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Abstract—Graph coloring is a fundamental NP-hard problem
in graph theory. It has a wide range of real applications, such as
Operations Research, Communication Network, Computational
Biology and Compiler Optimization. Notable efforts have been
spent on designing its approximation algorithms. Halldrsson
proposed the algorithm (denoted as SampleIS) with the current
best known approximation ratio. However, its time complexity is
O(|G|3), where |G| is the number of vertices of a graph G. It
is clear that SampleIS is not practical for large graphs. In this
paper, we propose a practical vertex-cut based coloring technique
(VColor) for coloring large graphs. First, we partition G into
k connected components (CCs) of a small size s by removing a
vertex-cut component (VCC). For each CC, we apply our novel col-
oring algorithm, based on maximal independent set enumeration.
The approximation ratio and the time complexity for coloring the

k CCs are log s+ 1 and O(ks23s/3), respectively, whereas those
of SampleIS are ks(log log ks)2/ log3 ks and O(k3s3). For the
VCC, we simply apply SampleIS. To combine the colorings of
the CCs and the VCC, we propose a maximum matching based
algorithm. Second, in the context of a database of graphs, users
may color many graphs. We propose an optimization technique,
inspired by multi-query optimization, for coloring a set of graphs.
We design a VP hierarchy (VPH) to represent the common
subgraphs as the common CCs. Third, we propose techniques for
determining the optimal values of the parameters of VColor. Our
extensive experimental evaluation on real-world graphs confirms
the efficiency and/or effectiveness of our proposed techniques. In
particular, VColor is more than 500 times faster than SampleIS,
and the number of colors used are comparable on real graphs Yeast
and LS.

I. INTRODUCTION

This paper revisits the classical graph coloring problem.
It is to color the vertices of a graph using the fewest colors
such that no two adjacent vertices having the same color. For
example, Fig. 1 presents two graphs and their colorings.

The importance of graph coloring has long been recognized
in the literatures of Operations Research, Communication
Network, Computational Biology and Compiler Optimization,
among others:

• Nucleic Acid Sequence Design. Given a set of nucleic
acids, a dependency graph [1] is a graph, where each

vertex is a nucleotide and two vertices have an edge iff
the two nucleotides form a base pair in at least one of
the nucleic acids. A coloring of the dependency graph
is a nucleic acid sequence that is compatible with the
set of nucleic acids.

• Frequency Assignment. A cellular phone network is
modeled as a graph, where a vertex is a base station
and two vertices are neighbor iff the two base stations
are in communication range. When assigning frequen-
cies to the base stations, the neighbors that are close to
each other need to be assigned to different frequencies
to avoid interference. It is exactly a graph coloring of
the network [2].

• Compiler Optimization. The register allocators of al-
most all modern production compilers are based on
graph coloring [3]. Specifically, given a set of registers
and values, one may construct an interference graph,
where a vertex is the live range of a value and an edge
indicates that the two live ranges have overlappings
and interference with each other. Register allocation
is equivalent to color the interference graph.

• Scheduling. Assume that we have to schedule a set
of interferencing jobs (e.g., scheduling aircrafts to
flights). We can construct a conflict graph, where the
vertices are jobs and two vertices have an edge iff the
corresponding jobs cannot be executed at the same
time. Let colors denote available time slots and each
job needs a time slot. The coloring of the conflict
graph with minimum number of colors is the schedule
of the smallest time span [4].

Since graph coloring is NP-hard, notable efforts have been
spent to propose approximation algorithms (e.g., [5], [6], [7],
[8], [9], [10]). However, there are at least three technical
challenges to directly apply them to color the graphs nowadays.
(I) Firstly, Halldrsson [6] have proposed the approximation
algorithm (denoted as SampleIS) with the current best known
approximation ratio |G|(log log |G|)2/ log3 |G|. However, its
time complexity is O(|G|3). It is hence impractical to cope
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Fig. 1: An example of two graphs and their colorings

with the scale of real graphs nowadays. For example, in
our preliminary experiments, SampleIS takes 610 and 2,381
seconds for coloring a biology graph Yeast and a latin square
graph LS with just 3K and 0.9K vertices, respectively, and
does not finish after running on a road network (having 260K
vertices) for one week. (II) Secondly, in practice, a graph
database may contain numerous of graphs. For example, the
popular biological graph database PubChem contains millions
of graphs [11]. Real graphs often have many common sub-
structures (e.g., as reported in [12], [13]). In Nucleic Acid
Sequence Design, the biologists often study several sequences
and hence they will color multiple dependency graphs. The
dependency graphs often have common substructures as the
number of distinct base pairs is small in practice. In Complier
Optimization, coloring many interference graphs is needed be-
cause a computer often runs several programs. The interference
graphs have common substructures as the programs invokes
common libraries. However, existing methods mainly focus on
the coloring of a single graph, where the common substructures
among the graphs are not well utilized. There are hence many
optimization opportunities when compared to directly applying
existing methods to color each graph individually. (III) Thirdly,
many graph coloring methods involve a few parameters and
their values affect the running times.

In this paper, we propose a novel vertex-cut based col-
oring framework (VColor) to address the challenges. For
challenge (I), we propose to color a graph G in a divide and
conquer manner. Specifically, we partition G to k connected
components (CCs) of a small size s by removing a vertex-cut
component (VCC). The advantage of this vertex-cut partition
is that there is no crossing edge between the CCs, s.t. each CC
can be colored independently. To color the CCs, we design a
coloring algorithm based on maximal independent set enumer-
ation. Its approximation ratio is log s+1 and time complexity
is O(ks23s/3). These are much better than the approximation

ratio ks(log log ks)2/ log3 ks and time complexity O(k3s3)
of SampleIS on the CCs. To color the vertex-cut component
VCC, we simply adopt SampleIS, because VCC can often
be small enough such that O(|VCC|3) is often affordable. To
combine the local colorings, we propose an optimal algorithm
based on the maximum matching between the local colorings.
Our experiments show the our technique can significantly
reduce the running time, while keeping the number of colors
comparable to SampleIS. In particular, in our experiments, our
technique takes only 1.2 and 3.2 seconds to color Yeast and
LS, which are about 500 and 700 times faster than SampleIS,
respectively, and the numbers of colors are comparable to those
of SampleIS. The reasons of using comparable number of
colors with SampleIS are as follows. i) VColor and SampleIS

both essentially iteratively extract large independent sets (ISs).
ii) The size of the IS found by VColor and that found by
SampleIS in each iteration are relatively close.

For challenge (II), we propose a technique, inspired by
multi-query optimization, to optimize the coloring of a set of
graphs. Since VColor colors graphs based on their vertex-
cut partitions (VPs), we can take the common subgraphs as
the common CCs of the VPs of the graphs. In this way, the
common subgraphs are colored just once and the overall com-
putation is hence reduced. We propose a vertex-cut partition
hierarchy (VPH) to represent the common CCs of the VPs of
the graphs. Since constructing an optimum VPH to minimize
the coloring time is NP-hard, a heuristic algorithm is proposed
to construct an optimal one. Our technique can significantly
reduce the running time to color a set of graphs. For example,
on a set of 800 graphs, our technique is about 2 times faster
than coloring each graph individually.

For challenge (III), we propose a cost model for the
coloring time of a VPH in terms of the parameters of our
technique. We propose an efficient sampling based method to
estimate the optimal values of the parameters with the cost
model. Our experiments show that on Pokec and PA graphs,
given a set of possible values of the parameters, the VPH using
the values that are estimated optimal by the cost model uses
only at most 15% and 18% more time than the VPH using the
optimum values.

In summary, the contributions of this paper are as follows.

• We propose a vertex-cut based approach VColor for
coloring large graphs. The coloring results are compa-
rable with those of SampleIS, which is the algorithm
with the best known approximation ratio. Further, we
are two orders of magnitudes faster on Yeast and
LL and produce coloring results even when SampleIS

cannot finish.

• We propose a technique to optimize the coloring of a
set of graphs. A vertex-cut partition hierarchy (VPH)
is designed to represent the common CCs of the VPs
of the graphs. A heuristic algorithm is proposed to
construct an optimal VPH.

• We propose a cost model to express the coloring time
of our technique in terms of certain parameters. An
efficient sampling based search method is proposed to
estimate the values of the parameters that minimize
the running time on a given set of graphs.

• Our experiments verify the effectiveness and efficiency
of our techniques on real-world graphs.

Organizations. The rest of this paper is organized as follows.
Sec. II provides the background of this paper. Sec. III proposes
the vertex-cut based coloring technique. The techniques for
optimizing the coloring of a set of graphs is detailed in Sec. IV.
The experimental evaluations are reported in Sec. V. Sec. VI
discusses the related work and Sec. VII concludes this paper.

II. PRELIMINARIES AND PROBLEM DEFINITION

A. Notations on graphs

We start by recalling some notations for graphs. This
paper studies undirected graphs, or simply graphs. A graph is
denoted as G = (V,E), where V (G) and E(G) are the vertex
set and the edge set of G, respectively. |G| denotes the size of
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TABLE I: Notation table

P , PG vertex-cut partition of G
V CC(P) vertex-cut component in P
CC(P) connected component in P

s size of connected component in P
VPB vertex-cut partition bigraph

H VP hierarchy

L the number of VPBs in H
∆, ∆G the largest degree of the vertices of G

α number of colors

G and |G| = |V (G)|. N(v) and N(S) denote the neighbors

of v ∈ V (G) and S ⊆ V (G), respectively. N(v) and N(S)
denote the non-neighbors of v and S, respectively. ∆ denotes
the largest degree of vertices in G. A vertex-cut of G is a set
of vertices of G whose removel makes G disconnected. An
independent set (IS) I of G is a subset of V (G), such that
∀u, v ∈ I , (u, v) 6∈ E(G). A maximal independent set (MIS)
M of G is an IS, such that M ∪ {v} is not an IS, for any
v ∈ V (G)\M . M(G) denotes the set of all MISs of G. An
independent set partition I of G is a set of nonempty subsets
of V (G), where ∀I ∈ I is an IS of G, ∀I, I ′ ∈ I, I ∩ I ′ = ∅
and I ∪ I ′ is not an IS of G and ∪I∈II = V (G). The size of
an IS partition I is the number of ISs in it.

Definition 1: A coloring of G is an assignment of an
unique color to a vertex of G such that no two neighboring
vertices are assigned the same color.

If a graph G can be colored using α colors, G is called
α-colorable. The minimum value of α is called the chromatic
number of G, denoted by χG. The set of vertices assigned
with the same color is called a color class.

Proposition 1: An α-coloring of G is equivalent to an IS
partition of G of size α, where each IS is a color class.

Problem definition. Given a set of graphs D, color each graph
G in D with as few colors as possible.

Graph coloring is NP-complete and we study its optimiza-
tion problem in this paper.

B. SampleIS Algorithm

In this subsection, we review the SampleIS algorithm [6],
which is the approximation algorithm with the best known
approximation ratio. It is presented in Fig. 2. The main idea
of SampleIS is to iteratively extract a large independent set
(IS) from G until G is empty. SampleIS has two sub-functions
SampleIS step and CliqueRemoval to compute a large IS
of a graph G. The larger IS computed by SampleIS step and
CliqueRemoval is extracted in each iteration.

The rationale of SampleIS step is as follows. Given an
α-colorable graph G, SampleIS step samples an IS I of
G of size logα |G|. Then, it recursively processes N(I). For

a higher probability of sampling a large IS in N(I), N(I)
should be large. The recursion stops until N(I) is small
enough and it invokes CliqueRemoval to compute an IS, as
CliqueRemoval guarantees to find a large IS from a small
N(I). SampleIS step assumes G is α-colorable. However,
the value of α is not known in advance. Therefore, SampleIS
tries all values of α ∈ [1,∆ + 1] (Line 02), as a graph is
assured colorable by ∆+ 1 colors [14].

Before we describe CliqueRemoval, we first describe its
sub-function Ramsey. The rationale of Ramsey is to choose

Procedure SampleIS

Input: A graph G

Output: A minimal graph coloring of G

01 while |G| > 0

02 I1 = max∆+1
α=1 SampleIS step(G,α)

03 I2 = CliqueRemoval(G)
04 removing max(I1, I2) from G

function SampleIS step

05 if |G| ≤ 1 return G

06 while true
07 randomly pick a set I of logα |G| vertices from G

08 if I is an independent set

09 if |N(I)| ≥ |G| log |G|
2α log log |G|

− |I|, return I ∪ SampleIS(N(I))

10 else

11 I′ = CliqueRemoval(N(I)) ∪ I

12 if |I′| ≥ log3 |G|
6 log log |G|

, return I′

function CliqueRemoval

13 i = 0
14 while |G| > 0
15 (Ci, Ii) = Ramsey(G)
16 remove Ci from G

17 i = i+ 1
18 return maxi Ii

function Ramsey

19 if |G| = 0 return (∅, ∅)
20 choose some v ∈ G

21 (C1, I1) = Ramsey(N(v))
22 (C2, I2) = Ramsey(N(v))
23 return (max(C1 ∪ {v}, C2),max(I1, I2 ∪ {v}))

Fig. 2: Procedure SampleIS

a pivot v and recursively process both the non-neighbors and
neighbors of v. It examines the neighbors of v as the pivot
v may be a bad choice and its neighbors may have a large
IS. The same logic is also used to compute a large clique.
Ramsey has a property that if the clique found is large, the
IS found is small; otherwise, the IS found is large. Hence,
CliqueRemoval iteratively applies Ramsey and removes the
clique from G. The largest IS found in all iterations is returned.

The approximation ratio of SampleIS is
|G|(log log |G|)2/ log3 |G|, which is the best known
approximation ratio. However, the time complexity of
SampleIS is as high as O(|G|3), as the time complexity of
SampleIS step is O(|G|2) and the while loop (Lines 01-04)
may execute O(|G|) times. SampleIS is hence inefficient on
large graphs in practice.

III. VERTEX-CUT BASED GRAPH COLORING

In this section, we propose our vertex-cut based graph
coloring technique (VColor). Our main steps are the following:
(i) partitioning the input graph G to a set of connected com-
ponents (CCs) by removing a vertex-cut component (VCC);
(ii) coloring the CCs and the VCC separately; and (iii)
combining the local colorings. The advantage is that VColor
can significantly reduce the running time while keeping the
coloring results comparable with that of SampleIS. We focus
on coloring one graph in this section and study coloring of a
set of graphs in the next section.

A. Vertex-cut partition

We first define the vertex-cut partition used in VColor.
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Definition 2: Given a graph G and a parameter s, a
Vertex-cut Partition (VP) of G is a graph partition P =
{CC1, CC2, ..., CC |G|−|V CC|

s

, V CC}, where V CC is the

vertex-cut component, removing which leads to connected
components {CC1, ..., CC |G|−|V CC|

s

} of the same size s.

Note that the number of CC’s in P can be ⌈ |G|−|V CC|
s ⌉

and there may often exist CCs that are smaller than s, but
it is ignored for presentation simplicity. We use V CC(P)
to denote the V CC of P and CC(P) to denote the CC’s
{CC1, CC2, ..., CC |G|−|V CC|

s

} of P .

Example 1: Suppose s = 3, Fig. 3 presents the vertex-cut
partitions of G1 and G2 that are shown in Fig. 1.

The vertex-cut partition has two properties as follows.

Property 3.1: Given a VP P of a graph G, suppose CCi

in P can be colored using αi colors, CC(P) can be colored
using max{α1, α2, ..., α|CC(P)|} colors.

Proof: Since there is no crossing edge between the CC’s
in P , any vertex vi ∈ CCi can have the same color with any
vertex vj ∈ CCj , for i 6= j. Without loss of generality, suppose
αj = max{α1, α2, ..., α|CC(P)|}. For any CCi 6= CCj , we can
any pick αi colors from the αj colors of CCj to color CCi.
It can guarantee that no two neighboring vertices are assigned
with the same color. Therefore, all CC’s in P can be colored
using max{α1, α2, ..., α|CC(P)|} colors.

Property 3.2: Given a VP P of a graph G, suppose CC(P)
can be colored using αcc colors and V CC can be colored using
αvcc colors, G can be colored using at most αcc+αvcc colors.

Proof: Note that there can be crossing edges between the
CC’s and the V CC. Therefore, if we color the CC’s and the
V CC with different colors, i.e., no color of CC’s is used to
color V CC, we can guarantee that no two neighboring vertices
are assigned with the same color. Therefore, G can be colored
using at most αcc + αvcc colors.

Note that αcc+αvcc is just an upper bound of the number
of colors to color G. Our coloring algorithm proposed in the
following section can combine the colorings of CC(P) and
the V CC(P) and return a minimal coloring of G.

B. Coloring algorithm

By exploiting Properties 3.1 and 3.2, we propose our graph
coloring algorithm as shown in Fig. 4. Given a graph G and
a VP P of G, Line 01 colors the VCC in P using SampleIS.
For each CCi in P , Line 03 computes the set of all MISs of
CCi, M(CCi), using MIS enumeration algorithms (e.g., [15],
[16]). Line 04 colors CCi based on selecting from M(CCi) a
minimal IS partition of CCi that can cover CCi. Finally, the
colorings of the CCs and the V CC are combined (Line 05).

Procedure Color

Input: A graph G, a VP P of G
Output: A minimal IS partition of G

01 Ivc = SampleIS(V CC)
02 for each CCi in P
03 M(CCi) = MISEnum(CCi) //enumerate all MISs of CCi

04 Ii = ISPartition(M(CCi), CCi)
05 return comb(Ivc, I1, I2, ..., , Ik, G)

function ISPartition(M, G)
06 I = ∅
07 while | ∪I∈I I| < |G|
08 M = argmaxM∈M | ∪I∈I I ∪ {M}| − | ∪I∈I I|
09 I = M − ∪I∈II

10 add I to I
11 return I

function comb(Ivc, I1, I2, ..., , Ik, G)
12 for each i = 1 to k

13 construct an empty bigraph B

14 for each I ∈ Ivc, insert a vertex to B

15 for each J ∈ Ii, insert a vertex to B

16 for each I ∈ Ivc and I′ ∈ Ii
17 if N(I) ∩ I′ = ∅
18 insert an edge (I, I′) to B

19 compute a maximum matching M of B
20 for each I′ ∈ Ii
21 if ∃I ∈ Ivc s.t. (I, I′) ∈ M

22 I = I ∪ I′

23 else add I′ to Ivc
24 return Ivc

Fig. 4: Procedure Color

Function ISPartition computes a minimal IS partition of
CCi based on the heuristic of SetCover (Lines 06-11). In each
iteration, it selects the MIS M in M that can maximize the
marginal increase of the number of covered vertices (Line 08).
Line 09 computes a disjoint IS I by removing the vertices
already covered from M . Line 10 adds I to the IS partition.

Function comb combines the IS partitions to obtain the final
minimal IS partition (i.e., a coloring). Note that (∪k

i=1Ii)∪Ivc
is an IS partition of G, but it may not be minimal. Thus,
Function comb (Lines 12-24) merges the ISs in (∪k

i=1Ii)∪Ivc
whose union is still an IS of G in order to obtain a smaller
IS partition of G. Since ∀I ∈ Ii and ∀I ′ ∈ Ij , i 6= j, I ∪ I ′

is an IS of G, we just determine the combination of Ivc with
each Ii, respectively (Lines 13-23). The minimum IS partition
I combined from Ivc and Ii is an IS partition such that I is
a subset of some IS in I, for any I ∈ Ivc ∪Ii. We find that it
is equivalent to compute the maximum matching of a bigraph
B = (Ivc ∪Ii, E), where (I, I ′) ∈ E iff I has no neighbor in
I ′. Therefore, Lines 13-18 construct such a bigraph, Line 19
computes the maximum matching and Lines 20-23 compute
the unions of the ISs that are in the maximum matching.

Example 2: Let us color the graph G1 in Fig. 1 us-
ing the vertex-cut partition shown in Fig. 3. Proc. Color

first colors V CC using SampleIS, and obtains a mini-
mal IS partition Ivcc = {{v4, v5, v9}, {v8, v10}}. Then,
we enumerate all MISs and compute a minimal IS parti-
tion using SetCover for each CC. I1 = {{v1, v3}, {v2}},
I2 = {{v7, v11}, {v6}} and I3 = {{v12, v14}, {v13}}. Fi-
nally, we combine the local colorings. After combining I1
with Ivcc, Ivcc = {{v4, v5, v9}, {v2, v8, v10}, {v1, v3}}. After
combining I2 with Ivcc, Ivcc = {{v4, v5, v9}, {v2, v6, v8,
v10}, {v1, v3, v7, v11}}. After combining I3 with Ivcc, Ivcc =
{{v4, v5, v9}, {v2, v6, v8, v10, v13}, {v1, v3, v7, v11, v12, v14}},
which is returned as result.
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Proposition 2: The approximation ratio of Proc. Color is
log s+ 1 + |V CC|(log log |V CC|)2/ log3 |V CC|.

Proof: Let χG, χcc and χvcc denote the chromatic number
of the graph G, CC(P) and V CC(P), respectively. Let αcc

and αvcc denote the number of colors to color CC(P) and
V CC(P) by Proc. Color, respectively.

For CC(P), we note that the chromatic number of a
graph equals to the size of the minimum set of MISs of
that can cover the graph. Therefore, for any CC in P , the
heuristic of SetCover can produce a coloring of CC with
an approximation ratio log s + 1. Based on Property 3.1, the
approximation ratio of coloring all CC’s in P is also log s+1.
Hence, αcc ≤ (log s+ 1)χcc.

For V CC(P), since we use SampleIS to color the
V CC, the approximation ratio of the coloring of V CC
is |V CC|(log log |V CC|)2/ log3 |V CC|. Hence, αvcc ≤
(|V CC|(log log |V CC|)2/ log3 |V CC|)χvcc.

Since coloring a graph needs more colors than
coloring a subgraph, χcc ≤ χG and χvcc ≤ χG.
It is clear that (log s + 1)χcc ≤ (log s + 1)χG

and (|V CC|(log log |V CC|)2/ log3 |V CC|)χvcc ≤
(|V CC|(log log |V CC|)2/ log3 |V CC|)χG. Hence, αcc +
αvcc ≤ (log s+1+|V CC|(log log |V CC|)2/ log3 |V CC|)χG.
By Property 3.2, G can be colored with αcc +αvcc colors.

We note that the approximation ratio of Proc. Color equals
to that of SampleIS in the worst case.

Proposition 3: Given a VP P =
{CC1, ..., CC |G|−|V CC|

s

, V CC} of a graph G, the time

complexity of Proc. Color is O((|G| − |V CC|)s3s/3 +

|V CC|3 + |G|−|V CC|
s

√
2∆2.5

G ).

Proof: Let αcc and αvcc denote the number colors to color
CC(P) and V CC(P) by Proc. Color, respectively.

For a CC, it takes O(3
s
3 ) time to enumerate all MISs of

it. To compute a set of MISs to cover CC, the heurisitic
of SetCover takes O(s3

s
3 ln 3

s
3 ) = O(s23

s
3 ) time [17].

Therefore, CC can be colored in O(s23
s
3 ) time. It totally takes

O((|G| − |V CC|)s3s/3) time to color all CC’s.

For the V CC, since the time complexity of SampleIS is
cubic, it takes O(|V CC|3) time to color it.

With reference to the combination step, note that a graph
G can be colored by ∆G + 1 colors by a simple greedy
algorithm [14]. Since both our SetCover based coloring
method and SampleIS outperform the greedy, αcc ≤ ∆G + 1
and αvcc ≤ ∆G + 1. Therefore, the vertex number of
the bigraph B is O(2∆G). Since the Hopcroft-Karp algo-
rithm, which is the best known maximum matching algo-

rithm, takes O(
√

|V (B)||E(B)|) on a graph B, the time
complexity to combine the colorings of the V CC and a
CC is O(

√
2(∆G)

2.5). The time to combine all CC’s is

O( |G|−|V CC|
s

√
2∆2.5

G ).

The total time is hence O((|G|−|V CC|)s3s/3+|V CC|3+
|G|−|V CC|

s

√
2∆2.5

G ).

Procedure VP cons

Input: A graph G, component size s

Output: A minimal vertex-cut partition

01 P = ∅, V CC = ∅, G′ = G

02 while |G′| > s

03 S = ∅
04 add a vertex v, s.t. N(v,G′) is the smallest, to S

05 while |S| < s

06 pick v from N(S,G′) s.t. N(v,G′)\S is the smallest
07 add v to S

08 P = P ∪ {S}
09 V CC = V CC ∪N(S,G′)
10 remove S and N(S,G′) from G′

11 P = P ∪ {G′}
12 return P ∪ {V CC}

Fig. 5: Procedure VP cons

C. Vertex-cut partition construction

Proposition 3 presents that when s is fixed, it is desired to
minimize the size of the V CC of the vertex-cut partition of G.
However, computing an optimum VP is an NP-hard problem.

Theorem 1: Given a graph G and a parameter s, it is NP-
hard to construct a VP P of G such that the size of V CC in
P is minimized.

Proof: (Sketch) Our problem is clearly in NP. We then
prove that the minimum balanced α-vertex separator (MBVS)
problem, which is NP-hard [18], can be reduced to it. Specifi-
cally, given a graph G and a value of α, we set s=α|V |. Then,
a VP with the mimimum V CC is a solution of MBVS.

We hence propose a heuristic algorithm to compute a VP
of G with a minimal V CC. The main idea is that we use
the subgraphs of G that have the minimal neighborhoods as
the CCs. Specifically, we use the logic of BFS on G to
explore a subgraph S of size s (Lines 03-07). To minimize the
neighborhood of N(S,G), at each step of BFS, we pick the
vertex adding which incurs the smallest increase of neighbors
(Lines 04,06). S is added to P and N(S,G′) is added to V CC
(Lines 08-09). S and N(S,G′) are removed from G′ for the
next iteration (Line 10). The algorithm is presented in Fig. 5.

Example 3: Consider the graph G1 in Fig. 1 and s = 3.
CC1 is computed as follows. We first add v1 to CC1 because
it is one of the vertices of the smallest degree in G1 and
V CC = {v2}. Since v1 only has one neighbor v2, we add v2 to
CC1 and V CC = {v3, v5}. v2 has two neighbors, v3 and v5.
If we add v2 to CC1, V CC = {v4, v5}. If we add v5 to CC1,
V CC = {v3, v6, v8}, which is larger than that of v2. There-
fore, CC1 = {v1, v2, v3} and V CC = {v4, v5}. The same
logic is applied to G1\V CC. Finally, CC2 = {v6, v7, v11}
and CC3 = {v12, v13, v14} and V CC = {v4, v5, v8, v9}.

IV. COLORING A SET OF GRAPHS

In this section, we study the coloring of a set D of graphs.
Our main idea is to extract the common subgraphs of the
graphs in D and use them as the common CCs of the VPs of
the graphs, s.t. the common CCs are only processed once. We
propose a vertex-cut partition hierarchy (VPH) to represent the
common CCs of the VPs of the graphs. The number of colors
used by VPH to color each graph in D is only slightly larger
than that of coloring each graph individually in practice.
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v2,1 ↔ v1,16, v1,19
v2,2 ↔ v1,13, v1,18
v2,3 ↔ v1,14, v1,20
v2,4 ↔ v1,17, v1,21

v1,1 ↔ v3,G1
, v1,G2

v1,2 ↔ v1,G1
, v3,G2
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, v2,G2

Mappings with original vertex IDs:
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v1,16 ↔ v10,G1

v1,17 ↔ v5,G1

v1,21 ↔ v8,G2

Fig. 6: An example of VP hierarchy

A. Vertex-cut partition hierarchy

We first define a vertex-cut partition bigraph (VPB), which
is the building block of our vertex-cut partition hierarchy.

Definition 3: Given a set of graphs D and a parameter s, let
Pi denote the VP of Gi ∈ D, the vertex-cut partition bigraph
(VPB) is a bigraph B = (Vvcc ∪ Vcc, E), where

• Vvcc = {V CC1, V CC2, ..., V CC|D|}, V CCi =
V CC(Pi);

• Vcc = CC(P1) ∪ CC(P2) ∪ ... ∪ CC(P|D|);

• |CC| ≤ s for any CC ∈ Vcc; and

• an edge (CC, V CC) ∈ E iff there exists a Pi such
that both CC and V CC belong to Pi.

Let Vvcc(B) and Vcc(B) denote the sets of nodes in Vvcc

and Vcc of B, respectively. Then, we define the vertex-cut
partition hierarchy as follows.

Definition 4: Given a set of graphs D and a parameter s,
the VPH H is a list of VPBs B0, B1, ..., BL, where

• Vvcc(B0) = {G1, G2, ..., G|D|}, Vcc(B0) = ∅ and
E(B0) = ∅;

• Bl is a VPB of the Vvcc of Bl−1; and

• |CC| ≤ s for any CC ∈ ∪L
l=1Vcc(Bl)

Example 4: Fig. 6 presents the VPH of D = {G1, G2}
with s = 3 and L = 2. For presentation simplicity, let V CCl,i

and CCl,i denote the V CCi and CCi of Bl, respectively.
Pi(Bl) denotes the VP of V CCl−1,i, which is a subgraph
of Bl induced by V CCl,i and its neighboring CC’s in
Bl. Pi(B1) is the VP of Gi ∈ D. We reassign the IDs
of the vertices for illustration purpose and the mappings
with the original IDs are also presented in Fig. 6. B1 is
a VPB of G1 and G2 and B2 is a VPB of V CC1,1 and
V CC1,2. P1(B1) = {CC1,1, CC1,2, CC1,3, V CC1,1},
P1(B2) = {CC1,1, CC1,2, CC1,3, CC1,4, V CC1,2},
P2(B1) = {CC2,1, CC2,2, V CC2,1} and P2(B2) =
{CC2,1, CC2,2, V CC2,2}.

Procedure MGColor

Input: VPH H of a set of graphs D, vcc level l
Output: A minimal IS cover for each graph in D

01 for each V CCi in BL

02 Ii = SampleIS(V CCi)
03 while l = L to 1
04 for each CC in Bl

05 MCC = MISEnum(CC)
06 ICC = ISPartition(MCC)
07 for each i = 1 to |D|
08 let Pi(Bl) = {CC1, CC2, ..., CCk, V CCi}
09 Ii = comb(Ii, ICC1

, ICC2
, ..., ICCk

)
10 return I1, I2, ..., I|D|

Fig. 7: Procedure MGColor

B. Coloring algorithm using VPH

Now we present the algorithm to color a set of graphs D
as shown in Fig. 7. Our idea is that for each i = 1...|D|, we
iteratively color the V CCi,l using the logic of Proc. Color
from l=L to 0, as V CCi,0 is the Gi in D. Specifically,
Lines 01-02 color each V CCi,L of BL as the initialization and
Lines 03-09 are the main loop. For l from L to 1, Lines 04-06
first color each CC of Bl using our IS partition based method.
Then, for each i = 1...|D|, Lines 07-09 combine the colorings
of V CCi,l and its neighboring CC’s in Bl to obtain a coloring
of V CCi,l−1, as V CCi,l and its neighboring CC’s comprise
the VP of V CCi,l−1. Note that each CC of Bl is just colored
once, it can be shared in the VPs of several different V CC’s
of Bl−1.

Example 5: Consider the VPH shown in Fig. 6. For B2,
we first color V CC2,1 and V CC2,2 and obtain I1 = {{v2,5}}
and I2 = {∅}. We color the CC’s of B2 and obtain ICC2,1

= {{v2,1}} and ICC2,2
= {{v2,2, v2,4}, {v2,3}}. After comb

(and ID mapping for illustration purpose), the coloring for
V CC1,1 is I1 = {{v1,13, v1,15, v1,17}, {v1,14, v1,16}} and the
coloring for V CC1,2 is I2 = {{v1,20}, {v1,18, v1,19, v1,21}}.
Note that the color of v2,1 changes as {v2,1} is
merged with {v2,2, v2,4}. For B1, we color the CC’s
and obtain ICC1,1

= {{v1,1, v1,2}, {v1,3}}, ICC1,2
=

{{v1,4, v1,6}, {v1,5}}, ICC1,3
= {{v1,9, v1,7}, {v1,8}}

and ICC1,4
= {{v1,10}, {v1,11}, {v1,12}}. Similarly, after

comb, we obtain the colorings of G1 and G2. I1 =
{{v4, v5, v9}, {v1, v3, v7, v11, v12, v14}, {v2, v6, v8, v10, v13}}
and I2 = {{v1, v3, v6, v7, v12, v14, v16}, {v2, v5, v9, v11, v15},
{v4, v8, v10, v13}}.

Proposition 4: Given a VPH H = {B0, B1, ..., BL} of a
set of graphs D, the time complexity of Proc. MGColor

is O(s23s/3
∑L

l=1 |Vcc(Bl)| +
∑|D|

i=1 |V CCi,L|3 +√
2(
∑|D|

i=1 ∆
2.5
Gi

)(
∑L

l=1 |Vcc(Bl)|)).
Proof: As presented in the proof of Theorem 1, it

takes O(s23s/3) time to color a CC in H. Hence, it takes

O(s23s/3
∑L

l=1 |Vcc(Bl)|) time to color all CC’s in H.
Since the time complexity of SampleIS is cubic, it takes

O(
∑|D|

i=1 |V CCi,L|3) time to color all V CC’s in H. Regard-
ing the combination step, since the time for combining the
colorings of the V CC and a CC of Pi(Bl) is O(

√
2∆2.5

Gi
)

and Pi(Bl) has at most |Vcc(Bl)| CC’s, the combination

time for Pi(Bl) is hence O(|Vcc(Bl)|
√
2∆2.5

Gi
). Therefore, the

combination time for all 1 ≤ i ≤ |D| and 1 ≤ l ≤ L

is O(
√
2(
∑|D|

i=1 ∆
2.5
Gi

)(
∑L

l=1 |Vcc(Bl)|)). In all, the total time

complexity is O(s23s/3
∑L

l=1 |Vcc(Bl)|+
∑|D|

i=1 |V CCi,L|3 +√
2(
∑|D|

i=1 ∆
2.5
Gi

)(
∑L

l=1 |Vcc(Bl)|)).
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Procedure VPH cons

Input: A set of graphs D, parameters L and s

Output: VPH H of D

01 construct an empty bigraph B0

02 for each Gi in D
03 insert V CCi,0 = Gi to Vvcc(B0)
04 for l = 1 to L

05 Bl = VPB cons(Bl−1, s)
06 add Bl to H
07 return H

function VPB cons(Bl−1, s)
08 Bl is an empty bigraph
09 insert V CCl,1, ..., V CCl,|D| to Vvcc(Bl), V CCl,i is empty

10 for each V CCl−1,i in Bl−1

11 insert CC = V CCl−1,i to Vcc(Bl)
12 insert edge (V CCl,i, CC) to E(Bl)
13 let A be the set of CC’s of Bl whose size exceeds s

14 if A 6= ∅
15 C1, C2, ..., Cm = cluster(Vcc(Bl))
16 for each cluster C
17 if |C| > 1
18 compute the maximal weighted common subgraph mcs

19 insert CCmcs = mcs to Vcc(Bl)
20 for each CC in C
21 for each neighbor V CC of CC

22 insert edge (CCmcs, V CC) to E(Bl)
23 add N(mcs,CC) to V CC

24 remove mcs and N(mcs,CC) from CC

25 else //let C = {CC}
26 PCC = VP cons(CC, s)
27 for each CC′ ∈ CC(PCC)
28 add CC′ to Vcc(Bl)
29 for each neighbor V CC of CC

30 add V CC(PCC) to V CC

31 for each CC′ ∈ CC(PCC)
32 add edge (CC′, V CC) to E(Bl)
33 remove CC from Bl

34 goto 13
35 return Bl

Fig. 8: Procedure VPB cons

C. VPH construction

Proposition 4 presents that when s is fixed, the governing
factor in the time complexity is the number of CC’s and the
size of the V CC’s in H. Therefore, it is desired to minimize
the number of CC’s and minimize the size of each V CC’s in
H. However, it is again an NP-hard problem.

Theorem 2: Given a set of graphs D and the param-
eters s and L, it is NP-hard to construct a VPH of D
s.t.

∑L
l=1 |Vcc(Bl)| is minimized and each V CC of BL is

minimized.

Proof: (Outline) We establish that an instance of the
problem is equivalent to an NP-hard problem: Consider L = 1
and D = {G1, G2}, where G1 comprises two connected
components C1 and C2 and G2 consists of two connected com-
ponents C2 and C3. Assume further |C1| = |C2| = |C3| = s.
Then, constructing the optimum VPH is equivalent to compute
the maximum common subgraph between G1 and G2, which
is an NP-hard problem. Therefore, constructing the optimum
VPH is NP-hard.

We propose a heuristic algorithm to construct an optimal
VPH, whose rationales can be described as follows. (i) To
reduce the number of CC’s, we use as many common CC’s
as possible. (ii) To reduce the size of each V CC of BL, we
minimize the number of neighbors of each CC.

The construction algorithm is presented in Fig. 8. Specif-
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Fig. 9: Mapping of the MCS between G1 and G2

ically, Lines 01-03 first initialize the VPB B0 of D. Then,
Lines 04-06 iteratively construct the VPB Bl of the V CC’s
of Bl−1 using the function VPB cons. In function VPB cons,
Lines 08-12 initialize Bl, where the V CC’s of Bl−1 are the
CC’s of Bl and the V CC’s of Bl are |D| empty graphs. Then,
Lines 13-34 iteratively partition the CC’s whose size exceeds
s, until each CC of Bl is not larger than s, and add the vertex-
cut vertices of the partitions to the V CC’s of Bl. When we
partition the CC’s, we extract the common subgraphs of the
CC’s as the common CC’s of Bl. If we directly compute
the maximal common subgraph (MCS) of all CC’s, the size
of the MCS may be small. Therefore, Line 15 clusters the
CC’s, such that the MCS of the CC’s, denoted as mcs, in
each cluster C is larger than s. The cluster step is a simple
greedy algorithm. Given a list of graphs L and a cluster C, we
iteratively pick the largest graph G in L, and add G to C if
the MCS of all the graphs in C ∪ {G} is larger than s. Output
C until all graphs in the list have been tested and do the same
logic on L\C. Note that mcs is the weighted MCS, where the
weight is defined as |mcs| + avgCC∈C(|N(mcs,CC)|). mcs
is added to Vcc(Bl) (Line 19). For each CC in the cluster,
we insert an edge from mcs to each neighbor V CC of CC
(Line 22). N(mcs,CC) is added to V CC (Line 23), and mcs
and N(mcs,CC) are removed from CC (Line 24). The MCS
may not be connected. If a cluster just has one CC, we can
partition CC by constructing a VP PCC of CC (Line 26).
V CC(PCC) is added to each neighbor of CC in Bl (Line 30).
CC is replaced by CC(PCC) (Lines 27-28,33) and we insert
an edge from each CC ′ in CC(PCC) to each neighbor of CC
in Bl (Lines 31-32).

Example 6: Let us construct a VPH for D = {G1, G2} with
s = 3 and L = 2. B1 is initialized with CC1,1 = V CC0,1 =
G1, CC1,2 = V CC0,2 = G2 and two empty V CC’s. We first
compute the MCS between G1 and G2, as shown in Fig. 9.
We add the MCS to Vcc(B1) and add its neighbors in G1

and G2 to V CC1,1 and V CC1,2, respectively. CC1,2 becomes
{v9, v10, v11, v12}. Since the CC’s in B1 are still larger than
s, they are further partitioned and the result of B1 is shown in
Fig. 6. The same logic is applied to the V CC1,1 and V CC1,2

to construct B2 and Fig. 6 shows the result.

D. Determine the optimal values of s and L

Since our VColor involves two parameters s and L, we
propose techniques to determine the values of them s.t. the
coloring time is as small as possible. Our main idea is that
(i) designing a cost model to estimate the coloring time with
a VPH; (ii) estimating the coefficients of the cost model by a
sampling technique; and (iii) searching for the optimal values
of s and L whose estimated coloring time is minimal. The cost
model for determining the parameters are presented below.

Definition 5: Given a VPH H={B1, ..., BL} of D, the time
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TABLE II: Some statistics of datasets

|V (G)| |E(G)|
Pokec 1.63M 22.30M

PA 1.09M 1.54M

NY 264K 733K

Epinions 75K 508K

Yeast 3.1K 12.5K

LatinSquare 0.9K 307.4K

cost using Proc. MGColor to color the graphs in D is

t = tcc ×
L−1
∑

l=1

|Vcc(Bl)|+
|D|
∑

i=1

tvcc,i +
L
∑

l=1

|D|
∑

i=1

tcomb,l,i,

where tcc is the time to color a CC using our IS partition
method, tvcc,i denotes the time to color the V CCL,i of Pi(BL)
using SampleIS, tcomb,l,i denote the time to combine the
colorings of the V CCl,i and its neighboring CC’s.

We can estimate the parameters tcc, tvcc,i and tcomb,l,i of
the cost model by a sampling method. Specifically, we first
sample m subgraphs of the size s from the graphs in D. Then,
we color them using our IS partition method and SampleIS,
respectively. Let t1 be the average time of our IS partition
method and t2 be the average time of SampleIS on the m
samples. We can set tcc = t1, as the size of each CC is s.

We can set tvcc,i = t2(
|V CCL,i|

s )3, as the time complexity of
SampleIS is cubic and t2 is the time on a graph of size s.
To estimate tcomb,l,i, the key is to estimate the computation
time of the maximum matching of the colorings of V CC of
Pi(Bl) and each CC of Pi(Bl). We recall that the currently
best algorithm to compute the maximum matching of a bigraph
is the Hopcroft-Karp algorithm. Therefore, to estimate the
combination time of the coloring of the V CC and CC of
Pi(Bl), we can first construct a complete bigraph BCC , where
one part has ∆V CC+1 vertices and the other part has ∆CC+1
vertices. We can use the running time of the Hopcroft-Karp
algorithm on BCC as the estimation of combining the colorings
of the V CC and CC of Pi(Bl), and sum up the estimated time
of each CC in Pi(Bl) as the estimation of tcomb,l,i. To search
for the optimal values of L and s, we can construct a VPH
for each possible values of s and L and estimate the coloring
time. Note that the number of possible values of s and L is
small in practice.

V. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of
our techniques proposed in this paper.

Experimental settings. All the experiments are conducted on
a server with an Intel Xeon 2.67GHz CPU and 32GB RAM,
running CentOS 5.6. We implement the algorithm in Java
1.7. The popular graph library jgrapht [19] is used in our
implementation.

Benchmark datasets. We use six datasets in our experiments:
two graphs of small sizes LS and Yeast, two graphs of modest
sizes Epinions and NY, and two graphs of large sizes PA and
Pokec. LS is a latin square graph, which is often used in graph
coloring works. Yeast is a biological network of Yeast [20].
Epinions and Pokec are two social networks. NY and PA are
two road networks. They are available at [21]. As the original
graphs of Pokec and Epinions are directed, we convert them
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Fig. 10: Results on Yeast

into undirected graphs, by removing the directions of all edges.
Some statistics of the graphs are reported in Table II.

The running time of VColor is the total time of the VP or
VPH construction times and the coloring time. We use VColor

to refer to the whole technique. If we do not recursively
partition the V CC, VColor refers to Proc. Color; otherwise,
Proc. MGColor. On a set of graphs, VColor always refers to
Proc. MGColor. In addition, MGColor with input {G} and L=1
is equivalent to Color with the input G.

A. Comparison with existing methods

In this subsection, we not only compare VColor with
SampleIS, but also compare it with a greedy method Greedy,
as it is currently the fastest graph coloring method. Greedy
first sorts the vertices of a graph by their degrees and then
assigns to a vertex the smallest available color not used by its
neighbors ahead of it. The approximation ratio of Greedy is
∆+1, which is worse than SampleIS, but it is much faster than
SampleIS, as reported by a recent survey [22]. We compare
VColor with SampleIS only on Yeast and LS, as SampleIS

cannot finish on other graphs. L of VColor is set to be 1 on
Yeast and 3 on Epinions and NY, s.t. the VCCs are small
enough to be colored by SampleIS.

SampleIS takes 601 and 2,381 seconds, and Greedy takes
0.2 and 1.9 seconds to color Yeast and LS, respectively. In
comparison, VColor can color Yeast in 1.2 seconds and LS

in 3.2 seconds when s = 20 as shown in Fig 10(a), which is
about 500 and 744 times faster than SampleIS, respectively.
From Fig 10(a), we also note that the time of VColor is not
monotonous with the growth of s. The main reason is that
although the number of CCs decreases with the growth of s
but the time to color a CC increases.

For the number of colors, SampleIS uses 13 and 137
colors, and Greedy uses 10 and 219 colors on Yeast and
LS, respectively. Fig. 10(b) shows that our VColor can color
Yeast using 10 colors and LS using 150 colors.

On the graphs of modest sizes, Greedy takes 1.4 seconds
to color NY and 0.9 second to color Epinions. As shown in
Fig. 11(a)-(b), VColor can color NY in 103 seconds and color
Epinions in 8.1 seconds.

For the number of colors, Greedy uses 6 colors on NY and
31 colors on Epinions. As shown in Fig. 11(c), VColor uses
fewer than 6 colors on NY and the number of colors is stable
with different s. But, the results on Epinions exhibits more
variations. As shown in Fig. 11(d), VColor takes 33 colors on
Epinions when s = 10, which is close to Greedy, but the
number of colors increases with the growth of s. The reason
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Fig. 11: Results on NY and Epinions

is as follows. Given a graph G, the larger subgraphs of G,
including both the vertices and edges, covered by the CCs,
VColor can get closer to the global optimal. However, the de-
grees of vertices in a social network vary significantly. Hence,
the number of crossing edges between CCs and the VCC
increases with the growth of s. For example, on Epinions,
when s = 10, the number of crossing edges between CCs
and the VCC is 4,650K, whereas it becomes 4,845K when
s = 40. Therefore, the size of the subgraph covered by the
CCs reduces, and more colors are used. However, the marginal
increment of the number of colors reduces with the growth of
s and the number of colors is no more than 44, as shown in
Fig. 11(d).

B. Coloring a large graph

In this subsection, we focus on the performance of our
techniques to color a large graph. We use Pokec and PA in this
experiment. Greedy on Pokec and PA finishes by 39.1 and 3.7
seconds, and the color number is 48 and 6, respectively. We
tune both s and L of VColor in this experiment.

1) Experiments on the size of VCC: Recall that given a
VPH H = {B1, B2, ..., BL}, our VColor colors the VCC of
BL using SampleIS, which cannot finish in days if the VCC
is large. Therefore, we first find a value of L, such that the
VCC of BL is small enough. The results are shown in Fig. 12.

Fig. 12(a)-(b) show that the size of VCC of BL reduces
fastly as the growth of L. Take the results of s = 20 as an
example. On Pokec, the size of VCC is 187,713 when L = 5,
it reduces to 1,851 when L = 15, and it becomes 0 when
L = 20. On PA, the size of VCC is 276,148 when L = 1, it
reduces to 4,804 when L = 2, and it becomes 3 when L = 3.
We note that the size of the VCC of BL on a social network
can be larger than that on a road network for the same value
of L. It is because that the average degree of a social network
is much larger than that of a road network. From Fig. 12(a)-
(b), we also observe that the size of VCC of BL reduces with
the growth of s. It is because that larger CCs can cover more
vertices of a graph and the VCC is hence smaller.

2) Experiments on the coloring time: In this experiment,
we examine L = 15 and 20 on Pokec and L = 3 and 4 on
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Fig. 12: VCC sizes on large graphs
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Fig. 13: Time of coloring a large graph

PA, as the sizes of the VCC is small enough to be colored by
SampleIS as discussed in Sec. V-B1. The results are shown
in Fig. 13.

From Fig. 13(a)-(b), we observe that the coloring time first
reduces and then increases with the growth of s. The reason
has been explained in Sec. V-A. Fig. 13(a) also shows that
the coloring times for L = 15 and 20 are very close on
Pokec. The reason is that the VPH for L = 15 is very close
to that for L = 20. For example, when s = 20, the VPBs
B16, B17, ..., B20 totally contain only 1,851 vertices, which is
very small compared with the size of Pokec. We have a similar
observation on PA as shown in Fig. 13(b).

3) Experiments on the number of colors: Following the
experiment in Sec. V-B2, we also set L = 15 and 20 on Pokec

and L = 3 and 4 on PA. The results are shown in Fig. 14.

From Fig. 14(a), we observe that the number of colors
increases with the growth of s, but the marginal increase
reduces on the social network, as explained in Sec. V-A
(Fig. 11(d)). From Fig. 14(a), we also observe that the number
of colors slightly increases with the growth of L. The reason
is that the VCC of B15 is further partitioned for L = 20,
and hence the VCC of B15 can be colored using slightly more
colors by VColor than directly applying SampleIS on it. From
Fig. 14(b), we observe that the number of colors is very stable
with the growth of s and L on the road network PA.

C. Coloring a set of graphs

This subsection presents the experimental results on color-
ing a set of graphs. We examine the performance of MGColor
on three datasets: PubChem, PA and Pokec. For PubChem, since
many graphs of it are very small (e.g., the smallest graph
just has 2 vertices) and our vertex-cut partition based method
cannot show its advantage on very small graphs, we randomly
pick 8k graphs whose size is larger than 50 from PubChem as
the tested dataset. The smallest and largest graph tested have
50 and 419 vertices, respectively, and the std. dev. of the graph
sizes is 15.1. For PA and Pokec, to obtain a large number of
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Fig. 14: Performance of coloring a large graph
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Fig. 15: Time of coloring 800 samples of Pokec and PA

graphs, we randomly sample a set of 800 connected subgraphs
of size 1k from PA and Pokec, respectively.

1) Experiments on the coloring time: For PubChem, since
the graphs are small, we set L = 1 and s = 5. The runtime
of MGColor on the tested dataset is 5.3 seconds. The results
on the samples of PA and Pokec are shown in Fig. 15. From
Fig. 15(a), we observe that the time to color the Pokec samples
first reduces and then increases with the growth of s. The
trend is consistent to the coloring time on a single graph. From
Fig. 15(a), we also observe that the coloring time is different
for different values of L. Similar results can be observed on
PA as shown in Fig. 15(b).

To show the advantage of MGColor on coloring a set of
graphs, we also show the runtime of coloring each graph one
by one using Proc. Color. On PubChem, Color totally takes
7.2 seconds, which is 1.4 times slower than MGColor. Color
is 2 and 2.5 times slower than MGColor on Pokec and PA,
respectively, as shown in Fig. 15(a)-(b).

2) Experiments on the number of colors: Since we color a
set of graphs, we cannot directly show the number of colors
of all graphs. We hence show the average distance of the
number of colors of MGColor with that of coloring each graph
individually using VColor. The distance is defined as dist =
avgG∈D(a/b− 1), where a is the color no. of G computed by
MGColor, b is the color no. of G computed by VColor and D
is a set of graphs.

The results show that MGColor may use slightly more
colors than coloring each graph individually. The reason is that
given a set of graphs D, VPH needs to maximize the common
CCs when constructing VPs for the graphs in D. Therefore,
for a graph G in D, the VP of G in VPH may not as efficient
as the VP for G itself. However, the overhead of color number
is small. For example, on PubChem with L = 1 and s = 5, the
color distance is 0.09. On Pokec with L = 2 and s = 20, the
average number of colors of the 800 graphs is 11.3 and the
color distance is 0.05, as shown in Fig. 16. The overhead of
color number is hence no more than 1.
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Fig. 16: Color number distance from MGColor to coloring
each sample individually
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Fig. 17: Scalability performance of MGColor

Fig. 16 shows that the distance reduces with the growth of
s. The reason is that our vertex-cut partition logic prefers to
include the vertices of higher degree into the VCC when s is
large, as discussed in Sec. V-A. However, a graph usually has
few vertices of high degree. Therefore, the VP of G in VPH
gets closer to the VP constructed for G itself, when s is large.

Fig. 16 also shows that the distance increases with the
growth of L. The reason is that each level of VPH introduces
some distance of color number. If we increase the number of
levels, the distance aggregates. However, the marginal increase
of distance reduces with the growth of L. For instance, the
distances of L = 3 and L = 4 are almost the same.

3) Experiments on scalability: In this experiment, we ex-
amine the scalability of MGColor by coloring 400, 600, 800
and 1,000 sample subgraphs of Pokec and PA, respectively.
Fig. 17 presents the results. From Fig. 17, we observe that the
time of MGColor grows almost linearly with the increase of
the number of graphs.

4) Experiments on the accuracy of cost model: In this
experiment, we present the accuracy of our cost model for
estimating the values of s and L that can produce the
smallest coloring time. The results are presented in Fig. 18.
We test several combinations of values of s and L, i.e.,
s = 5, 10, 20, 30 and L = 3, 4. We examine the coloring time
of all combinations of these values, and compare the smallest
coloring time with the coloring time using the best values
estimated by the cost model. Fig. 18 shows that on Pokec

and PA, using the best values of s and L estimated by our cost
model, the coloring time is only at most 15% and 18% longer
than the smallest, respectively.

VI. RELATED WORK

In this section, we present the works that are closely related
to this paper. We mainly discuss the approximation methods
and the readers who are interested in exact solutions please
refer to surveys [8], [10].

Most existing approximation algorithms fall to three frame-
works. The first framework is local search heuristics. The
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Fig. 18: Performance of cost model

main idea of local search is to iteratively choose a “move”
of a coloring (i.e., changing the color of a vertex) that can
decrease the cost function, until a local optimum is reached.
A tabu algorithm TABUCOL [5] is a seminal work of local
search and it is still the foundation of many recent local
search methods. For example, considering the static tabu list
of TABUCOL may not capture well the neighborhood changes
throughout the search, Blchliger and Zufferey [23] design a
technique that can support a dynamic tabu list throughout
the search. Considering TABUCOL assigns the same cost to all
edge violatons, which may result in a poor local optimum,
Porumbel et al. [24] modify the cost function of TABUCOL by
assigning different costs to different edge violations. Hertz et
al. [25] design a hybrid method, which integrates TABUCOL

and its two variations. The hybrid method outperforms the
individual variations on many instances. There are also some
simulated annealing based local search algorithms [26]. While
the local search heuristics generally support coloring of small
and modest size graphs well, their results are often far from
the optimum of large graphs [8].

The second framework is evolutionary approach. The main
idea is to use colorings as individuals and to recombine the
individuals to pass good information to the offsprings. The
key of the evolution is the recombination operator. Earlier
works use the standard uniform crossover for recombination.
For example, Fleurent and Ferland [27] assign to a vertex
the color of either the first parent or the second parent.
However, the evolutionary approach is not as competitive as
local search, until the GPX method [7] is proposed. Instead of
using color value of vertices as individuals, GPX proposes to
use color classes as individuals and passes the color classes
from parents to offsprings in an alternate manner. This idea
significantly improved the coloring of this framework. Because
of its effectiveness, many recent works follow it. For example,
Galinier et al. [28] propose to combine conflict-free color
classes from parents. When selecting color classes to pass
to offsprings, Porumbel et al. [29] propose to consider both
the sizes of color classes and the conflicts. Lu and Hao [30]
propose to use several parents in evolution. However, using
several parents is only useful on the graphs having large class
sizes. Evolutionary methods can produce good coloring results

on large graphs. But, they are often time consuming.

The third framework is independent set extraction. It is
the most promising framework for coloring large graphs [8].
SampleIS [6] used in the experiments follows this framework.
This framework comprises two phases: a preprocessing phase
and a coloring phase. The preprocessing phase is to iteratively
extract a large independent set from the input graph until the
residual graph is small enough. Each IS extracted is assigned a
unique color. The coloring phase uses existing methods (e.g.,
TABUCOL) to color the residual graph. The color classes of
the residual graph and the ISs extracted give a coloring of the
input graph. Many methods for computing large ISs have been
proposed, such as simple greedy [31], tabu search [27], XRLF
heuristic [32] and sampling [6]. To obtain a smaller residual
graph, Wu and Hao [33] propose to extract a set of disjoint
independent sets in each iteration, instead of extracting one
independent set in each iteration. Recently, there is a trend
of having a postprocessing phase, which reconsiders the color
of a vertex [34], [35]. It is based on the observation that the
large ISs extracted in the preprocessing phase may not belong
to the final coloring [33]. The main idea is to add back the ISs
extracted to the residual graph and re-color the residual graph
starting with its current coloring extended with the added ISs
as new color classes.

There are some works that do not belong to the three frame-
works. Karger et al. [9] model the graph coloring problem
with semidefinite programming. Their techniques can color an

α-colorable graph with min{Õ(∆1−2/α), Õ(|G|1−3/(α+1))}
colors. Although it is better than SampleIS in terms of |G|,
the bound is not specified definitely, as Õ hides lower-order
factors, such as log |G|. Karger et al. mainly focuse on α-
colorable graphs and acknowledge that SampleIS has the best
known approximation ratio for general graphs. There are some
works studying parallel or distributed coloring of a graph (e.g.,
[36], [37]). In contrast, we focus on algorithms that run on a
single off-the-shelf machine.

Finally, we end this section with a brief discussion of the
related work of multi-query optimization (MQO). The idea
of MQO is to share the results of common subqueries (of a
set of queries) [38]. MQO significantly reduces the overall
computation of graph queries [39], [40], [41]. Le et al. study
the MQO of SPARQL queries [39]. They use the maximum
common subgraphs as the common subqueries. The results of
the common subqueries are combined with the results of the
remaining subqueries to obtain the final query results. Hong
et al. [40] study MQO of XQuery and Bruno et al. [41] study
MQO of path queries on XML. However, these works cannot
be directly adopted to solve the graph coloring problem.

VII. CONCLUSION

In this paper, we study the graph coloring problem of
large graphs. We propose a vertex-cut partition based coloring
method VColor. It partitions a large graph G into a set of
connected components (CCs) by removing a vertex-cut com-
ponent (VCC). The CCs are colored by an MIS enumeration
based technique and the VCC is colored by SampleIS. The
local colorings are combined by a maximum matching based
technique to obtain a minimal coloring of G. VColor is sig-
nificantly faster than SampleIS, while the numbers of colors
used in practice are comparable. We also propose techniques to

107



optimize the coloring of a set of graphs. A VPH is designed to
represent the common subgraphs of the graphs as the common
CCs. Our technique is significantly faster than coloring graphs
individually. To estimate the parameters’ values of VColor

for minimal coloring time, we propose a cost model for the
coloring time. An efficient sampling based search method is
proposed to search for the optimal values of the parameters.
Our experiments verify the effectiveness and efficiency of the
proposed techniques.
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