.69◦C. This is because our algorithm keeps low-power tasks on the

top layer processors and high-power tasks on the bottom layer processors. Such

power distribution is thermal-efficient according to the observation mentioned in

Section 2. Fig. 9 compares the normalized average execution time of random task

graphs achieved by the three algorithms. The average execution time are all nor-

malized to the largest average execution time collected in the experiments. It shows

that our algorithm outperforms the other two algorithms by 2% on average with a

maximum performance saving of 4%.

Table 3. Experiments of real application based task graphs

Benchmark Robot Sparse fpppp

Algorithm Time a Temp.b Time Temp. Time Temp.

B2T 1264 110.75 596 102.84 1350 125.04
Min. Pow. 1236 117.25 568 114.73 1284 134.63

Coolest 1218 119.79 608 113.54 1294 130.77
aThe execution time is measured in 102 clock cycles.
bThe peak temperature of the 3D-NoC is measured in ◦C.

To further verify the performance of the B2T scheme, we carry out the ex-

periments on real-application-based task graphs. As mentioned above, three task

graphs, Fpppp, Sparse and Robot are selected from.25 Table 3 compares the exe-

cution time of the applications and peak temperature of the 3D-NoC achieved by

the three algorithms. The B2T algorithm shows significant temperature reduction

in all cases. For each of the three applications, up to 8.96◦C, 11.89◦C and 9.59◦C

peak temperature reduction are achieved respectively. Although the execution time

achieved by our B2T scheme is not always the minimum, it is comparable to the
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execution time achieved by the other two algorithms. The maximum increase in

execution time is within 5%.

6.2. Experimental Results for 4-layer 3D-NoC

Table 4. Experiments of real application based task graphs on 4-layer

3D-NoC

Benchmark Robot Sparse Fpppp

Algorithm Time a Temp.b Time Temp. Time Temp.

B2T 1318 130.19 566 121.19 1417 147.32
Min. Pow. 1297 139.31 583 132.50 1393 156.23

Coolest 1370 142.69 625 134.42 1435 152.50
aThe execution time is measured in 102 clock cycles.
bThe peak temperature of the 3D-NoC is measured in ◦C.

To evaluate the performance of the extended B2T algorithm for 3D-NoC with

more than 2-layers, we carry out the experiments on a 4-layer 3D-NoC. In order to

fairly compare the difference between the results of 2-layer and 4-layer 3D-NoC. The

4-layer 3D-NoC also contains eight cores. The cores align in a 1×2×4 array. We test

the execution time and peak temperature of the real-application-based benchmarks

in the experiment and the results are shown in Table 4. Compared to the results

shown in Table 3, the peak temperature of the 4-layer 3D-NoC is significantly higher

due to the increase in power density. Same as the experiments for the 2-layer 3D-

NoC, the B2T algorithm also shows significant temperature reduction in the 4-layer

3D-NoC. For each of the three applications, up to 12.50◦C, 13.23◦C and 8.91◦C

peak temperature reduction are achieved respectively. The differences in execution

time achieved by the B2T algorithm and the other two algorithms are also always

within 5%. The results show that the extended B2T algorithm is very efficient in

reducing the peak temperature for 3D-NoC with more than two layers.

6.3. The Influence of the Weighting Parameter

As discussed in Section 4.2, the weighting parameter α in the cost function Eq. (4)

could affect the result of the experiments. Table 5 shows the execution time and

peak temperature of the Fpppp application in the 2-layer 3D-NoC achieved by our

B2T algorithm with different α settings. When α equals to 0, the algorithm aims at

minimizing the execution time of the application. The resulting peak temperature is

also the highest since the thermal concern is removed. As α increases, the execution

time of the application also increases and the peak temperature decreases. However,

when α is larger than 2, the trend of execution time increasing and peak temperature

decreasing slows down. This is because when α is large enough the performance

concern becomes negligible and the scheduling problem can be viewed a single-
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Table 5. The execution time and peak temper-

ature of Fpppp with different α values.

α Execution time Peak temperature

(102 cylces) (◦C)

0 1273 131.24

0.5 1287 128.36
1 1350 125.04

2 1436 118.54

3 1441 118.03

objective optimization problem. In this condition, further increasing α could not

make significant changes.

7. Conclusion

Thermal management has been an important issue for 3D-NoC design. In this pa-

per, we proposed an efficient thermal-aware task graph scheduling algorithm called

B2T (Bottom-to-Top) scheme. The scheme first maps the task graph at the bottom

layer of the 3D-NoC and then selectively adjusts some task to the top layer to reduce

execution time while maintaining low operating temperature. We further extend the

algorithm for 3D-NoC with an arbitrary number of layers. Experimental results on

2-layer 3D-NoC shows up to 11.9◦ reduction in peak temperature and up to 4% exe-

cution time reduction when compared to previous task graph based method. In the

experiments with 4-layer 3D-NoC, our B2T algorithm achieves greater temperature

reduction (up to 13.23◦C).
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