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Abstract—In data-intensive cluster computing platforms
such as Hadoop YARN, performance and fairness are two
important factors for system design and optimizations. Many
previous studies are either for performance or for fairness
solely, without considering the tradeoff between performance
and fairness. Recent studies observe that there is a trade-
off between performance and fairness because of resource
contention between users/jobs. However, their scheduling al-
gorithms for bi-criteria optimization between performance
and fairness are static, without considering the impact of
different workload characteristics on the tradeoff between
performance and fairness. In this paper, we propose an
adaptive scheduler called Gemini for Hadoop YARN. We first
develop a model with the regression approach to estimate
the performance improvement and the fairness loss under the
sharing computation compared to the exclusive non-sharing
scenario. Next, we leverage the model to guide the resource
allocation for pending tasks to optimize the performance of the
cluster given the user-defined fairness level. Instead of using a
static scheduling policy, Gemini adaptively decides the proper
scheduling policy according to the current running workload.
We implement Gemini in Hadoop YARN. Experimental results
show that Gemini outperforms the state-of-the-art approach in
two aspects. 1) For the same fairness loss, Gemini improves
the performance by up to 225% and 200% in real deployment
and the large-scale simulation, respectively; 2) For the same
performance improvement, Gemini reduces the fairness loss
up to 70% and 62.5% in real deployment and the large-scale
simulation, respectively.
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I. INTRODUCTION

In the current era of “big data”, data-intensive cluster
computing is a common paradigm in clusters and clouds.
A lot of large-scale distributed data processing frameworks
have thereby emerged and become popular in recent years,
including MapReduce [1], Dryad [2], Mesos [3], Hadoop
YARN [4] and Spark [5]. Performance and fairness are two
important concerns for cluster providers and users on those
shared environments. Many previous studies either focus on
performance or fairness without considering the tradeoff be-
tween performance and fairness [6], [7], [8], [9], [10], [11].
Recent studies have showed that there is a trade-off between
performance and fairness due to the resource contention and
proposed some bi-criteria optimization algorithms [12], [13],
[14], [15]. However, all of these prior studies use a static
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approach by always applying the same scheduling policy for
different workloads. In our work, we observe that, due to the
heterogeneous resource demands of submitted workloads,
the trade-off between performance and fairness in fact is
changing with the variation of the multi-resource demand
of submitted jobs during the computation.

Figure 1(a) shows a resource usage profile of tasks from
Google in a data center of 12 thousands of machines based
on Google trace [16]. The position of a circle indicates the
CPU and memory resources consumed by tasks. The size
of a circle is logarithmic to the number of tasks in the
position. It shows that there are significantly heterogeneous
demands for tasks on CPU and memory resources. We
define a metric (complementary degree) to quantify such a
heterogeneity of the resource demand in a workload (detailed
definition can be found in Section III). To illustrate that
different complementary degrees of submitted jobs have
significant impact on the performance and fairness in the
sharing environment, we conduct an experiment with Google
trace. Figure 1(b) shows the performance improvement and
the fairness loss for workload with different complementary
degrees under the sharing computation compared to the
exclusive non-sharing scenario in which the performance is
the worst and the fairness is the best. With the increase
of complementary degree, the performance becomes better,
and the fairness loss first increases significantly to a highest
point and later decreases after it. It means that the tradeoff
between the performance and fairness is sensitive to the
complementary degree of the workload.
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Therefore, it motivates us to propose an adaptive sched-
uler called Gemini for Hadoop YARN with the awareness
of the impact of submitted workload on the performance
improvement and fairness loss. Gemini performs bi-criteria
optimization between performance and fairness. Given the
user-defined fairness level (i.e., the maximum fairness loss
the user can tolerant), Gemini maximizes the performance
of the cluster, or vice versa. Gemini firstly leverages the
regression approach to construct a trade-off model based
on the workload information collected from YARN cluster.
Given the complementary degree of the workload, this trade-
off model can be used to estimate the performance improve-
ment and the fairness loss under the sharing computation
compared to the exclusive non-sharing case. Guided by this
trade-off model, the resource allocator adaptively decides
the proper scheduling policy used in jobs/tasks scheduling
to improve the performance of the cluster maximally given
that the user-defined fairness level is satisfied. Currently,
Gemini considers two scheduling policies during runtime,
namely, performance-oriented policy and fairness-oriented
policy. The performance-oriented policy applies the resource
imbalance heuristic [17] which balances the resource capac-
ity left across all resources of the node in order to maximize
the resource utilization of the cluster. The fairness-oriented
policy applies the dominant resource fairness [9] which
allocates resource fairly among users in a system containing
different resource types. When resources become available,
the resource allocator calculates the complementary degree
of the current workload and leverages the trade-off model
to estimate the performance improvement and the fairness
loss. The performance-oriented policy is selected when the
estimated fairness loss satisfies the user-defined fairness lev-
el and there is an improvement for performance. Otherwise,
the fairness-oriented policy is used.

We implement Gemini in Hadoop YARN (2.6.0). Gemini
performs better than the state-of-the-art scheduling algorith-
m [14] in two aspects. 1) For the same fairness loss, Gemini
increases the performance improvement up to 225% and
200% in real deployment and the large-scale simulation,
respectively; 2) For the same performance improvement,
Gemini reduces the fairness loss up to 70% and 62.5% in
real deployment and the large-scale simulation, respectively.

The remainder of this paper is organized as follows. Sec-
tion II reviews the background and related work. Section III
describes the workload characterization model. Section IV
presents our detailed design of Gemini, followed by the
experiment results in Section V. We conclude this paper
in Section VI

II. BACKGROUND AND RELATED WORK

In this section, we introduce the background of Hadoop
YARN and review the related work.

A. Hadoop YARN

Hadoop MapReduce [1] has entered the new generation
called Hadoop YARN [4]. The system overview of Hadoop
YARN is shown in Figure 2. Hadoop YARN implements
two major responsibilities of resource management and job
scheduling into separate components: Resource Manager
and per-application App Master. The Resource Manager is
the unified resource arbitrator among all applications in the
system. The Apps Manager of Resource Manager launches
an App Master for each application which generates resource
requests, negotiates resources from the Resource Manager
and works with Node Managers to execute and monitor the
corresponding tasks. Furthermore, Hadoop YARN provides
fine-grained resource management instead of coarse-grained
slot based manner. Each task is characterized by a resource
requirement vector which specifies the amount of different
resources required by this task, e.g., (1 CPU, 3 GB)
indicates 1 CPU core and 3 GB RAM are needed by
the task. YARN Scheduler of Resource Manager allocates
the available resources reported by Node Manager to the
pending tasks based on a particular scheduling policy.

There are three schedulers in Hadoop YARN, including
Fair scheduler, Capacity scheduler and FIFO scheduler. The
Fair scheduler is designed to fairly share resources among
all running applications in large-scale multi-tenant clusters.
The Capacity scheduler allows YARN applications to run
in a multi-tenant cluster and maximizes the throughput
and utilization of the cluster. FIFO scheduler allocates the
resources to applications in first-in-first-out sequence. These
three schedulers focus on either the performance or the
fairness, however, they do not consider the tradeoff between
the performance and fairness.
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Figure 2: The overview of Hadoop YARN
B. Related work

Performance-oriented scheduling. Many studies are pro-
posed to optimize the performance of Hadoop. We de-
scribe these studies mainly from the optimization of the
resource usages. Maximizing resource utilization is very
important for Hadoop. In early years, the early generation
of Hadoop abstracts resources into map/reduce slots and
allocates them among jobs. DynMR [6] implements more



fine-grained reduce tasks with decoupled functional phases
in order to resolve the low utilization problem caused by the
data skew. RAS [18] captures the heterogeneous resource
requirements of workload and dynamically adjusts slots on
each machine to maximize the cluster utilization. ILA [7]
improves the throughput of the virtual MapReduce clusters
by considering the interference between map/reduce tasks.
As the development of Hadoop, resource managers in the
large-scale cluster are proposed to allocate the resources
to the workload in a fine-grained way [3], [4], [8]. They
provide a general approach to improve the resource uti-
lization of the cluster by performing coordinated resource
allocation and assignment. As the explosive growth of data,
I/O optimizations become the core concern of data intensive
applications. Delay scheduling achieves nearly optimal data
locality by only waiting a small of amount of time [19].
CoHadoop [20] explores more flexible data placement policy
to improve the data locality. In addition to these, many
more new /O scheduling algorithms for MapReduce are
proposed [21], [22], [23], [24].

Fair scheduler. Fair scheduler [25] is proposed in the
early generation of Hadoop to allocate slots fairly among
different users based on the max-min fairness. Quincy [10]
resolves fair allocations efficiently by mapping from the
fair scheduling problem to min-cost flow. Choosy [11] is
a fair scheduler that considers the fairness with resource
constraints in data centers. LTRF [26] resolves the fairness
problem in pay-as-you-go environment by considering the
historical allocations. Besides the single-resource fair allo-
cation mentioned above, there are a lot of studies for multi-
resource fair allocation. Dominant Resource Fairness [9] is
the first work to generalize the max-min fairness to multiple
resource types on Hadoop YARN. Wang et al. [27] extend
Dominant Resource Fairness especially for the heteroge-
neous environment. Liu et al. [28], [29] propose a novel
resource allocation mechanism, called Reciprocal Resource
Fairness, to enable fair sharing multiple types of resources
in the cloud.

Performance vs. Fairness. Fruitful studies have been pro-
posed on performance and fairness optimization. However,
few studies consider the tradeoff between the performance
and the fairness on Hadoop YARN. Joe-Wong et al. [13]
theoretically analyzed the fairness-efficiency tradeoff with
multiple resource types for two families of fairness func-
tions. Wang et al. [12], [15] analyzed the trade-off in multi-
resource packet processing. Tetris [14] is the first work
to explore the tradeoff between performance and fairness
over YARN framework. Tetris leverages many alignment
heuristics to efficiently pack tasks with heterogeneous de-
mands to machines. Although these studies have observed
the tradeoff between performance and fairness, they do not
aware the variation of the multi-resource demand of the
running workload and perform the scheduling with a static
approach during computation.

III. WORKLOAD CHARACTERIZATION MODEL

In data-intensive cluster computing, the resource demands
for different tasks are heterogeneous as shown in Figure 1.
This heterogeneity results in opportunities for bi-criteria
optimization between performance and fairness. In order
to quantify the complementarity of resource demand for
different users, we propose a notion called complementary
degree. The more complementary the resource demand, the
greater the potential for performance optimization during
resource allocation. Figure 1(b) also shows that both the
performance and fairness are sensitive to the complementary
degree of the workload. In this section, we propose a model
to calculate the complementary degree of the workload and
leverage it to characterize the workload for scheduling.

Entropy is widely used in information theory to charac-
terize the uncertainty of information content. Larger entropy
indicates more random information. Inspired by this, we
find that it is rather suitable to quantify the complementary
degree of the workload with entropy by imaging the re-
source demand as the information, and differences of these
demands correspond to the divergence of the information.
The complementarity of resource demand is equivalent to
randomness of the information. Therefore, we extend the
definition of entropy to quantify the complementary degree
of the workload.

We define some terminology for a multi-resource alloca-
tion system. We consider m typed hardware resources (e.g.,
CPU, memory, disk, network) denoted by R = {ry,...,r}.
Let U = {uy,...,un} be the set of users sharing the cluster.
For every user i, let D; = (Dj,...,Di,) be its resource
demand vector, where D;; is the fraction of resource j
required by each task of user i over the total capacity of the
cluster. For simplicity, we only consider the running tasks
and assume the demand for all users are non-negative, i.e.,
D;; 2 0,Vie U,j € R. We say resource k; is the dominant
resource of user i if

k; = argmax D;;. (D)
JER

The dominant resource k; is the most heavily demanded
resource required by user s tasks in the resource pool.
We calculate the percentage of the users whose dominant
resource is k as

iz1 0 (ki, k)

O(x,y) is an indicator function which is shown as

if x=y.

1
O(x,y) = { ’ 3)

0, otherwise.

Statistically, P(k) is the probability of observing a job
whose dominant resource type is k.



Based on the underlying probability distribution of jobs
with different dominant resource types, we quantify the com-
plementary degree of the workload with entropy. According
to the definition of entropy [30], the complementary degree
d of the workload can be easily calculated as

d=—Y P(i)log, P(i). 4)

i€ER
IV. GEMINI SCHEDULER

In this section, we introduce the design and implemen-
tation of Gemini. First, we give the system overview of
Gemini. Then, we describe the main components of Gemini
in detail. Finally, we explain the implementation of Gemini
on top of Hadoop YARN.

A. System overview

The logical design of Gemini is shown in Figure 3. It
mainly consists of two components, namely, Model Trainer,
and Resource Allocator. Model Trainer collects the workload
information from the YARN cluster and leverages the re-
gression approach to estimate the performance improvement
and fairness loss under sharing computation compared to
the exclusive non-sharing case. Guided by the estimation,
Resource allocator adaptively decides the proper scheduling
policy according to the complementary degree of curren-
t running workloads and the user-defined fairness level.
Gemini monitors the resource usage of the cluster. When
the resources in the cluster becomes available, Resource
Allocator allocates the resources to the pending jobs/tasks
according to the decided policy and launches them in the
cluster.
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Figure 3: Logical design of Gemini
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B. Main components of Gemini

We describe more details for two main components of
Gemini.

Model Trainer. In order to estimate the performance
improvement and fairness loss in the shared environment
compared to the exclusive non-sharing case, Gemini im-
plements an offline component called Model Trainer. It
leverages the regression approach to construct a trade-off
model which can estimate the performance improvement
and fairness loss. Model Trainer generates the training data
by periodically collecting the information of all running

workloads from the Hadoop YARN cluster. Model Trainer
measures the performance improvement and the fairness loss
by scheduling the collected workload under sharing and
non-sharing cases, and the complementary degree of the
workload can be easily calculated according to Equation (4).
Model Trainer uses the measured performance improvement,
fairness loss and complementary degree of the workload to
construct a trade-off model with the regression approach.
This trade-off model actually consists of a performance
model and a fairness model. Given the complementary
degree of the workload, the performance model and the
fairness model estimate the performance improvement and
fairness loss, respectively. In order to fit the model to curved
data, we utilize the polynomial regression.

fld)=cot+ci*xd+...+cyxd", 5)

where [co,c1, ..., cn] 18 the coefficients we need to resolve and
d is the complementary degree of the workload. Given the
training data (d[i],y[i]) in which d[i] is the complementary
degree of workload i and y[i] is the measured performance
improvement or fairness loss by running the workload i, we
train the trade-off model using least-squares and the solution
is the coefficients of the polynomial f that minimizes the
sum of the squared errors

E =Y yli] = f(dli). (©)

We instantiate the concrete formulas of these two models
in the experiment.

Resource Allocator. Resource Allocator allocates the
available resource in the cluster to the jobs/tasks according
to a scheduling policy. Instead of using a fixed scheduling
policy as the existing work did [14], Gemini provides mixed
policies and adaptively decides the proper scheduling policy
based on the resource demand of the running workload dur-
ing computation. Currently, Gemini supports performance-
oriented policy and fairness-oriented policy. The detail of the
decision procedure is shown in Algorithm 1 for maximizing
the performance given a user-defined fairness level. The
algorithm of fairness optimization under a user-defined per-
formance loss is similar and its description is omitted. Gem-
ini first calculates the complementary degree of the current
running workload in the cluster according to Equation (4).
Then, it leverages the trade-off model which is trained
according to Equation (5) (6) to estimate the performance
improvement and fairness loss. If the estimated fairness loss
satisfies the user-defined fairness level and the performance
improvement can be achieved, the performance-oriented pol-
icy is applied during resource allocation. Otherwise, Gemini
uses the fairness-oriented policy in resource allocation. In
our implementation, We use Capacity scheduler enhanced by
an heuristic that captures the resource imbalance in YARN
as the performance-oriented policy and the Fair scheduler in



YARN as the fairness-oriented policy.

Algorithm 1 Scheduling algorithm

1: s = fairness-oriented policy; /*initialize to fairness-oriented policy*/
2: f = user-defined fairness level;

3: w = current running workload;

4: m = trade-off model trained according to Equation (5) (6);

5: calculate complementary degree d of w according to Equation (4);
6: estimate performance improvement i with model m given d;

7: estimate fairness loss [ with model m given d;

8: if I < f and i > 0 then

9: s = performance-oriented policy;

10: else

11: s = fairness-oriented policy;

12: allocate resource according to s;

C. Implementation on Hadoop YARN

We incorporate Gemini into Hadoop YARN (2.6.0) by
modifying Resource Manager of Hadoop YARN. The imple-
mentation detail is shown in Figure 4. In order to reduce the
scheduling latency, Hadoop YARN applies the asynchronous
event-based programming model. AsyncDispatcher is the
core component of the asynchronous programming model.
All components of Resource Manager need to register their
events dispatchers in the AsyncDispatcher and communicate
with each other by sending their events to AsyncDispatcher.
AsyncDispatcher monitors all coming events and transfers
each received event to the corresponding event dispatcher.
We incorporate Gemini into YARN framework by making
the following modifications:

o Apps Manager provides a workload query API for other
components to gain the information of current running
workload including the input data, the application ex-
ecutable, the submission parameters and the resource
demand of tasks. When a new job/task is coming, Apps
Manager notifies the other components by sending an
event to AsyncDispatcher.

e Two new components, namely, Model Updater and
Workload Monitor are integrated into Resource Manag-
er of YARN. Their corresponding event dispatchers are
firstly registered in the AsyncDispatcher and listen to
the workload update event. Model Updater continuously
refines the trade-off model with the newly coming
workload and synchronizes the model used by YARN
Scheduler. Workload Monitor monitors the running
workload and notifies the YARN Scheduler when the
resource demand of the workload is varied.

o We integrate the performance-oriented policy and the
fairness-oriented policy into Scheduler component, and
implement a Policy Selector which can adaptively
choose the proper scheduling policy based on the
resource demand of current workload. The Resource
Allocator performs the job/task scheduling with the
decided policy when resource becomes available.
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Figure 4: Gemini implementation on Hadoop YARN. Mod-
ifications of existing components in Hadoop YARN are
shown with green rectangles. New components added into
Hadoop YARN are shown with blue rectangles.

V. EVALUATION
A. Experiment setup

We evaluate Gemini by running our prototype implemen-
tation in our 10-nodes cluster. To evaluate the performance
and study the parameter impacts at large scale, we conduct
a trace-driven simulations using the production trace in
Facebook.

Hadoop cluster. We use Hadoop YARN (2.6.0) and
run the experiments in our local cluster. The local cluster
consists of 10 compute nodes, each with two Intel X5675
CPUs (6 CPU cores per CPU with 3.07 GHz), 24GB DDR3
memory and 500GB 7200RPM disk drivers. These machines
are connected with 10Gb/sec Ethernet.

Workload. We synthesize a workload based on the dis-
tribution of jobs sizes and inter-arrival time at Facebook
provided by Zaharia et. al. [19]. The workload consists of
100 jobs. Based on their resource demand, we categorize
them into 9 bins according to job types and sizes, as
listed in Table I. It is consisted of large number of small-
sized jobs (1 ~ 15 tasks) and small number of large-sized
jobs (e.g., 800 tasks'). The job submission time is derived
from one of SWIM’s Facebook workload traces (e.g., FB-
2009_samples_24_times_1lhr_1.tsv) [31]. The demand dis-
tribution of map/reduce tasks is based on Figure 1 provided
by Ghodsi et al [9]. As YARN currently only supports the
allocation of CPU and memory, we also only consider these
two resources in real cluster experiments and consider more
types of resources in our trace-driven simulation. The actual
jobs are from Hive benchmark [32], containing four types of
applications, i.e., rankings selection, grep search (selection),
uservisits aggregation and rankings-uservisits join.

In order to train the performance-fairness model, we
measure the performance improvement and the fairness loss
used by the model updater in a separate mini-cluster and

I'We reduce the size of the largest jobs in [19] to have the workload fit our cluster
size.



scale down the workload input size accordingly. In our
implementation, the scale ratio is set to 10% and we also
evaluate the impact of different scale ratios.

Metrics. We compare the performance and the fairness
of a scheduler with the exclusive non-sharing case in which
the performance is the worst and the fairness is the best.
To quantify the performance improvement, we use the
percentage improvement (or reduction) on the makespan. For
the fairness loss, we calculate it with the average reduction
of job completion times. In our experiments, we compare
our proposed scheduler Gemini with Tetris [14], the state-
of-the-art scheduler which studies the trade-off between
performance and fairness in Hadoop YARN.

Trace-driven simulator. In order to evaluate Gemini at a
larger cluster, we implement a trace-driven simulator that re-
plays the production traces collected in Google cluster [16].
This trace provides the information of all tasks submitted
by over 900 users on a cluster of about 12.5k machines
in one month, including task submission times, execution
time and normalized CPU/Memory/Disk resource demands.
In order to accelerate the simulation, we simulate 60 users
submitting tasks with different resource demands for three
resource types (CPU, memory and disk) in 24 hours to a
600-node cluster. We assume that users share the cluster
equally.

. Map Tasks Reduce Tasks
’ Bin Job Type } 7] pDeman T % 7] Demand % # Jobs
1 rankings selection 1 <1,1 GB> NA NA 38
2 grep search 2 <1, 1.5 GB> NA NA 18
3 uservisits aggregation 10 | <2,0.5 GB> 2 <4,2 GB> 14
4 rankings selection 50 <4, 1 GB> NA NA 10
5 uservisits aggregation 100] <2, 1.5 GB> 10 <2,2 GB> 6
6 rankings selection 200 <3,2 GB> NA NA 6
7 grep search 400| <2, 1 GB> NA NA 4
8 rankings-uservisits 400 <I1,2 GB> 30 <2,0.5 GB> 2
join
9 grep search 800| <2, 0.5 GB> 60 <1, 3 GB> 2

Table I: Job types and sizes for synthetic Facebook workloads.

B. Real deployment evaluations

We evaluate the performance improvement and fairness
loss of Gemini with the synthetic workload in our local
cluster. We compare Gemini with Tetris. First, we compare
their performance improvement, fairness loss and resource
utilizations. Then, we measure the overhead of our schedul-
ing algorithm. Finally, we evaluate the trade-off model used
by Gemini with the cross-validation approach.

1) Overall comparison: We compare the performance
improvement and the fairness loss for Gemini and Tetris.
Figure 5(a) shows the performance improvements of both
schedulers under the same fairness loss with the Facebook
workload. We see that Gemini achieves better performance
compared to Tetris at the cost of the same fairness loss. The
performance improvement is up to 125% and 69.5% in aver-
age. This gain is achieved by considering the variation of the
trade-off during the computation. Gemini adaptively decides

the proper scheduling policy according to the changing of
the workload. Instead, Tetris applies the same scheduling
policy throughout the whole computation which loses many
optimization opportunities even when little or none fairness
is lost. Similarly, Gemini achieves better fairness compared
to Tetris for the same performance improvement because
Gemini skips the unworthy optimizations which would trade
huge fairness loss for negligible performance improvement.
The result is shown in Figure 5(b). For the same performance
improvement, Gemini reduces the fairness loss up to 75%
and 55.3% in average compared to Tetris. We see that,
by designing the adaptive scheduling algorithm, Gemini
optimizes the performance as well as the fairness at the same
time compared to Tetris.
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Figure 5: The comparison results between Tetris and our
adaptive scheduler

To understand the performance improvement of Gemini
compared with Tetris on Hadoop YARN, we compare the
resource utilization for both schedulers. As YARN currently
only supports the allocation of memory and CPU, we only
the utilization of memory and CPU. In average, Gemini
achieves 137% improvement on memory utilization and
122% improvement on CPU utilization. Figure 6 shows
the detailed resource utilization of both schedulers during
execution when fairness loss is 8%. We see that the cluster
is bottlenecked on different types of resources at different
times. In contrast, Tetris can not fully utilize the resources
due to fragmentation.
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Figure 6: The cluster resource utilizations of CPU and
Memory under Tetris and Gemini during the execution

2) Overhead analysis: In order to evaluate the over-
head of our scheduling algorithm, we run experiments
with different numbers of jobs and tasks. We evaluate the
scheduling overhead by observing the time needed by the
Resource Manager (RM) to process the heartbeats coming



from Application Masters (AM) and Node Managers (NM).
YARN RM conducts the real resource allocation during
the NM heartbeat and only updates the resource requests
and responses during the AM heartbeat. The processing
time of these heartbeats for different schedulers is shown
in Table II. For NM heartbeat, Gemini and Tetris are a
bit slower than Hadoop Fair scheduler as they have more
complex scheduling logic. For AM heartbeat, they all take
the same time. All schedulers perform rather good scalabil-
ity. We further evaluate the space overhead by monitoring
the memory usage on Resource Manager and we find that
Gemini consumes almost the same memory as Hadoop Fair
scheduler. Our online algorithm design has little runtime
overhead, rather than more complex optimizations based on
linear programming [33].

Gemini
10K (50K) tasks

Hadoop Fair scheduler | Tetris
10K (50K) tasks 10K (50K) tasks

NM heartbeat .05ms (.18ms) .078ms (.19ms) .08ms (.19ms)

AM heartbeat

.04ms (.04ms) .04ms (.04ms) .04ms (.04ms)

Table II: Overheads: Average processing time of heartbeats from
the Node Manager (NM) and the Application Master (AM) for
different schedulers

3) Model evaluation: We evaluate our trade-off model

with the cross validate approach which is widely used in
machine learning. We shuffle the training data and split them
into a pair of train and test sets. We use 70% data for training
and validate the model with 30% data and the default scale
ratio in Gemini is configured to 10%. According to the
regression approach which is shown in Equation (5) (6),
we derive the concrete formulas for our trade-off model.
Given the complementary degree d of the workload, the
performance improvement / is calculated as

I(d) = —0.00835 +0.03573d +0.08681d> +0.001264°,
7

and the fairness loss L is calculated as

L(d) = —0.00068 + 0.06872d 4 0.05256d* — 0.04162d°.

®)

The average error for the performance improvement is
8.9% and the average error for the fairness loss is 3.1%.
These errors are caused by the incomplete training data and
the workload scaling. The previous experiment results show
that our model is accurate enough and can effectively guide
the resource allocation.

Recall in Section IV-C that Gemini trains the trade-off
model by scaling down the workload size as well as the
cluster size in order to minimize the hardware cost. We
compare the performance improvement and the fairness
loss measured after scaling to the values measured in the
original environment. Figure 7(a) shows the impact of the
scale ratio on the accuracy of our trade-off model. The
prediction error decreases with the increase of the scale
ratio. In our experiment, we set the scale ratio to 10% by
default. We also study the impact of the trade-off model on

the results. Figure 7(b) shows the performance improvement
by introducing different degrees of prediction errors in the
fairness loss. Specifically, the allowable fairness loss w
is 8%. Given the a prediction error e, the estimation is
randomly distributed in [w,w(1+¢)]. We vary e from 0%
(no error) to 30%. The result demonstrates the robustness of
our optimizations, if the prediction error is reasonable.

—Performance improvement - - Fairness loss
30%
25%
20%
15%
10%

5%

OTetris M Gemini

35%

30%

25%

20%

15%

10%
5%

0%+ === 0%

0%  20%  40%  60%  80%  100% 0% 10% 20% 30%

Prediction error (%)
Performance
improvement (%)

Scale ratio (%) Prediction errors

(a) The relationship between the pre- (b) The performance improvement
diction error and the scale ratio for different prediction errors

Figure 7: Sensitivity study of the trade-off model
C. Trace-driven simulations

Here, we evaluate the performance improvement and
fairness loss of Gemini at a larger scale by mimic scheduling
in a Google cluster using the production trace provided by
Google.

Figure 8(a) shows the performance improvement for both
schedulers under different fairness loss and Figure 8(b)
gives the result of the fairness loss for both schedulers
under different performance improvement. Similar to the
results in our local cluster, Gemini can achieve better results
than Tetris. We highlight with the following observations
for the simulations with the production trace. First, for
the same fairness loss in Figure 8(a), the performance
improvements of both schedulers are slightly larger than
that of the local cluster, because our trace-driven simulator
considers more resource types provided in Google trace.
Instead, our prototype implementation only considers two
resource types as Hadoop YARN currently only supports
the allocation of CPU and Memory. This results in more
fragmentation and over-allocation of resources. Second, for
the same performance improvement in Figure 8(b), due to
the increase of the total number of jobs, the fairness loss of
both schedulers is worse than that of the local cluster.
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Figure 8: Overall comparison of different schedulers in
large-scale simulation with Google trace
VI. CONCLUSION

This paper shows that due to the heterogenous demand of
multiple resources for users’ jobs, being aware of the varia-



tion of the resource demand of the running workload is non-
trivial for bi-criteria optimization between performance and
fairness. Thus, it is important to have an adaptive scheduling
approach that can perform the performance-oriented and
fairness-oriented scheduling at runtime according to the
demand complementarity of users’ running tasks. However,
none of the existing schedulers are aware of the impact
of workload’s demand variation on the performance and
fairness optimizations. In view of this, we present an adap-
tive scheduler called Gemini which adaptively decides the
proper scheduling policy according to the running workload.
The experiments on real clusters and simulations show that
Gemini achieves better performance as well as fairness than
the state-of-the-art work.
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